
Last Revised: 1/25/2017 1

EE 209 Lab 3 – Mind over Matter

1 Introduction
In this lab you will use the Xilinx CAD tools to complete the design of a kids game
commonly referred to as “Mastermind” (simplified for easy implementation). In
particular, you will design muxes, registers with enables, incrementers, counters,
and a 7-segment decoder using a sum of minterms (decoder-based design)
approach.

Note: In this lab we have provided the high level design, identifying the
components and their connections needed to implement the game. Your job will
be to build the individual components. In future labs you’ll also need to come up
with some of the higher level design and we’ll assume you can then build the
needed components on your own.

2 What you will learn
This lab is intended to show you the process of using an FPGA (Field-Programmable
Gate Array) chip to implement digital HW designs while allowing you to practice
your ability to implement an arbitrary logic function.

3 Background Information and Notes
The Mastermind Game: The mastermind game allows an "opponent" to input a
secret combination (in this case, binary combination via switches) and then let the
other player input guesses for the combination providing some kind of feedback (in
this case a count of how many switches are in the right configuration). The normal
game usually hides the secret combination and lets the player start guess from
scratch with only a maximum number of guesses. Here we allow any number of
guesses and you and a friend will have to take turns setting a secret combination
while the other player doesn't look and then flipping the switches to some random
combination to let the other player start guessing. The general flow of the game is
as follows:

EE 209 Lab 3 - Mind over Matter

2 Last Revised: 1/25/2017

Set Correct

 Answer

Combination

Wait For User

to Set

Switches and

Press Guess

Button

Compare

Guess to

Answer

Init

CORRECT (Start new game)

INCORRECT

SW7 SW0

BTNU

GUESSBTN

SETANS

RESET

of Correct
Switches in

Guess

BTND

BTNRBTNL B8

LD7 LD0

Use Switches to set the combination

LEDs are unused in this lab

Figure 1 - Switches can be used to set both the secret combination and the guesses. Buttons can be used to

capture the secret combination or indicate a guess is ready to be scored. The number of correct switch positions

will be displayed on the 7-segment display.

Gameplay:
1. Player 1 should configure the 8 switches and press the SETANS button and

then rearrange the switches in some random order before Player 2 starts to
guess.

2. Player 2 may now configure the switches however he/she likes and then
press the GUESS button. This will trigger the hardware to compare the
switch configuration to the "answer" (1-bit at a time) and display how many
switches are in the right place (though not which ones)

3. Player 2 may repeat step 2 as much as they like or if they want to start a
new game simply start at step 1 (i.e. configure the switches and press
SETANS).

FPGAs: Field-programmable Gate Arrays are chips that have many hardware
resources (e.g. gates, registers, etc.) built on it but can be configured for how to
wire them together. The idea is this one chip can be configured to wire the
resources together to implement one design and then be reconfigured to wire the
resources together differently to implement another design. This is handy for our
lab since we don't want to buy separate chips for each lab, but instead reuse the
chip. The designs you draw and describe in the Xilinx tools will be converted (i.e.
synthesized) to produce the appropriate configuration to implement that exact

 EE 209 Lab 3 - Mind over Matter

Last Revised: 1/25/2017 3

design on the FPGA. Your job is just to produce the write design description (i.e.
schematic in this case).

Overall Design: A schematic of the overall HW design is shown below and only
consists of a handful of components (primarily registers, muxes, and counter
circuits). If you took EE 109 we want to draw a comparison and have you realize
you could easily implement this in your Arduino but it would run significantly
slower than this HW version can execute (though for a human user interacting at
the seconds/milliseconds level that difference is undetectable). But we simply want
to point out that what can be done in SW can be done in HW and vice versa.

However, let's take a look at the hardware design. We don't expect you to fully
understand the operation and all the components yet but within a few weeks you
should be able to and this may serve as a nice example/case study to refer back to.
We start at the top with the ANSWER[7:0] register. When you press the SETANS
button, this will enable the ‘answer’ register and capture whatever is on the
SWITCHES and save it (recall registers save values each time you clock it). We then
wait until the Guess button is pressed which starts a counter (producing CNT[2:0])
generating binary numbers 000-111 (one per clock). This 3-bit sequence (much like
a for loop counter, i, and an array) walks through each current switch, SWITCHES[i],
(on the bottom mux) and the corresponding ANSWER[i] bit and compares them to
see if they are the same and, if so, increments a counter of how many correct
positions the player has. This CORRECT count is then displayed on the 7-segment
display. We need the 8-to-1 muxes to select individual bits to allow for sequential
comparison and counting since comparing all 8-bits and counting them in parallel
would require additional HW that we’d like to avoid for now.

CORRECT(3:0)

7-Seg. 1

a

g

RST

EN

CLK

D

Q

07

EN

S[2:0]

7

0 S[2:0]

Q[3:0]

ans_en

RST

CLK

Q[2:0]

CNT
swcnt_clr

clk

ENswcnt_en

SW0

SW7

corr_en

CLK
cntr_clr

guess_i

ans_i

ANSWER[7:0]

SWITCHES[7:0]

S
W

IT
C

H
E

S
[7

:0
]

CNT[2:0]

You complete
HIGHLIGHTED
components.

7-Segment

Decoder

Comparator

2-bits

in
c
re

m
e

n
t

mmind_fsm

(Control)

ans_en
corr_en

corr_clr

reset

CNTR4

CNTR4
reg8e

8-to-1

Mux

8-to-1

Mux

swcnt_en
swcnt_clr

clk

reset

setans_btn

guess_btn

cnt[2:0]

corr_clr

Q[3]

Figure 1 – Datapath of the MasterMind Game

IMPORTANT: Keep coming back to this picture and map each
component here to the components in mmind.v

EE 209 Lab 3 - Mind over Matter

4 Last Revised: 1/25/2017

Governing the various control signals to clock a register, increment a counter, reset
a counter to 0, etc. is a state machine (which you've also learned about in EE 109)
but this state machine is implemented in HW. You will learn how to implement
state machines in HW in a few weeks. Below is the state diagram…See if you can
understand its basic operation.

Your task: Your job will be to build all the individual components. In doing this you
should review how each component is built. But another learning goal is to
understand how to use hierarchy (take 1 small component and combine them with
others to build large components). This includes:

 An 8-to-1 mux that can be used for the two muxes shown in Figure 1

 Determine what gate can be used in the blank oval that is shown
comparing the bits from the two muxes to see if they are equal (i.e. the
comparator of 2-bits) and the AND gate producing the ‘increment’ signal

 The 7-segment decoder that will convert a 4-bit binary number whose value
is (0-8) to the appropriate segments to light up the 7-segment display.

 A 4-bit incrementer used in the 4-bit counter blocks shown in Figure 1.

 Complete the design of reg4e (4-bit register with enable) that will be used
in the 8-bit register and the two counters shown in Figure 1.

 Use hierarchy to create the 8-bit register with enable that is used to store
ANSWER[7:0] from two 4-bit registers with enable.

Important Notes: As you design the 7-segment decoder, it is important to note
that the actual display is connected in such a way that an output of 0 will light up
the segment and a 1 will turn it off. We refer to this as an active-low convention
because the light will turn on or activate when we output a 0 (or low value). The
easiest way to deal with this is to just design the circuits normally (producing

INIT
CAPTURE

~setans_btn

CHECK WAIT4GUESS

setans_btn

~setans_btn
guess_btn

RESET

~setans_btn
cnt != 7

ANS SWITCHES
CNT 0
CORRECT 0

CNT CNT+1
corr_en 1

~setans_btn cnt==7

~setans_btn
~guess_btn

if(guess_btn)
 CORRECT

setans_btn

setans_btn

 EE 209 Lab 3 - Mind over Matter

Last Revised: 1/25/2017 5

outputs of 1 when you want the LED to light up) and then use an inverter right at
the output to flip the 1 you want to light up the segment to the actual 0 that is
needed by the display.

EE 209 Lab 3 - Mind over Matter

6 Last Revised: 1/25/2017

Building the components
8-to-1 mux (mux8.v): This should be straightforward. Do not use hierarchy here
(i.e. do not cascade many 2-to-1 muxes, etc.). Instead, design the 8-to-1 mux
directly from AND, OR, NOT operations.

7-segment Decoder (sevenseg_decoder.v): Given a 4-bit input design logic for the
7 outputs (a-g). Use the attached worksheet at the end to help. Use a sum-of-
minterm (or product-of-maxterm) approach. Think about how you can just
generate all the minterms (or maxterms) and share them to produce the 7 outputs
(i.e. you should not have to reproduce all the minterms for EACH of the 7 outputs).

4-bit Register with Enable (reg4e.v): A register with enable is simply D flip-flops
with a 2-to-1 mux produce the D-FF’s D input. The mux allows us to choose
whether we recycle the old Q value and retain it on the next clock cycle OR if we
should take in and remember a new value (the overall D-inputs). The schematic is
shown below. Use the provided 2-to-1 mux in mux.v and the provided D-FF’s to
complete the design of the 4-bit register with enable.

EN

CLK
Q[3:0]

D[3:0]

REG4E

D Q

CLK

DFF1

D Q

CLK

DFF1

D Q

CLK

DFF1

D Q

CLK

DFF1

0

S
1

Y

0

S
1

Y

0

S
1

Y

0

S
1

Y

Q0

CLK

D3

D2

D1

D0

Q1

Q2

Q3

RST

RST (reset) connections are not

shown here

4-bit Incrementer (inc4.v): A 4-bit counter is a circuit that will count up in binary
one combination per clock cycle. We can build a counter as an incrementer and a
4-bit register (with enable) that you designed above. Write out a truth table for a
4-bit incrementer where each output is 1 more than the input combination. Note
that the input combination 1111 should cause an output of 0000 (i.e. the output
wraps to 0). Use an approach similar to the 7-segment decoder by generating
minterms and then producing each output as a function of those minterms.

4-bit Counter (cnt4.v): Design the 4-bit counter by simply instantiating and wiring a
4-bit incrementer and 4-bit register with enable as shown in the schematic below.

 EE 209 Lab 3 - Mind over Matter

Last Revised: 1/25/2017 7

RST

CLK
Q[3:0]

EN

CNTR4

EN

CLK
Q[3:0]

D[3:0]

REG4E

RST

F[3:0]
X[3:0]

INC4

EN

CLK

RST

Q[3:0]

8-bit Register w/ Enable: Design an 8-bit register with enable by running two 4-bit
registers together in parallel. Use the incomplete schematic below to think about
what connections are needed.

EN

CLK
Q[7:0]

D[7:0]

REG8E

RST

EN

CLK
Q[3:0]

D[3:0]

REG4E

RST

EN

CLK
Q[3:0]

D[3:0]

REG4E

RST

EN

CLK

RST

D[7:0]

Q[7:0]

4 Prelab
None.

5 Procedure
1. Download the project skeleton zip file from our website and extract it to a

folder. Then load the project file (the file with the .xise extension) in Xilinx's
Project Navigator

2. Open the mmind.v Verilog file (not the mmind_top.v). You will see a structural
description of the components in our design. You must now implement the
missing designs.

3. Start with the 8-to-1 mux. Open mux8.v and complete the logic by instantiating
AND, OR, and NOT gates or using assign statements. Do NOT use 2-to-1 muxes
to build the larger 8-to-1 mux. Practice how to build a mux “from scratch”.

4. In the mmind.v file (this is the top-level design file where all components are
instantiated), scroll down to find the blank area where you should add the
gate(s) that are needed to compare the current guess and answer bits and then
the AND gate to produce the increment signal. Be sure you use the appropriate
signal names so that the design will correctly wire the gates and counter

EE 209 Lab 3 - Mind over Matter

8 Last Revised: 1/25/2017

together. Your inputs should be ans_i and guess_i. The final output of the AND
gate should be increment.

5. Now complete the 7-segment decoder design by opening the
sevenseg_decoder.v file.

a. Complete the truth table for the outputs a-g in terms of the 4-bit
input on the attached sheet which you will submit with your lab
report.

b. In the Verilog file, implement minterms for inputs 0-9. Then, for
each output a-g, sum together the appropriate minterms (use your
truth table to guide you) and produce that output by NOR'ing the
appropriate minterms together (we normally OR minterms but
remember the display wants 0's to light up the segment so we will
just invert at the output…)

6. Complete the implementation of reg4e.v to implement the 4-bit register with
enable. (You do not need to have studied registers with enable to implement
one. It is just wiring some 2-to-1 muxes and D flip flops together. See the
earlier schematic).

7. Complete the implementation of inc4.v to implement a 4-bit incrementer.
8. Complete the implementation of cntr4.v to implement a 4-bit counter. (You do

not need to have studied counters to implement one. It is just wiring a register
and incrementer together. See the earlier schematic).

9. Finally, implement the reg8e.v design. Do so by wiring
up two 4-bit registers w/ enable.

10. Simulate your design using the provided testbench by
clicking the Simulation radio box in the upper right of
the window, then choosing mmind_tb.v in the
Hierarchy area, and finally Simulate Behavioral Model
in the Processes area. We have included a wave
configuration file that will display the most important
signals for you though you are welcome to add more.

[Important] The best way to make sure you
understand the design is to painstakingly trace
through the simulation waveform and see what
happens. Think about what the input stimulus is: the
switches, the setans button, the guess button, etc.
Look for those to get an idea of what scenario we are
inputting. Then from there look at our circuit diagram
and think about what the important signals should do
and when. Confirm them on the simulation
waveform. It takes time to really understand what is
happening but you will be well rewarded with what
you learn from it and it will grow your ability to debug digital circuits, so please
invest that time.

 EE 209 Lab 3 - Mind over Matter

Last Revised: 1/25/2017 9

If you find the simulation doesn’t behave as intended, add more intermediate
signals, rerun your simulation, etc. until you can figure out the problem.

11. Once you are satisfied the design seems to work in simulation we will now
implement it on the FPGA. To do so, go to the Design/Hierarchy tab in the top
right and select the top-level file mmind_top.v.

12. Important: In the Processes pane, right-click “Generate Programming File”,
click “Properties” and under “Startup Options” ensure that the “FPGA Start-Up
Clock” is set to “JTAG Clock”. This is necessary for your design to work properly
but only needs to be done once (the project settings will be saved).

13. Now double click the Generate Programming File. It will take some time to
synthesize the design and implement it but when it is done double check that
there are no errors (look at the errors tab in the bottom console area) or at the
color of the icon next to the Synthesize and Implement processes. Warnings
(yellow triangles) are fine however.

14. At this point the hardware configuration file (.bit) file has been generated and is
ready to configure the hardware on the FPGA boards. Get a Nexys-2 board
from your TA and connect it via USB to your laptop. If you are running on the
Remote Desktop (VDI) you'll need have the virtual machine "take control" of the
Nexys board by selecting "Connect USB Device" and then choosing "Digilent
Onboard USB".

15. If you are running on your own PC you'll need to download the Digilent Adept
software using the link on the Tools page of our course website.

16. Start the Digilent Adept software which is
used to download the HW configuration.
Make sure the Connect field in the upper
right says Onboard USB and the Product is
recognized as Nexys3. Finally, in the FPGA
row, select the Browse button and find the
mmind_top.bit file in your project folder.
Then click Program which should configure
your hardware and start the program
running.

17. Try playing the game on the board and
ensure the display is showing appropriate
digits. If you got your logic wrong go back and examine it and try to fix it. You
will then need to repeat steps 13-16.

18. Demonstrate your working game to a TA and get their signatures/initials.
Submit your files online.

EE 209 Lab 3 - Mind over Matter

10 Last Revised: 1/25/2017

6 Lab Report

Name: ___________________________________ Score: ________

Due: _____________
(Detach and turn this sheet along with any other requested work or printouts)

Turn in the following items:

1. TA Signature: __________________________
2. Submit your mmind.v, inc4.v, reg4e.v, cntr4.v, reg8e.v, mux8.v, and

sevenseg_decoder.v at the online submission link on the lab webpage.
3. Completed truth table below.

a

b

c

g

d

e

f

a

b

c

d

e

f

g

BCD to 7-segment

decoder

BCD digit

a

b

c

d

e

f b

c

a

b
g

d

e

a

b

c

g

d

b

c

g
f

a

c

g

d

f

c

g

d

e

f

a

b

c

a

b

c

g

d

e

f

a

b

c

g
f

COR[3] COR[2] COR[1] COR[0] a b c d e f g

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

a

d

 EE 209 Lab 3 - Mind over Matter

Last Revised: 1/25/2017 11

7 EE 209 Lab 3 Grading Rubric

Student Name: ___

Item Outcome Score Max.

Design

 Correct Truth Tables for a-g

 Correct mux8.v implementation

 Correct reg4e.v implementation

 Correct inc4.v implementation

 Correct cntr4.v implementation

 Correct reg8e.v implementation

 Correct seven segment decoder implementation

 Correct logic for comparing ans_i and guess_i

 Circuit works correctly on the FPGA

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

1

2

2

2

2

2

2

1

1

SubTotal 15

Late Deductions (-1 pts. per day)

Total 15

Open Ended Comments:

