
 EE 457 Midterm
Summer ’14 ● Redekopp

Name: ___

Closed Book / 105 minutes No CALCULATORS Score: ________ / 100

1. (17 pts.) Short Answer [Fill in the blanks or select the correct answer]

a. If a control signal must be valid during the majority of the clock cycle it is advisable to use

a _____ (Mealy / Moore)-style signal.

b. A single-cycle CPU sets as constant the ______ (CPI / clock cycle time) while letting the

other vary based on the design and instruction set.

c. Perform the indicated arithmetic operations, showing your work, for the specified

representation system. Answers are limited to 8-bits (not 9-bits). (Do not use the borrow

method for subtraction, use the 2’s complement method of subtraction.) Finally, state

whether overflow has occurred and briefly explain why or why not.

a.) 2’s comp. system b.) Unsigned system

 100100012

 – 011111112

 101010112

 + 011010102

Overflow: Y / N Overflow: Y / N

d. A processor with a 32-bit _____ (address / data) bus would necessarily limit memory to

4 GB.

e. ____ True / False: State machines built using one-hot encoding use more flip-flops than

other encoding mechanisms.

f. Branch instructions perform the following operation: ______ = _________________

g. A processor with a 16-bit data bus would generally imply ____ (0 / 1 / 2 / 4) Byte Enable

signals and allow the lower ___ (0 / 1 / 2 / 4) bits of the address bus to be unused.

h. Amdahl's law would argue that HW optimization of a processor should focus on _____

1.) The most frequently executed instruction

2.) The slowest instruction

3.) The fastest instruction

i. Ideal CPI of a pipelined processor is ______ (fill in the blank) while in practice it will be

_____ (higher / lower) due to hazards.

Page 2 / 9

2. (31 pts.) State Machine Design. Consider a memory containing 8 data values. Tommy

Trojan needs to find the smallest two values (i.e. min1=smallest and min2=next smallest)

in the data values. You may assume that all values are unique and there are no duplicates in

the data.

Memory

Contents

Address 0 1 2 3 4 5 6 7

MEM 10 8 7 6 3 5 1 11

For the particular values shown above, then after the computation MIN1=1, MIN2=3.

To solve this problem we will iterate/scan over the data only once with two registers: MIN1

(stores the smallest) and MIN2 (stores the second smallest). We will also only have one

comparator as shown.

a. Study the partial datapath below and complete the connection (adding any additional logic

components) to produce the B input of the comparator as well as I1 of the MSEL mux.

Do NOT try to complete the control signals now. Complete the datapath then go on to

page 3 and complete the state diagram first.

MEM
(10x8)

Addr

Dout

i

CNTR

SYSCLK
CLR

EN

A<B

A>B

A

B

MIN1

CLR

EN

QD

MIN1

Comp

MIN2

SYSCLK
CLR

EN

MIN2

S
Y

S
C

L
K

M1EN

M2EN

QD

M[i]

S

0

1

LT

GT

QI

QI

MSEL

QI

IEN

A=B
EQ

Complete

Me

Complete

Me

Page 3 / 9

b. State machine implementation. Given below is a partially completed state diagram. The Initial,

Load, and Finish states are completed w/ transitions. Please complete the transition and

operations for the remaining 3 states. Their names mean:

CM1=CompareMin1 = Update register(s) based on the value of M[1]

CM2=CompareMin2 = Compare M[i] with MIN1

CM3=CompareMin3 = For you to figure out…

Complete all the state transitions from CM2 and CM3 and indicate what operations should be

performed in CM1, CM2, and CM3 using register-transfer level descriptions.

On Reset

(power on)

Initial

i ← 0

Load

i ← i+1

CM1

CM2

CM3

i ← i+1

MIN1←M[i]

If M[i] < MIN1

else

Finish

ACK

true
true

true

! ACK

c. Given the content of the memory as shown below, show a sample execution of your state

machine until it reaches the Finish state. Complete the following table for the value of i (the

memory address counter) and STATE (which state you are in) during that clock cycle (i.e.

each column in the table represents a clock cycle. Note: Not all columns/clock cycles may be

needed…leave them blank.

Memory

Contents

Address 0 1 2 3 4 5 6 7

MEM 10 8 7 6 3 5 1 11

I X 0

STATE I L

Page 4 / 9

d. Complete the next state logic and state memory connections.

• First connect the appropriate signals to all the /CLR and /SET inputs to the flip-flops

(Assume GND and VDD are available for connection).

• Next use the blank lines below the box to enter equations the logic for the D-inputs

(DI, DL, DC, …, DF) to each flip-flop. Note: (i==7) is a signal that is generated for you

and will be '1' when i equals 7, '0' otherwise

D Q

CLR

SET
D Q

CLR

SET

D Q

CLR

SET

QL QCM1

QF
D Q

CLR

SET
QCM3

SYSCLK

SYSCLK

NSL & SM

SYSCLK

SYSCLK

i==7

SYSCLK

/RST

(Active low)

D Q

CLR

SET QCM2

SYSCLK

D Q

CLR

SET QI

SYSCLK
LT

GT

DL DCM1

DFDCM3DCM2

DI

ACK

e. Now write logic equations for the D-Input of the following flops using AND/OR/NOT sybmols.

DCM1 = ___

DCM2 = ___

DCM3 = ___

DF = ___

f. Now write logic equations for the control signals to the datapath back on page 2:

IEN = ___

M1EN = ___

M2EN = ___

MSEL = ___

Any other control signals you added that we did not show in the datapath need to have their

logic defined here:

_________ = ___

Page 5 / 9

3. (15 pts.) ISA and Single-Cycle CPU Datapath: Recall the basic branch instruction. We want to

add a new instruction ‘BRDMN’ (Branch using Register for Displacement if Memory value is

Negative), while not affecting any other instructions. It loads a value given by the address in $rs

(just like a LW but without an offset). If that value is negative then the PC should be updated with

the sum of its current value plus four plus the value of $rt (PC = PC + 4 + $rt). Implement any

changes to the datapath and control signals to support this new ‘brdmn’ instruction on the single-

cycle CPU. Assume when this instruction executes a new BRDMN control signal will be ‘1’

BRDMN $rt,($rs) instruction description:

if(M[rs] is neg.) # load memory from addr $rs

 # and check if its negative

 PC = PC+4+$rt # if so, store PC+4+rt into PC

This instruction will use the machine code I-format:

brdmn: opcode

6

rs

5

rt

5

Unused

16-bits [Assume Will be Set to 0’s]

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

RegWrite

Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

a. Sketch the additions/changes to the datapath above that would be needed to support this new

instructions and its operations (provide a brief description below if the sketch is unclear). Use

as little additional logic as possible.

__

__

__

__

b. Show the control values of the following control signals to implement this new instruction.

 BRDMN MemRead MemWrite MemToReg RegWrite Branch ALUSrc

Value

(0,1,X)

 1

Page 6 / 9

4. (12 pts.) Performance, Pipelining, and Hazards

Tommy Trojan decides that LW and SW rarely use offsets for address calculation and thus DO

NOT need to use the ALU/adder to compute its effective address but instead can just use the

contents of the base register. He then proposes to swap the order of the EX and MEM pipeline

stages.

Thus the pipeline order is now as shown in the table below along with the stage delay. Assume

branches are NOT resolved using EARLY DETERMINATION in the DECODE stage but still

require the ALU in the EX stage for comparison.

Fetch Decode MEM EX/ALU WB

10 ns 6 ns 10 ns 12 ns 5 ns

a. Tommy Trojan’s partner, Miss Bruin, says that since SW and LW no longer use the EX/ALU

stage that the clock cycle time of the pipelined processor can be reduced to only 10 ns. Do you

agree? Explain your reasoning either way in 1-2 sentences.

b. Assume NO EARLY branch determination (i.e. branches are resolved in the stage AFTER the

EX/ALU stage. This new organization will require flushing of how many instructions on a

taken branch?

c. In the original pipeline organization even with forwarding we required a stall when a LW was

followed by a dependent instruction. Given the basic 4 instructions: LW, SW, BEQ, and

ALUType list all the sequences of 2 instruction types that would necessitate stall cycle(s) to be

inserted (even with forwarding available), giving an instruction sequence example, and

indicating how many stall cycles must be inserted by the hardware between the two

instructions.

Example Answer Sequence:
ALUType X, Y, Z

ALUType A, X, B

Requires 1 stall cycle delay

Page 7 / 9

5. (10 pts.) Pipelining: Examine the 5-stage pipeline with forwarding unit in its original location

(forwarding takes place in the EX stage) and LATE branch determination (MEM stage).

Finally assume internal forwarding register file. Given the instruction sequence shown

below, complete the time-space diagram below showing which stage each instruction is in for

each clock cycle until 7 instructions have been completed (i.e. STOP when the 7th non-

bubble instruction reaches the WB stage and DON'T complete any more rows/cycles).

T = Taken and should

 cause the CPU

 to go to the labeled

 instruction (eg. L1)

 rather than

 continuing

 sequentially

Instruc. Sequence

 lw $2, 0($3)

 bne $2, $0, L3 (NT)

L2: lw $6, 0($7)

 add $6, $6, $5

 sw $6, 0($7)

L1: beq $2, $0, L2 (T,NT)

L3: and $2, $2, $2

 lw $5, 0($2)

 or $2, $2, $2

Cycle IF ID EX MEM WB

1 LW

2 BNE LW

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

IF

ID

EX

MEM WB

Page 8 / 9

6. [20 pts.] Consider the traditional pipeline organization shown in the previous question. Recall

that originally we did not have the forwarding unit but only the hazard detection unit in the

Decode stage which would simply stall the pipeline until the hazard resolved. We then added

the forwarding unit to reduce stalls. Again, remember the register file supports internal

forwarding, whether or not you have forwarding logic.

a. [For this page, assume only the HDU; No forwarding logic]

Fill in the blanks below.

WITHOUT the forwarding unit an instruction immediately followed by a

dependent instruction (see to the right) would require ______ stall cycles.

Similarly, if 1 or more independent instructions sit in between the producer

(ADD) and dependent instruction (SUB) it would require _______

(fewer / more / the same) stall cycles. However if ______ or more

independent instructions sit in between the producer and dependent

instruction, then no stall cycles would be necessary.

Perform the calculations detailed below.

We can calculate the average CPI of a pipelined processor using the ideal CPI of 1 and then

adding the average stall cycles an instruction incurs

(i.e. Average CPI = Ideal CPI + Average Stall Cycles = 1 + Average Stall Cycles). :

What could a competitor company claim is the worst case CPI of this processor (again

assuming only stalls due to data hazards)?

 Final answer for worst-case CPI = ____________________

Examining a few representative programs, we find the following relationships for dependent

instructions:

Probabilities of an instruction being

followed by a dependent instruction…

Probability

…Immediately (i.e. next instruction) 40%

…2 instructions later 20%

…3 instructions later 10%

…4 instructions later 10%

…More than 4 instructions later 5%

…Never (no dependent instruction) 15%

Assuming we only stall due to data dependencies calculate the Average CPI:

 Final answer for average CPI = ____________________

ADD $t0,$t1,$t2

SUB $t3,$t0,$t4

ADD $t0,$t1,$t2

Indep. Instr.

SUB $t3,$t0,$t4

2 pts.

2 pts.

2 pts.

4 pts.

Page 9 / 9

b. Assume the following stage delays for the pipeline processor without forwarding logic:

IF ID EX ME WB

10 ns 8 ns 7 ns 10 ns 6 ns

Now assume the forwarding unit and muxes are added as shown on page 7. Suppose that the

forwarding unit itself requires 3 ns of delay to produce ALUSELA and ALUSELB and that all

muxes require 2 ns of delay once their inputs have arrived. What clock cycle time is

appropriate for the processor to use when the forwarding unit and muxes are added?

 Final answer for appropriate clock cycle time? _______________

Using the probabilities of dependent instructions on the previous page and given an instruction

mix as shown below, compute the average CPI for pipeline process with this newly added

forwarding logic (again assume stalls only occur due to data hazards).

LW 30% ALU-Type 40%

SW 20% Branches 10%

 Final answer for Average CPI = __________________

Determine the speedup (or speed-down) of the pipelined processor with forwarding logic that

you analyzed on this page (with its CPI & cycle time) vs. the pipeline processor WITHOUT

forwarding logic that you analyzed on this and the previous page). Assume they execute the

same program and set of instructions.

 Proc. w/ forwarding logic [circle one] (Speedup / Speeddown) = ____________ times

[Reduce your expression as much as possible if you can’t simplify due to lack of calculator]

3 pts.

3 pts.

4 pts.

