
Last Revised: 3/14/2017 1

EE209 Lab – Change We Can Believe In

1 Introduction
In this lab you will complete the control unit and datapath for a vending machine
change collector and dispenser. This lab will build on the vending machine exercise
from lecture. We will provide you several datapath components. You must
combine them and create the state machine to control the operation. In addition,
you will write a testbench for the design. You must work individually on this lab
and not in groups.

2 What you will learn
This lab uses many of the datapath and control unit concepts you have learned in
this class. You will use your datapath to make change after a user has bought a
drink. You will also implement the state machine that provides the necessary
control signals for the datapath. Many possible implementations exist and will be
accepted provided it works as specified.

3 Background Information and Notes
1. Overview

The block diagram of the vending machine design is shown below and inputs and
outputs are described in the following table.

Figure 1 - Block Diagram of Vending Machine Design

Vending

Machine

(vending.v)

CLK

RESET

S5 (BTN0)

S10 (BTN1)
S25 (BTN2)

S100 (BTN3)

BTNC (SW0)

BTNDC (SW1)
BTNDP (SW2)

BTNS (SW3)

C(7:0)

RELQ (LD4)

RELD (LD5)
RELN (LD6)

RELC (LD0)

RELDC (LD1)
RELDP (LD2)

RELS (LD3)

QCOLLECT
QRELEASE
QINITC
QCHANGE

EE209 Lab - Change We Can Believe In

2 Last Revised: 3/14/2017

Inputs

CLK & RESET Note that RESET is active high

S5,S10,S25,S100 Sensor inputs indicating when a nickel, dime, quarter, or
dollar bill is inserted. Will be high for 1 clock period each
time a coin or bill is entered.

BTNC, BTNDC,
BTNDP, BTNS

Button inputs for drink selection. Any number can be
active at a time. Each BTNx input corresponds to a RELx
output indicating that the drink should be released.

Outputs

M(7:0) Current amount of money collected. Should be the
output of the M register. M is in units of cents (pennies)

C(7:0) Current amount of change needing to be made. After a
user has entered enough money and selected their drink
costing $1, C should be loaded with M – 100 and then
reduced appropriately as each quarter, dime, and/or
nickel are released.

RELQ, RELD,
RELN

Release outputs for a quarter, dime, or nickel. Should be
high for 1 clock cycle per coin released.

RELC, RELDC,
RELDP, RELS

Release outputs for the drinks. Note: In our design these
will be Mealy outputs and thus could be high for only
part of a clock signal, which is fine for our purposes.

QCOLLECT,
QRELEASE,
QINITC,
QCHANGE

States will be displayed on the left-most 7-segment
display. We will also use these bits to select either the M
value or C value to be displayed on the three right
7-Segment displays.

Table 1- I/O Description

SW7 SW0

BTNU

S5S25

S100

BTND

BTNRBTNL B8

LD7 LD0

Money and Change Value

State
(1=Collect,
2=Release,

4=InitC,
8=Change)

S10

unused

C
L

K

R
E

L
N

R
E

L
D

R
E

L
Q

R
E

L
C

R
E

L
D

C

R
E

L
D

P

R
E

L
S

R
E

S
E

T

B
T

N
C

B
T

N
D

C

B
T

N
D

P

B
T

N
S

Figure 2 – Mapping of inputs and outputs to FPGA LEDS, buttons, switches, and 7-segment displays.

 EE209 Lab - Change We Can Believe In

Last Revised: 3/14/2017 3

2. State Machine Control
The state machine control for your vending machine will be a modification of
that used in the lecture example. Because we now have to make change as well,
we could imagine adding the necessary states for this task all in one large state
machine. We will add a state INITC where we can load the C register with the
correct amount of change we will need to produce (i.e. M-100). Then we will
move to a CHANGE state where we release either Quarters, Dimes, or Nickels
based on the value of C. We are done when C equals 0.

Collect

On Reset

(power on)

Release

M < 100

M >= 100

BP /

REL_EN=0

BP /

REL_EN=1

Figure 3 - State Machine from class lecture; Composition of state machines for this lab; one state machine is

used during money collection and the other during change dispensing.

vending_fsm.v

MGE100

BP

CEQ0

LOADC
CHANGE

DPU

COLLECT

 DPU

CEN

REN

vending.v

Figure 4 – Interconnection of DPU and CU for collection and change-making.

The inputs and outputs of the state machines are described below:

Signal Description

MGE100 Comparator output if M(7:0) ≥ 10010

BP Button press (OR’ing of all the drink buttons)

REN Release Enable indicating a drink may now be released because
enough money has been input. Should be generated by the
FSM

LOADC Signal telling the C(7:0) register to be loaded with M-100.
Should be generated by the FSM.

CEQ0 Comparator output if C(7:0) [current change left] is zero.

CEN Change Enable indicating a quarter, dime, or nickel should be
released in the current clock if C > 0. Should be generated by
the FSM

Table 2 - State Machine Input / Output Signal Descriptions

Collect

On Reset

(power on)

Release

M < 100

M >= 100

BP /

REL_EN=0
BP /

REL_EN=1

INITC

LOADC=1

CEQ0
CHANGE

CEN=1

CEQ0

EE209 Lab - Change We Can Believe In

4 Last Revised: 3/14/2017

3. Datapath Units
The datapath for money collection was designed in class. A datapath is also
needed to make change. This datapath’s main goal is to maintain the current
amount of change that needs to be dispensed as well as generating the quarter,
dime, and nickel release signals. A description of the datapath and its outputs is
shown below.

if(LOADC = 1)

 C*[7:0] = M[7:0] – 10010

else if (CEN = 1 AND C ≥ 25)

 RELQ = 1

 C* = C – 2510

else if (CEN = 1 AND C ≥ 10 AND C < 25)

 RELD = 1

 C* = C – 1010

else if (CEN = 1 AND C ≥ 5 AND C < 10)

 RELN = 1

 C* = C – 5

else [C must be 0]

 do nothing (i.e. C = C)

Your datapath can be designed in anyway you see fit. It will likely look similar to
the collection datapath with some differences (i.e. you are subtracting rather
than adding, you have to load the C register with M-100, etc.). Identify the
various operations being performed above and use those datapath components.
As a design technique, write out a table of all the cases (from the if statements)
of the inputs you need to add/subtract. When there are difference choices for
an value you will need a mux. Then use the conditions in the if statements to
derive the select bit logic. Do this by identifying the binary signals (i.e. LOADC,
CEN, C>=25, etc.) and using them to create a truth table for the desired select
bits. Most of the change datapath will come directly from the description above
so study it carefully.

4. Verilog Notes and Project Specific Components
We have provided you many components that you can use. Take a few minutes
and open each file and look at it. Understand its function. Note: In these files we
are using high-level Verilog descriptions. Rather than instantiating basic gates
and lower-level components we use a “behavioral” description which Xilinx can
then take and figure out the exact gates. You will learn more about this
description syntax in the next CENG course. But it is good experience to see
some of it now.

moneymux.v: We have generated a mux that takes a 2-bit select number and
produces the 8-bit binary constants: 510 (when S=00), 1010 (when S=01), 2510
(when S=10), and 10010 (when S=11).

mux21_8bit.v: We have generated this component for you to use if desired. It
implements a 2-to-1, 8-bit wide mux.

 EE209 Lab - Change We Can Believe In

Last Revised: 3/14/2017 5

comp8.v: We provide an 8-bit unsigned comparator that will provide LT, GT, and
EQ outputs.

reg8e.v: We provide an 8-bit register with enable to store the M and C values.

adder8.v: We provide an 8-bit adder

pe4_2.v: We provide a 4-to-2 priority encoder with active-hi valid output

vending_fsm.v: You will need to implement the control state machine in this
file. You may use an encoded- or one-hot-state machine design approach.

Multi-bit Constants: In Verilog to generate a multi-bit constant we use the
syntax such as 8’b001110001. The first number is how many bits we will write,
then an apostrophe (or tick) followed by the character, b, and then the actual 8-
bit value. If we wanted to write a 4-bit value we could write: 4’b0110. If we
wanted to write a 6-bit value we could write 6’b100011.

Verilog assign statement: At this point in the class you may be tired of
instantiating separate AND, OR, NOT, NAND, XOR, etc. gates one by one. In
Verilog there is a slightly quicker way to describe this logic. It is with an assign
statement. By using it you can describe several physical gates with a single
statement. The syntax is as follows:

assign output_wire = input1_wire OP input2_wire OP … inputN_wire;

Example 1:

assign z = (x & y) | (x ^ z);

is equivalent to:
and(t1, x, y);
xor(t2, x, z);
or(z, t1, t2);

A mux could be described in a single line as:

assign Y = (~S & I0) | (S & I1);

Valid operators are: & = and, | = or, ^ = xor, ~ = not.

The output must be declared as a wire. You may feel free to use this approach
rather than instantiating individual gates when describing your logic in this lab.

4 Prelab
None.

EE209 Lab - Change We Can Believe In

6 Last Revised: 3/14/2017

5 Procedure
You should complete the control and datapath unit for the vending machine. You
should then create a testbench to test your circuit. Once you are satisfied with your
testing process, you can program your FPGA board with the design.

1. Download the vending.zip project file. Extract the files to a folder.

2. The vending machine project has a completed top-level file (vending_top.v)

that will interface your design to the switches, buttons, and displays on the
FPGA board as long as you produce a working design that matches the I/O
shown in the block diagram earlier in this lab.

3. You will need to add your datapath design in the vending.v file. Some portion

of the collection datapath is complete.

4. Implement the state machine in the vending_fsm.v file and output the given
signals in the skeleton that is provided in that file. It is recommended you use a
one-hot approach.

5. Check your design for syntax or circuit errors by synthesizing it. Make sure no

errors are present and fix any warnings that you can.

6. Switch to Simulation view and open the provided test bench. In the initial block
at the bottom of the file add input stimulus that will cause a full sequence of the
vending machine operation (i.e. turn on sensors at various times to add up to
over 100, cause a drink button to be pressed, then give time for the change to
be made). Generally, you should cause input signals to turn on for a full cycle.
To do this, assign a signal to 1, wait a clock cycle (#n;), and then turn the signal
of and start the next. You can assign several signals in the same clock cycle as
needed.

7. In the processes pane, click on properties of “Simulate Behavioral Model” and

set the “Simulation Run Time” to match the testbench length. Simulate your
design until you are satisfied it is working. (Note: Changing the M and C values
to Radix..Unsigned will show the positive decimal value of the 8-bit numbers
and make it easier to ensure your circuit is working). We would encourage you
to try a few different money collection sequences that will exercise your
change dispenser. Don’t just use a single sequence.

8. Synthesize (if you haven’t already) and implement your design checking for

errors. Set the Startup Clock to “JTAG Clock” under the properties of “Generate
Programming File”. Then generate the programming file.

 EE209 Lab - Change We Can Believe In

Last Revised: 3/14/2017 7

9. Program your FPGA using the Adept tool and ensure it functions correctly. The
corresponding I/O (push button, switch, LED assignments) are shown in Figure
1. Note: Because we have a slow running clock; you will have to push the
money sensor push buttons down for at least one full clock cycle for it to
register.

10. Demonstrate BOTH the working FPGA design and bring up the simulation

waveform and explain to your TA briefly what is happening. We want to know
that you understand the operation of your circuit in a clock by clock basis.

11. Submit the specified files on our website: vending.v, vending_fsm.v,

vending_tb.v

6 EE209 Lab Grading Rubric

Student Name: ___

TA Initials for valid simulation and correct student explanation of its operation: _____

TA Initials for Correct FPGA demonstration: _____________________

Item Outcome Score Max.

FSM

 NSL Correct

 Outputs Correct

Yes / No

Yes / No

1

1

Datapath

 C Register will initialize with M-100

 C Register enabled appropriately

 Constant {100,25,10,5} select logic (money mux)

is correct

 Appropriate comparison results generated

Yes / No

Yes / No

Yes / No

Yes / No

1

1

1

1

Simulation

 Testbench describes a valid usage of the vending

machine operation

 Correct simulation and student able to explain what

is happening in each clock (TA signature)

Yes / No

Yes / No

1

1

Correct demonstration (TA signature) Yes / No 2

SubTotal 10

Late Deductions (-1 pts. per day)

Total 10

Open Ended Comments:

