
Last Revised: 3/29/2017 1

EE 209 Lab – Range Finder

1 Introduction
In this lab you will build a digital controller for an ultrasonic range finder that will be
able to determine the distance between the range finder and an object in units of
inches or centimeters.

2 What you will learn
This lab is intentionally will provide less guidance on actual datapath and control
unit design and allow you to take high-level requirements and derive your own
design and implementation. Along the way you will also learn about interfacing
devices that use different signaling levels as well as how to emulate floating point
operations on integer values.

3 Background Information and Notes
1. Overview

Your design will send and receive signals to an ultrasonic range finder called the
PING))) sensor. The sensor is designed by a company called Parallax and when
told to start, emits an ultrasonic signal and determines the distance to an object
by listening for the echo. The documentation for the sensor can be found here
(https://www.parallax.com/sites/default/files/downloads/28015-PING-
Documentation-v1.6.pdf). Spend some time reading about it and understanding
the digital interface it requires. In particular, find the following information:

 How many signals (non PWR or GND) are exchanged between the digital
controller and the PING sensor?

 What voltage levels does it expect for logic 0 and logic 1?

 How long a pulse must we send to initiate a sensing?

 How long do we need to wait before expecting a return signal?

 What range of time will the return
pulse last?

 How long do we need to wait
before starting our next sensing?

Answer these questions in the prelab
(place your answers in a file named
“prelab.txt”

2. Bidirectional signals
Because only one signal is exchanged
between our circuit and the sensor we will

PING))) Sensor

on a robot

https://www.parallax.com/sites/default/files/downloads/28015-PING-Documentation-v1.6.pdf
https://www.parallax.com/sites/default/files/downloads/28015-PING-Documentation-v1.6.pdf

EE 209 Lab - Range Finder

2 Last Revised: 3/29/2017

need to takes turns sending and receiving information. In almost all of our
digital designs thus far bits always get produced by one circuit (gate) and
consumed as an input by another. But in this case the same wire/bit will
sometimes need to be output by your circuit and received as an input by the
sensor, but later the sensor will output a value and your circuit must receive that
as an input. To do this we use tri-state gates, but we will take care of that
outside your design in our provided top-level module. You will receive an input
signal (pulse_in) representing what the sensor is sending you, an output signal
(pulse_out) that you are sending the sensor, and an enable signal (pulse_en)
that you will also output. This enable signal MUST be a 1 if you want to SEND
your output to the sensor and 0 if you want to be receiving information from
the sensor. In the image below, the yellow area represents time where our
controller sends a signal to the PING sensor. This is indicated by pulse_en = 1.
Your design must ensure pulse_en=1 during the times you want to send a value
to the PING by outputting the desired value on pulse_out. By changing
pulse_en=0, the PING sensor can send data to you and you can look at the
pulse_in input. Be very sure (by checking in simulation) that your pulse_en = 0
when you should be receiving the pulse from the PING.

Note: In the diagram below PULSPIN represents the actual bidirectional signal
between your circuit and the PING sensor. It is created from pulse_en, pulse_out
and the PING sensor itself. In addition, our top-level module will use PULSPIN to
produce pulse_in so that you can use its value to measure how long the pulse is
high.

PULSPIN

pulse_en

pulse_out

pulse_in

convdone

go

output=1

5 us

output=0

750 us

wait for

pulse
measure

115-18500us
wait

200 us

result[7:0] previous_value value

We output,

PING listens

PING outputs,

we listen

3. Starting our Design: The major task in this design is to produce a signal for a

given period time. To do this we must know our clock frequency. In the block

 EE 209 Lab - Range Finder

Last Revised: 3/29/2017 3

diagram below, you will see that our top-level module provides your design a
clock with T = 2.56 microseconds. Using this value and appropriately sized
counters you can count the necessary clock cycles to wait for a specified
duration before taking some action. A state machine controlling various
counters and causing certain outputs to be generated for various durations will
likely be sufficient for this design.

convdone

pulse_en

pulse_out

pulse_in

clk

reset

go

inches result[7:0]

PULSPIN

(to/from PING)

display on

7-segment displays

BTN3

BTN0

SW0

(off = cm,

on = inches)

CLK (T = 2.56us)

SW7 SW0

BTNU

RESET

BTND

BTNRBTNL B8

LD7 LD0

Distance (cm or inches)
GO

unused

CM (SW0=0)
INCHES (SW0=1)

unused

unused

4. Converting to Centimeters or Inches: Once we generate the start pulse and

then turn the output off for the needed time, we will look for a high-value on
pulse_in. The duration of that pulse tells us the time it took for an echo to
return to the PING sensor. Using the formula provided in the PING datasheet
(page 3) for the speed of sound in air (note Cair corresponds to speed (m/s) and
Tc represents temperature in degrees Celsius). Using a room temperature of
around 78 degrees Fahrenheit, our clock period of T = 2.56 microseconds and the
fact that the time we measure must be divided by 2 since we are waiting for the
sound to travel to and from (i.e. round trip) the object, apply some arithmetic to
arrive at a conversion factor (constant value) for computing centimeters per
clock cycle). Put your value in your prelab.txt file.

EE 209 Lab - Range Finder

4 Last Revised: 3/29/2017

Once you have this constant value (cm / cycle) we will multiply it times the actual
clock cycles we count during the pulse_in high time. Suppose the constant you
found is .02461 cm/cycle (just made up), if the pulse lasted 200 cycles then an
object must be 200*0.02461 cm away. The problem is we only have integer-
based hardware components and we’d rather not create floating point
hardware. How can we then multiply by 0.02461? A commonly used trick is to
scale the fractional value up by multiply by some power of 2 to make it an
integer and then multiply the resulting integer as needed and finally divide by
the power of 2 at the end, keeping only the integer value. We use a power of 2
because dividing by a power of 2 is as easy as shifting or just dropping bits.
Essentially we’ll perform:

= ⌊
(𝒄𝒚𝒄𝒍𝒆𝒔 ∗ ⌊(𝟎. 𝟎𝟐𝟒𝟔𝟏 ∗ 𝟐𝟏𝟔)⌋)

𝟐𝟏𝟔
⌋

As an example, let us take 0.02461 * 216 = 1612. So if we now multiply this
scaled up value by our clock cycles (i.e. 200 * 1612 = 322,400) then divide out
the 216 factor we get floor(4.919) = 4 cm. Compare that to the actual value of
(200*.02461 = 4.922).

In hardware we can precompute the constant term (i.e. 0.02461 * 216 = 1612)
and just build a multiplier to multiply 1612*clock_cycles. To divide by 16 we just
drop the lower 16-bits and only take the upper bits. Our ping sensor has trouble
detecting values past 1 meter so we can safely limit the centimeter result to be
between 0-255 (i.e. 8-bits). So from the multiplier we can take bits 23-16 of the
result (because we will drop bits 15-0 to divide by 216. Since 1 inch = 2.54 cm, we
can also output our distance in units of inches by multiply by 1612/2.54 = 634.

Take some time now and compute the integer conversion factor for both
centimeters and inches by first ensure you’ve calculated the correct conversion
factor (cm/cycle) from above and then apply the technique just described to
arrive at an integer constant that you will multiply by the cycle count.

5. Converting Voltage Levels: As you read in the PING))) datasheet, it requires 5V
signals and uses TTL logic (a predecessor of CMOS), while our FPGA uses CMOS
logic using 3.3V power (i.e. Vdd = 3.3V). In addition, CMOS current output
capability is often smaller than TTL is able to source or sink. In essence, CMOS
and TTL speak a slightly different language (a different dialect) from each other
and thus need to be translated. For that purpose we have provided a separate
circuit board (https://www.sparkfun.com/products/11771 breakout). By
connecting 5V and GND from the PING sensor side, 3.3V and GND from the FPGA
side, and then the actual signal going to and from each side the circuit will
change the voltage levels for us (i.e. when our FPGA outputs 3.3V, the circuit

 EE 209 Lab - Range Finder

Last Revised: 3/29/2017 5

board will raise that signal to 5V. When the PING outputs 5V, the circuit board
will lower it to 3.3V.

PULSPIN

(to/from PING)

GND3.3 V

(Top-pin of the

connector)

Either in this column

will output ground
Either in this column

will output Vdd

4 Prelab
Write down your answers to the question regarding the PING))) data sheet in part
1 of the Background information. Also write down the cm/cycle conversion
constant and the integer scaling constant for both centimeters and inches you
found in part 4. Submit them in a file ‘prelab.txt’

5 Procedure
Be sure you have read the Background Notes and Information before you start this
project.

1. Download the skeleton project: ping.zip and extract it to a folder. In the
folder you’ll find:

a. 16x16 bit multiplier with 32-bit output (mult16x16.v)
b. 16-bit counter with reset and enable (cntr16ce.v)
c. 16-bit equality comparator (compeq16.v)
d. A D-FF with set and clear (dff1s.v)

2. Consider the sequence of states (steps) you need to go through for each
use of the PING sensor and consider how many cycles you need to be in
each state. Use counter(s) to track the duration (how many cycles) you
have been in a state and use logic to determine when you hit the specific
count where you want to move on to the next step.

EE 209 Lab - Range Finder

6 Last Revised: 3/29/2017

3. Based on your thoughts and values from the previous step, design the state
machine needed to generate the outputs: pulse_out and pulse_en as well
as waiting the appropriate durations.

4. After the return pulse from the PING))) sensor finishes (coming in via
pulse_in signal), your circuit should perform the conversion from raw cycle
count to cm or inches (use the inches input to determine whether to
convert to cm or inches). This will require performing the multiplication of
the cycle count times the integer conversion constants you found.
Remember you will only need an 8-bit answer but you must drop the lower
16-bits to perform the division by 216. The 8-bit integer result should be
saved in a register whose output is then fed as the output: result. This
register should retain its value until the next system takes another sample
and converts it (i.e. don’t reset it to 0).

5. Finally, you should ensure the output convdone goes high for 1 clock cycle
when the sensor is ready to take another sample. This is important
because in our top-level file we will capture and display the result you
produce when you make convdone go high for a cycle. Thus if convdone
does not work correctly you will not see correct values on the FPGA 7-
segment displays.

6. We have provided a small testbench. Use it to simulate your design and
see if things work as expected. But we’d recommend adding another case
or two with varying return pulse widths representing objects closer or
shorter.

7. Demonstrate your simulation to your TA so that they can ensure you
pulse_en and pulse_out signals look correct.

8. Once your TA has looked at your simulation you can synthesize, implement,
and generate the programming file and go to one of the test stations with
an FPGA and robot and download your design to see it working. Press the
‘go’ button slowly and leave some time in between. If you get a reading of
0, wait a second and try again. The FPGA connections are a bit
temperamental.

9. Show your TA and get signed off.
10. Submit your ping.v and prelab.txt on the website.

 EE 209 Lab - Range Finder

Last Revised: 3/29/2017 7

6 EE 209 Lab PING Grading Rubric
Student Name: ___

TA sign off: ________

Item Outcome Score Max.

Datapath Correctness

 Correct cm and inch integer conversion values in

prelab

 Correct PULSE_OUT period, holdoff period, and

rest period

 Correctly counts duration of PULSE_IN.

 Conversion to inches and cm is done (correct

multiplication and use of appropriate 8 output bits)

 Produces CONVDONE for a cycle

Yes / No

All / Some /

None

Yes / No

Yes / No

Yes / No

2

3

1

1

1

Simulation & Testing

 Simulation exhibits correct behavior

Yes / No

2

SubTotal 10

Late Deductions (-1 pts. per day)

Total 10

Open Ended Comments:

