
1

EE 355 Unit 15
Inheritance & Polymorphism

Mark Redekopp

2

Example Code

• $ wget
http://ee.usc.edu/~redekopp/ee355/code/coninit.cpp

• $ make coninit

http://ee.usc.edu/~redekopp/ee355/code/coninit.cpp

3

Consider this Struct/Class
• Examine this struct/class definition…
#include <string>

#include <vector>

using namespace std;

struct Student

{

string name;

int id;

vector<double> scores;

// say I want 10 test scores per student

};

int main()

{

Student s1;

}

string name

int id

scores

4

Composite Objects
• Fun Fact: Memory for an object comes alive before the code

for the constructor starts at the first curly brace '{'
#include <string>

#include <vector>

using namespace std;

struct Student

{

string name;

int id;

vector<double> scores;

// say I want 10 test scores per student

Student() /* mem allocated here */

{

// Can I do this to init. members?

name("Tommy Trojan");

id = 12313;

scores(10);

}

};

int main()

{

Student s1;

}

string name

int id

scores

5

Composite Objects
• You cannot call constructors on data members once the

constructor has started (i.e. passed the open curly '{')
– So what can we do??? Use assignment operators (less efficient) or use

constructor initialization lists!
#include <string>

#include <vector>

using namespace std;

struct Student

{

string name;

int id;

vector<double> scores;

// say I want 10 test scores per student

Student() /* mem allocated here */

{

// Can I do this to init. members?

name = "Tommy Trojan";

id = 12313;

scores = 10;

}

};

int main()

{

Student s1;

}

string name

int id

scores

6

Constructor Initialization Lists

• Rather than writing many assignment statements
we can use a special initialization list technique
for C++ constructors
– Constructor(param_list) : member1(param/val), …, memberN(param/val)

{ … }

• We are really calling the respective constructors
for each data member

Student:: Student() /* mem allocated here */

{

name("Tommy Trojan");

id = 12313;

scores(10);

}

Student::Student() :

name("Tommy"), id(12313), scores(10)

{ }

You can't call member

constructors in the {…}

You would have to call the member

constructors in the initialization list context

7

Constructor Initialization Lists

• You can still assign values (which triggers
operator=) in the constructor but realize that the
default constructors will have been called already

• So generally if you know what value you want to
assign a data member it's good practice to do it
in the initialization list to avoid the extra time of
the default constructor executing

Student::Student()

{

name = "Tommy Trojan";

id = 12313

scores.resize(10);

}

Student::Student() :

name(), id(), scores()

// calls to default constructors

{

name = "Tommy Trojan";

id = 12313

scores.resize(10);

}

You can still assign data

members in the {…}

But any member not in the initialization list will

have its default constructor invoked before the

{…}

8

Constructor Initialization Lists
Student::Student() { }

Student::Student(string myname)

{ name_ = myname;

id_ = -1;

}

Student::Student(string myname, int myid)

{ name_ = myname;

id_ = myid;

}

...

Student::Student() { }

Student::Student(string myname) :

name_(myname), id_(-1)

{ }

Student::Student(string myname, int myid) :

name_(myname), id_(myid)

{ }

...

Initialization using

assignment

Initialization List

approach

string name_

int id_

name_ = myname

id_ = myid

Memory is

allocated before

the '{' with the

default constructor

being called…

…then values

copied in when

assignment

performed

using

operator=()

name_ = myname

id_ = myid

Memory is

allocated and

filled in "one-

step" by calling

the copy

constructor

9

INHERITANCE

10

Files for Today

• $ mkdir inh

• $ cd inh

• $ wget
http://ee.usc.edu/~redekopp/ee355/code/inh.tar

• $ tar xvf inh.tar

• $ make

– You will get a compile error

http://ee.usc.edu/~redekopp/ee355/code/inh.tar

11

Object Oriented Design

• Encapsulation

– Combine data and operations on that data into a
single unit (e.g. a class w/ public and private
aspects)

• Inheritance

– Creating new objects (classes) from existing ones

• Polymorphism

– Using the same expression to denote different
operations

12

Inheritance

• A way of defining interfaces, re-using classes and
extending original functionality

• Allows a new class to inherit all the data members
and member functions from a previously defined
class

• Works from more general
objects to more specific objects

– Defines an “is-a” relationship

– Square is-a rectangle is-a shape

– Similar to classification of organisms:
• Animal -> Vertebrate -> Mammals -> Primates

base

child

grandchild

13

Base and Derived Classes

• Derived classes inherit
all data members and
functions of base class

• Student class inherits:

– get_name() and
get_id()

– name_ and id_
member variables

class Person {

public:

Person(string n, int ident);

string get_name();

int get_id();

private:

string name_; int id_;

};

class Student : public Person {

public:

Student(string n, int ident, int mjr);

int get_major();

double get_gpa();

void set_gpa(double new_gpa);

private:

int major_; double gpa_;

};

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

14

Base and Derived Classes

• Derived classes inherit all data
members and functions of
base class

• Student class inherits:
– get_name() and get_id()

– name_ and id_ member variables

class Person {

public:

Person(string n, int ident);

string get_name();

int get_id();

private:

string name_; int id_;

};

class Student : public Person {

public:

Student(string n, int ident, int mjr);

int get_major();

double get_gpa();

void set_gpa(double new_gpa);

private:

int major_; double gpa_;

};

int main()

{

Student s1("Tommy", 1, 9);

// Student has Person functionality

// as if it was written as part of

// Student

cout << s1.get_name() << endl;

}

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

15

Inheritance Example

• Component
– Draw()

– onClick()

• Window
– Minimize()

– Maximize()

• ListBox
– Get_Selection()

• ScrollBox
– onScroll()

• DropDownBox
– onDropDown()

Component

Window ListBox

ScrollBox DropDown

Box

Inheritance Diagrams

(arrows shown base

to derived class

relationships)

16

Protected Members
• Private members of a base class can

not be accessed directly by a
derived class member function
– Code for print_grade_report() would

not compile since ‘name_’ is private to
class Person

• Base class can declare variables
with protected storage class
– Private to anyone not inheriting from

the base

– Derived classes can access directly

void Student::print_grade_report()

{

cout << “Student “ << name_ << ...

}

class Person {

public:

...

private:

string name_; int id_;

};

class Student : public Person {

public:

void print_grade_report();

private:

int major_; double gpa_;

};

X

class Person {

public:

...

protected:

string name_; int id_;

};

17

Constructors and Inheritance
• Constructors are only called

when a variable ‘enters scope’
(i.e. is created) and cannot be
called directly

– How to deal with base
constructors?

• Also want/need base class or
other members to be initialized
before we perform this object's
constructor code

• Use initializer format instead

– See example below

class Person {

public:

Person(string n, int ident);

...

private:

string name_;

int id_;

};

class Student : public Person {

public:

Student(string n, int ident, int mjr);

...

private:

int major_;

double gpa_;

};

Student::Student(string n, int ident, int mjr)

{

// How to initialize Base class members?

Person(n, ident); // No! can’t call Construc.

// as a function

}

Student::Student(string n, int ident, int mjr) : Person(n, ident)

{

cout << "Constructing student: " << name_ << endl;

major_ = mjr; gpa_ = 0.0;

}

18

Constructors & Destructors
• Constructors

– A Derived class will automatically call its Base class
constructor BEFORE it's own constructor executes,
either:

• Explicitly calling a specified base class constructor in the
initialization list

• Implicitly calling the default base class constructor if no
base class constructor is called in the initialization list

• Destructors

– The derived class will call the Base class destructor
automatically AFTER it's own destructor executes

• General idea

– Constructors get called from base->derived (smaller to
larger)

– Destructors get called from derived->base (larger to
smaller)

base

child

grandchild

base

child

grandchild

Constructor call ordering

Destructor call ordering

19

Constructor & Destructor Ordering
class A {

int a;

public:

A() { a=0; cout << "A:" << a << endl; }

~A() { cout << "~A" << endl; }

A(int mya) { a = mya;

cout << "A:" << a << endl; }

};

class B : public A {

int b;

public:

B() { b = 0; cout << "B:" << b << endl; }

~B() { cout << "~B "; }

B(int myb) { b = myb;

cout << "B:" << b << endl; }

};

class C : public B {

int c;

public:

C() { c = 0; cout << "C:" << c << endl; }

~C() { cout << "~C "; }

C(int myb, int myc) : B(myb) {

c = myc;

cout << "C:" << c << endl; }

};

int main()

{

cout << "Allocating a B object" << endl;

B b1;

cout << "Allocating 1st C object" << endl;

C* c1 = new C;

cout << "Allocating 2nd C object" << endl;

C c2(4,5);

cout << "Deleting c1 object" << endl;

delete c1;

cout << "Quitting" << endl;

return 0;

}

Allocating a B object

A:0

B:0

Allocating 1st C object

A:0

B:0

C:0

Allocating 2nd C object

A:0

B:4

C:5

Deleting c1 object

~C ~B ~A

Quitting

~C ~B ~A

~B ~A Output

Test Program

Sample Classes

20

Public/Private/Protected Access
• Derived class sees base class members

using the base class' specification
– If Base class said it was public or protected,

the derived class can access it directly

– If Base class said it was private, the derived
class cannot access it directly

• public/private identifier before base
class indicates HOW the public base
class members are viewed by clients
(those outside) of the derived class

– public => public base class members are
public to clients (others can access)

– private => public & protected base class
members are private to clients (not
accessible to the outside world)

class Student : public Person {

public:

Student(string n, int ident, int mjr);

int get_major();

double get_gpa();

void set_gpa(double new_gpa);

private:

int major_; double gpa_;

};

class Faculty : private Person {

public:

Faculty(string n, int ident, bool tnr);

bool get_tenure();

private:

bool tenure_;

};

Base Class

class Person {

public:

Person(string n, int ident);

string get_name();

int get_id();

private: // INACCESSIBLE TO DERIVED

string name_; int id_;

};

Derived Classes

21

Inheritance Access Summary
• Base class

– Declare as protected if you want to
allow a member to be directly
accessed/modified by derived classes

• Derive as public if…
– You want users of your derived class to be

able to call base class functions/methods

• Derive as private if…
– You only want your internal workings to call

base class functions/methods

class Student : public Person {

public:

Student(string n, int ident, int mjr);

int get_major();

double get_gpa();

void set_gpa(double new_gpa);

private:

int major_; double gpa_;

};

class Faculty : public Person {

public:

Faculty(string n, int ident, bool tnr);

bool get_tenure();

private:

bool tenure_;

};

Base Class

class Person {

public:

Person(string n, int ident);

string get_name();

int get_id();

private:

string name_; int id_;

};

Derived Classes

Inherited
Base

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private Private Private Private

External client access to Base class members

is always the more restrictive of either the base

declaration or inheritance level

22

class Car{

public:

double compute_mpg();

private:

string make; string model;

};

double Car::compute_mpg()

{

if(speed > 55) return 30.0;

else return 20.0;

}

class Hybrid : public Car {

public:

void drive_w_battery();

double compute_mpg();

private:

string batteryType;

};

double Hybrid::compute_mpg()

{

if(speed <= 15) return 45; // hybrid mode

else if(speed > 55) return 30.0;

else return 20.0;

}

Overloading Base Functions

• A derived class may want to
redefined the behavior of a
member function of the
base class

• A base member function can
be overloaded in the derived
class

• When derived objects call
that function the derived
version will be executed

• When a base objects call
that function the base
version will be executed

Class Car

string make

string model

string make

string model

string battery

Class Hybrid

23

Scoping Base Functions

• We can still call the base function
version by using the scope operator
(::)
– base_class_name::function_name()

class Car{

public:

double compute_mpg();

private:

string make; string model;

};

class Hybrid : public Car {

public:

double compute_mpg();

private:

string batteryType;

};

double Car::compute_mpg()

{

if(speed > 55) return 30.0;

else return 20.0;

}

double Hybrid::compute_mpg()

{

if(speed <= 15) return 45; // hybrid mode

else return Car::compute_mpg();

}

24

Inheritance vs. Composition
• Software engineers debate about

using inheritance (is-a) vs.
composition (has-a)

• Rather than a Hybrid “is-a” Car we
might say Hybrid “has-a” car in it,
plus other stuff
– Better example when we get to Lists,

Queues and Stacks

• While it might not make complete
sense verbally, we could re-factor
our code the following ways…

• Interesting article I’d recommend
you read at least once:
– http://berniesumption.com/software/inh

eritance-is-evil-and-must-be-destroyed/

class Car{

public:

double compute_mpg();

public:

string make; string model;

};

double Car::compute_mpg()

{

if(speed > 55) return 30.0;

else return 20.0;

}

class Hybrid {

public:

double compute_mpg();

private:

Car c_; // has-a relationship

string batteryType;

};

double Hybrid::compute_mpg()

{

if(speed <= 15) return 45; // hybrid mode

else return c_.compute_mpg();

}

Class Car

string make

string model

string _c.make

string _c.model

string battery

Class Hybrid

http://berniesumption.com/software/inheritance-is-evil-and-must-be-destroyed/

25

Another Composition
• We can create a FIFO that "has-a" a List

as the underlying structure

• Summary:
– Public Inheritance => "is-a" relationship

– Composition => "has-a" relationship

– Private Inheritance => "as-a" relationship

class FIFO

{ private:

List mylist;

public:

FIFO();

push_back(const int& val)

{ mylist.insert(size(), val); }

int& front();

{ return mylist.get(0); }

void pop_front();

{ mylist.pop(0); }

int size() // need to create wrapper

{ return mylist.size(); }

};

Base Class

class List{

public:

List();

void insert(int loc, const int& val);

int size();

int& get(int loc);

void pop(int loc;)

private:

IntItem* _head;

};

FIFO via Composition

26

POLYMORPHISM

Virtual functions, Abstract classes, and Interfaces

27

Assignment of Base/Declared
• Can we assign a derived object into a base

object and vice versa?

• To assign a = b, b must have everything a
has

• Think hierarchy & animal classification (e.g.
a Dog is a Mammal)

– Does a dog nurse their young?

– Does a mammal bark?

• We can only assign a derived into a base
(since the derived has EVERYTHING the
base does)
– p = s; // Base = Derived…GOOD

– s = p; // Derived = Base…BAD

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

class Person {

public:

void print_info(); // print name, ID

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

int main(){

Person p("Bill",1);

Student s("Joe",2,5);

// Which assignment is plausible

p = s; // or

s = p;

}

28

Inheritance
• A pointer or reference to a derived class

object is type-compatible with (can be
assigned to) a base-class type
pointer/reference
– Person pointer or reference can also point to Student

or Faculty object (i.e. a Student is a person)

– All methods known to Person are supported by a
Student object because it was derived from Person

– Will apply the function corresponding to the type of
the pointer

• For second and third call to print_info() we
would like to have Student::print_info() and
Faculty::print_info() executed since the actual
object pointed to is a Student/Faculty

• This is called 'static binding'
– Which version is called is based on the static type of

the pointer being used

class Person {

public:

void print_info(); // print name, ID

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

class Faculty : public Person {

public:

void print_info(); // print tenured

bool tenure;

};

int main(){

Person *p = new Person("Bill",1);

Student *s = new Student("Joe",2,5);

Faculty *f = new Faculty("Ken",3,0);

Person *q;

q = p; q->print_info();

q = s; q->print_info();

q = f; q->print_info();

}

Name=Bill, ID=1

Name=Joe, ID=2

Name=Ken, ID=3

29

Virtual Functions & Dynamic Binding

• Member functions can be
declared 'virtual'

• 'Virtual' declaration allows
derived classes to redefine
the function and which
version is called is determined
by the type of object pointed
to/referenced rather than the
type of pointer/reference
– This is known as dynamic

binding

class Person {

public:

virtual void print_info();

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

class Faculty : public Person {

public:

void print_info(); // print tenured

bool tenure;

};

int main(){

Person *p = new Person("Bill",1);

Student *s = new Student("Joe",2,5);

Faculty *f = new Faculty("Ken",3,0);

Person *q;

q = p; q->print_info();

q = s; q->print_info();

q = f; q->print_info();

// calls print_info

// for objected pointed to, not type of q

}

Name=Bill, ID=1

Name=Joe, ID=2, Major = 5

30

Polymorphism
• Idea of polymorphism says

that one set of code should
operate appropriately (call
appropriate functions of
derived classes) on all derived
types of objects

int main()

{

Person* p[5];

p[0] = new Person("Bill",1);

p[1] = new Student("Joe",2,5);

p[2] = new Faculty("Ken",3,0);

p[3] = new Student("Mary",4,2);

p[4] = new Faculty("Jen",5,1);

for(int i=0; i < 5; i++){

p[i]->print_info();

// should print most specific info

// based on type of object

}

}

Name=Bill, ID=1

Name=Joe, ID=2, Major = 5

Name = Ken, ID=3, Tenured=0

Name = Mary, ID=4, Major=2

Name = Jen, ID=5, Tenured=1

31

Virtual Destructors

• Classes that will be used as a base class should have a virtual destructor
(http://www.parashift.com/c++-faq-lite/virtual-functions.html#faq-20.7)

class Student{

virtual ~Student() { }

string major();

...

}

class StudentWithGrades : public Student

{

public:

StudentWithGrades(...)

{ grades = new int[10]; }

~StudentWithGrades { delete [] grades; }

int *grades;

}

int main()

{

Student *s = new StudentWithGrades(...);

cout << s->major();

delete s; // What destructor gets called?

return 0;

}

class Student{

~Student() { }

string major();

...

}

class StudentWithGrades : public Student

{

public:

StudentWithGrades(...)

{ grades = new int[10]; }

~StudentWithGrades { delete [] grades; }

int *grades;

}

int main()

{

Student *s = new StudentWithGrades(...);

cout << s->major();

delete s; // What destructor gets called?

return 0;

}

~Student() gets called and doesn’t delete

grades array
~StudentWithGrades() gets called and does

delete grades array

http://www.parashift.com/c++-faq-lite/virtual-functions.html

32

Summary

• No virtual declaration:

– Member function that is called is based on the

– Static binding

• With virtual declaration:

– Member function that is called is based on the

– Dynamic Binding

33

Summary

• No virtual declaration:

– Member function that is called is based on the
type of the pointer/reference

– Static binding

• With virtual declaration:

– Member function that is called is based on the
type of the object pointed at (referenced)

– Dynamic Binding

34

Abstract Classes
• In software development we may want

to create a base class that serves only
as a requirement/interface that
derived classes must
implement/adhere to

• College students take tests and play
sports so it makes sense to ensure that
is defined for any type of
CollegeStudent
– But depending on which college you go to

you may do these activities differently

– But…until we know the university we don’t
know how to write take_test() and
play_sports()…these are abstract

• Make this an abstract base class (i.e.
interface for future derived classes)

class CollegeStudent {

public:

string get_name();

virtual void take_test();

virtual string play_sports();

protected:

string name;

};

class CollegeStudent {

public:

string get_name();

virtual void take_test() = 0;

virtual string play_sports() = 0;

protected:

string name;

};

Abstract Base Class…No object of

type CollegeStudent will be allowed.

It only serves as an interface that

derived classes will have to implement.

Valid class. Objects of type

CollegeStudent can be declared.

35

Abstract Classes
• An abstract class is one that

defined pure virtual functions

– Prototype only

– Make function body
" = 0; "

– Functions that are not
implemented by the base class
but must be implemented by the
derived class

• No objects of the abstract
type are allowed to be
instantiated

class CollegeStudent {

public:

string get_name();

virtual void take_test() = 0;

virtual string play_sports() = 0;

protected:

string name;

};

class TrojanStudent : public CollegeStudent {

public:

void take_test() { cout << "Got an A."; }

string play_sports(){return string("WIN!");}

};

class BruinStudent : public CollegeStudent {

public:

void take_test() { cout << "Uh..uh..C-."; }

string play_sports(){return string("LOSE");}

};

int main() {

vector<CollegeStudent *> mylist;

mylist.push_back(new TrojanStudent());

mylist.push_back(new BruinStudent());

for(int i=0; i < 2; i++){

mylist[i]->take_test();

cout << mylist[i]->play_sports() << endl;

}

return 0;

}

Output:
Got an A. WIN!
Uh..uh..C-. LOSE

36

When to Use Inheritance
• Main use of inheritance is to

setup interfaces (abstract
classes) that allow for new,
derived classes to be written in
the future that provide
additional functionality but still
works seamlessly with original
code

#include "student.h"

class MITStudent : public CollegeStudent {

public:

void take_test() { cout << "Got an A+."; }

string play_sports()

{ return string("What are sports?!?"); }

};

int main() {

vector<CollegeStudent *> mylist;

mylist.push_back(new TrojanStudent());

mylist.push_back(new MITStudent());

for(int i=0; i < 2; i++){

sports_simulator(mylist[i]);

}

return 0;

}

#include "student.h"

void sports_simulator(CollegeStudent *stu){

...

stu->play_sports();

};

g++ -c sportsim.cpp

outputs sportsim.o (10 years ago)

g++ main.cpp sportsim.o

program will run fine today with new MITStudent

37

Abstract Classes
• No objects of the abstract

type are allowed to be
instantiated

• But the abstract base class
can define common
functions, have data
members, etc. that all
derived classes can use via
inheritance
– Ex. 'color' of the Animal

class Animal {

public:

Animal(string c) : color(c) { }

virtual ~Animal()

string get_color() { return c; }

virtual void make_sound() = 0;

protected:

string color;

};

class Dog : public Animal {

public:

void make_sound() { cout << "Bark"; }

};

class Cat : public Animal {

public:

void make_sound() { cout << "Meow"; }

};

class Fox : public Animal {

public:

void make_sound() { cout << "???"; }

}; // derived class must define pure virtual

// (even if you don't quite know what to do)

int main(){

Animal* a[3];

a[0] = new Animal;

// WON'T COMPILE...abstract class

a[1] = new Dog("brown");

a[2] = new Cat("calico");

cout << a[1]->get_color() << endl;

cout << a[2]->make_sound() << endl;

}

Output:
brown
meow

38

A List Interface
• Consider the List Interface

shown to the right

• This abstract class (contains
pure virtual functions) allows
many possible derived
implementations
– Linked List

– Bounded Dynamic Array

– Unbounded Dynamic Array

• Any derived implementation will
have to conform to these public
member functions

#ifndef ILISTINT_H

#define ILISTINT_H

class IListInt {

public:

virtual bool empty() const = 0;

virtual int size() const = 0;

virtual void push_back(const int& new_val) = 0;

virtual void insert(int newPosition,

const int& new_val) = 0;

virtual void remove(int loc) = 0;

virtual int const & get(int loc) const = 0;

virtual int& get(int loc) = 0;

};

#endif

g++ main.cpp sportsim.o

program will run fine today with new MITStudent

39

Derived Implementations
• Consider the List Interface

shown to the right

• This abstract class (contains
pure virtual functions) allows
many possible derived
implementations
– Linked List

– Array

• Any derived implementation will
have to conform to these public
member functions

#ifndef ILISTINT_H

#define ILISTINT_H

class IListInt {

public:

virtual bool empty() const = 0;

virtual int size() const = 0;

...

};

#endif
ilistint.h

#include "ilistint.h"

class LListInt : public IListInt {

public:

bool empty() const { return head_ == NULL; }

int size() const { ... }

...

};
llistint.h

#include "ilistint.h"

class ArrayList : public IListInt {

public:

bool empty() const { return size_ == 0; }

int size() const { return size_; }

...

};
alistint.h

40

Usage
• Recall that to take advantage

of dynamic binding you must
use a base-class pointer or
reference that points-to or
references a derived object

• What's the benefit of this?

#include <iostream>

#include "ilistint.h"

#include "alistint.h"

using namespace std;

void fill_with_data(IListInt* mylist)

{

for(int i=0; i < 10; i++){ mylist->push_back(i); }

}

void print_data(const IListInt& mylist)

{

for(int i=0; i < mylist.size(); i++){

cout << mylist.get(i) << endl;

}

}

int main()

{

IListInt* thelist = new AListInt();

fill_with_data(thelist);

print_data(*thelist);

return 0;

}

41

Usage
• What's the benefit of this?

– We can drop in a different
implementation WITHOUT
changing any other code other
than the instantiation!!!

– Years later I can write a new List
implementation that conforms to
iList and drop it in and the
subsystems [e.g. fill_with_data()
and print_data()] should work
just fine.

#include <iostream>

#include "ilistint.h"

#include "alistint.h"

using namespace std;

void fill_with_data(IListInt* mylist)

{

for(int i=0; i < 10; i++){ mylist->push_back(i); }

}

void print_data(const IListInt& mylist)

{

for(int i=0; i < mylist.size(); i++){

cout << mylist.get(i) << endl;

}

}

int main()

{

// IListInt* thelist = new AListInt();

IListInt* thelist = new LListInt();

fill_with_data(thelist);

print_data(*thelist);

return 0;

}

