
Codewarrior for ColdFire (Eclipse) 10.1 Setup

1. Goal
This document is designed to ensure that your CodeWarrior for Coldfire v10.1
environment is correctly setup and to orient you to it basic functionality of programming
and debugging C and assembly based programs.

2. Introduction
The Codewarrior for Coldfire v10.1 is an integrated development environment (IDE) for
the Freescale Coldfire line of microcontrollers. This microcontroller uses a core
processor that implements the Coldfire instruction set. In addition, the Coldfire
MCF52259 processor has 512KB of Flash memory for non-volatile program storage, a
small amount of RAM (64KB), integrated interrupt controller, timers, UART (serial) ports,
USB and Ethernet ports, several channels of A-to-D converters, and many other
peripheral devices including the ability to use several dozen I/O pins as general purpose
I/O. You will learn more about these features throughout the semester. Information
regarding the control of 52259 is available online through its reference manual. The
reference manual is broken into chapters for each I/O block and provides bit-by-bit
explanations for relevant control registers. To configure and test embedded software,
the MCF52259 processor has been integrated onto the 52259 board. The board
includes some on-board I/O such as a few pushbuttons, a potentiometer, and LED’s. It
also provides a power supply and regulator, a debugging control chip (BDM chip), and a
place for a 40-pin I/O connector.

To develop software for the Coldfire microcontroller, Freescale provides an Eclipse-
based IDE (Integrated Development Environment), named Codewarrior. This IDE
provides a 52259 C compiler and assembler along with integrated debugging tools to
allow you to run and debug your application code by single-stepping, setting
breakpoints, and viewing register and memory contents.

3. Codewarrior Setup and Installation
a. The Codewarrior IDE has been installed on the computers in the RTH classrooms.

However, it is not currently installed in any of the computer user rooms on
campus. Instead, you can install Codewarrior on your own PC/laptop by going to
the following link:
http://cache.freescale.com/lgfiles/devsuites/HC08/CW_MCU_v10.1_B110726_SE.exe?f

psp=1. We highly encourage you to install this software on your own PC so you
can work on your lab outside of discussion times. You should be able to use the
standard install options without issue. At the end of installation, it will ask to
install several hardware drivers to connect to your board. Say yes to all of these
driver install packages. Though it is Windows-based we have had previous
versions running via Parallels and/or Bootcamp on Mac’s. There is also a linux

http://cache.freescale.com/lgfiles/devsuites/HC08/CW_MCU_v10.1_B110726_SE.exe?fpsp=1
http://cache.freescale.com/lgfiles/devsuites/HC08/CW_MCU_v10.1_B110726_SE.exe?fpsp=1

version available. The software should work on either 32-bit or 64-bit OS version
but if you have any issues, please consult the TA and discussion boards.

4. Creating Projects in Codewarrior
Usually you will be provided with an incomplete (skeleton) set of source files. You
will then create a project through Codewarrior and then copy and add those source
files. Details for creating a new project are described below.
a. Start Codewarrior and Select “File > New > Project”. The New Project dialog box

appears. Select “Bareboard Project” and click Next. The Create an MCU Bareboard
Project page appears. Type your desired project name and in location set the parent
directory where you would like your project folder.

Figure 1 - New MCU Project Page

b. Next, we will tell Codewarrior what part we are using. In the window pane find

‘ColdFire Vx Tower Boards’… ‘ColdFire V2’… ‘TWR-MCF5225X’. Click Next. The
connections page appears. Check the “P&E Universal/USB MultiLink” box. Click Next.

 Figure 2 - Setting the Part Figure 3 - Setting the Connection Type

c. Skip through the next window (we will add source files later).
d. In the next window select “Minimal Hardware Support” for Hardware Startup. Select

“Easy Debug” for the Optimization Level. Click Next.

 Figure 4 - Startup code generation option

e. In the next window regarding the “Processor Expert”, click “None” and then Click Finish.
f. The CodeWarrior view should look similar to the screenshot below. If it doesn’t, Go to

the menu “Window -> New Window”.

Figure 5 - CodeWarrior Development Window

5. IMPORTANT: Updating ColdFire Board Firmware
Read sections 6 and 7 of this document to learn more about compiling and debugging
your projects.

a. Create a new project as done in section 4 above.
b. Connect your ColdFire board.
c. Click on the debug icon:

Debug Icon

d. Select the option that has “…Console_Internal_RAM_PnE...” Click “OK”. If the

Firmware is out of date the following dialog box will appear. DO NOT CLICK ON
OK YET.

e. Disconnect your ColdFire board. Connect a jumper on your ColdFire board to
the 2-pin header pin close to the USB port that says BTLD. The TA will provide a
2-pin jumper to the students if needed.

Figure 6 - ColdFire Board BTLD 2-pin jumper

f. Reconnect the ColdFire board. A new driver will automatically be installed for
the device. When this is done, click OK on the previous dialog box. Wait for the
Firmware to complete installation.

g. When installation is complete, disconnect your ColdFire board. Remove the
jumper (please return it to the TA, if you collected it from your TA). Reconnect
you board. Your board should be ready to use.

h. Get help from your TA, if you are not able to start debugging your projects in
your ColdFire board.

6. C and Assembly Projects
a. We have provided several files that include other helpful functionality in both C-based

or assembly-based projects. On Blackboard..Assignments..Labs, download the
“Codewarrior 52259 Assembly Template Files” .zip file or “Codewarrior 52259 C
Template Files”. Unzip it to a temporary location. Follow the procedure below for
EVERY new project you create in this course.

b. For C projects: In Windows Explorer, take the source files you unzipped and copy the
“usc_support.h” file to “Project_name/Project Headers” folder and the “usc_support.c”
file to the “Project_name/Sources” folder. All files in the sources folder are
automatically included in the project. Now from within the Eclipse project, open/edit
‘main.c’. To use our USC specific functionality, please add the following line to ‘main.c’
just under the #include <stdio.h> line:

#include “usc_support.h”

You can begin editing ‘main.c’ and write your program. For I/O, we have written our
own version of ‘printf’ and called it ‘myprintf’ while ‘scanf’ remains unchanged. You can
use normal ‘printf’ and ‘scanf’ I/O functions but please reference the note below.

Note: There are known problems with Codewarrior’s Console I/O that require every
string and integer input and output to be terminated or followed by a newline (LF).

c. For ASSEMBLY-ONLY projects: In Windows Explorer, take the source files you unzipped,

copy “usc_support.h” and “ee357_asm_lib_hdr.s” and “ee357_exceptions.h” to
“Project_name/Project Headers”. Then copy “usc_support.c”, “ee357_asm_lib.s”,
“main.s”, “ to the “Project_name/Sources” folder. Next, from within the Eclipse project,
find the ‘main.c’ file in the Project_name/sources folder. Right-click on the file. Select
“Exclude from build”. Click “Select all” then “Ok”. Your main program is now ready to be
edited in ‘main.s’. From within your main.s code, you can perform I/O from the HW
board to your PC. In assembly this can be followed by calling the appropriate
subroutines via the jsr instruction and pre-loading certain register with the necessary
arguments. See the table below and reference the note above in the C section which
also applies to assembly projects.

I/O Operation Calling Instruction Arguments Return Value
Print a null-terminated ASCII

string
jsr ee357_put_str

A1 = Pointer to first
character of string

None

Print an integer jsr ee357_put_int D1 = Value to print None

Get the specified number of jsr ee357_get_str A1 = Pointer to D1 = Number of

ASCII characters from the PC
keyboard. Must terminate with
the ‘Enter’ key (ASCII ‘LF’ char.)

memory buffer to
place string

D1 = Max characters
to receive

characters received
(including the ‘LF’).

Unused characters in
the buffer will be
zeroed (NULL).1

Get an integer from the PC
keyboard. Must terminate with

the ‘Enter’ key.

jsr ee357_get_int None
Integer from

keyboard

Figure 7 - The codewarrior project navigation pane shows all the source files of the project.

1
 When getting a string (ASCII characters), make sure the value passed in D1 is 1 less than the size of the

buffer so that a NULL character can be added (which is necessary if this will be printed or processed as a
traditional string). If more characters are entered than the value passed in D1, characters beyond the
limit will be discarded (including the newline/LF character)

7. Compiling and Debugging Projects
a. A few buttons will be useful when compiling and debugging your code.

Build (Compile) Icon Debug Icon

b. First, you must select the target I/O system and code location. This can be done

by right-clicking on the project name in the project navigation pane (shown
above). Select “Build Configurations” > “Set Active” >
“MCF52259_CONSOLE_INTERNAL_RAM”.

You should normally ensure this is set to “CONSOLE_INTERNAL_RAM.”
Information about each option is listed below:

i) “CONSOLE_INTERNAL_RAM”: Unless otherwise directed be sure that
this option is selected. This allows you to execute I/O functions
(either the assembly versions or C I/O functions like myprintf()
and have the output be redirected to the Codewarrior Console
window.

ii) “INTERNAL_RAM”: This option does not include the standard C I/O
libraries and places code in system RAM.

iii) “INTERNAL FLASH”: This option should NEVER be selected. (Because
we are only debugging our code, we will always want it loaded into
RAM. In the real world, once you have debugged your code and want
to embed it in the 5211 processor, the final code can be permanently
burned to ROM.)

c. Select your project in the project navigation pane. Then click the “build” button.
d. If you are running an assembly-based project, it is highly recommended that you set

a breakpoint at the “main” label / first instruction by clicking in the left margin of the
line. A red dot will appear indicating the breakpoint. If you do not set the
breakpoint, the program will simply run and not allow you to step through your
code. C-based projects will automatically load the program and stop at the “main()”
function and allow you to run the program or step through it.

Figure 8 - Set a breakpoint in assembly projects to prevent run-away execution or your code when the
debugger is started

e. You will be running the code on your board, first connect the USB cable from the
PC to the M52259 board. (Note: Be aware that the first time you connect your
board, the PC may need to install a driver.) The PC should recognize the USB

For assembly projects,
click in the left margin
to set a breakpoint at
“main”.

device at which point you can click the “Debug” button. Select the configuration
“<projectname>_Console_Internal_RAM…” to download and run your code to
the board.

f. The “Debug” perspective will appear and execution should break at the
breakpoint in your assembly code or, for C projects, the first line of your “main”
routine. Note you can switch between the Debug perspective and the default
perspective(C/C++) by selecting the desired one in the upper right-hand corner.

Figure 9 - The Debug Perspective

g. The debug perspective by default shows you the assembly code that is generated
by the C compiler. As shown in figure 7.

h. The available commands are accessed using the toolbar at the top of the debug
window. The commands are summarized below.

 Run/Resume
Runs the program until it is stopped or encounters a
breakpoint.

 Suspend Breaks/stops program execution.

Kill /

Terminate
Kills the execution and stops debug mode

 Step Over
Steps through code and over function calls (executes
the entire function moving on to the next statement.)

 Step Into Steps through code and into function calls.

 Step Out
Completes execution of the current function and back
to the calling routine.

Figure 10 - Debug Toolbar Commands

i. Breakpoints: Breakpoints can be set by double-clicking on the far left of each
statement. When a breakpoint is enabled, a check mark appears indicating the

execution will stop at that statement. Double-clicking on the check mark will
remove the breakpoint and the check mark will disappear.

Figure 11 - Setting Breakpoints

j. Watching Variables (C programs only): If you set a breakpoint or step through

your code, you can see the value of live variables in the upper right window pane
of the debug perspective.

k. Viewing Registers: Register values including most I/O control registers can be

viewed by selecting “Registers” in the upper right window pane. The register
window will appear and can be used to navigate to the desired processor and I/O
register. When using the actual boards, all I/O registers for controlling
integrated peripherals will also be visible.

Figure 12 - Register Window

l. Viewing Memory: Memory can be viewed by selecting “Memory Browser” in

the bottom window pane. You can navigate to the desired address range by
typing the address in the Display textbox. Note that addresses should be typed
in C hex format (i.e. prepended with 0x40000000). Alternatively, you can right
click on address registers (An) in the register window and view the memory
contents starting at the address to which they are pointing. Also, the .data
section of memory for the 52259 starts at 0x20003004.

Figure 13 - Memory Window

