
Last Revised: 2/14/2017 1

EE 209 Lab 6 – We Value Your Feedback

1 Introduction
In this lab you will implement an encryption/decryption engine using a linear
feedback shift register (LFSR). Using these LFSRs we can create a system that will
encrypt a stream of bytes for storage or transmission and then be decrypted upon
receipt. This will be a simulation only lab where we view the results via simulation
and ensure our design works rather than placing it on the actual FPGA board.

2 What you will learn
This lab is intended to help you integrate many of the concepts taught in the first
portion of this course. You will design a state machine for control, a shift register
for the datapath, and other “glue” logic to combine various components.

Important: Read through this entire document once or twice. Then go back and
study the overall circuit diagram on page 3. Then perform the prelab. Only at that
point should you start attempting to write your Verilog code.

3 Background Information and Notes
Encryption Systems: To maintain confidentiality and access control, data generated
by an entity (“plaintext” data) can be transformed to an encrypted form
(“ciphertext” data) for storage or transmission. When data is retrieved, an inverse
transform should be performed to recover the original (“plaintext”) data. One
approach to do this is a linear-feedback shift register (LFSR) where both transmitter
and receiver both know a secret key value which allows them to communicate (i.e.
perform an inverse transformation of encrypted data). The system relies on the
fact that ((A XOR B) XOR B) = A.

View of the encryption/decryption system using LFSRs.

LFSR

clk

reset

enc_byte[7:0]

enc_en
in_byte[7:0]

in_en

out_byte[7:0]

out_en

stop1

start1 start

stop

key[7:0]

tap[2:0]

LFSR

reset

in_byte[7:0]

in_en

out_byte[7:0]

out_en

stop2

start2 start

stop

key[7:0]

tap[2:0]

key[7:0]

tap[2:0]

key[7:0]

tap[2:0]

out_byte[7:0]

out_en

clk

ENCRYPTOR DECRYPTOR

in_byte[7:0]

in_en

Encrypted/

Cipher Channel
Plaintext

Channel

Recoverd

Plaintext

Channel

EE 209 Lab 6 - We Value Your Feedback

2 Last Revised: 2/14/2017

An LFSR relies on producing a pseudo-random sequence of values that is then
XOR’ed with the original data stream to produce the cipher text. If the receiver can
generate the same sequence of pseudo-random values then it can XOR the
ciphertext with these values to recover the original.

plaintext XOR LFSR-value => ciphertext
ciphertext XOR LFSR-value => plaintext

LFSRs: A linear feedback shift register is a shift register that is initialized with a seed
(key) value. Then each clock cycle the bits are shifted one step in a given direction
(say to the left). The left-most bit will be lost but before it is dropped, it will be
XOR’d with a selected bit from somewhere else in the shift register. The selected
bit is called the “tap”. By XOR’ing the tap and the last bit, we produce the next bit
that will be input into the right side of the register.

0 0 1 1 0 1 0 11

The tap bit

(in your design we will use a mux to allow

any of the lower 8-bits to be selected)

Run over successive clock cycles, this system creates a pseudo-random sequence of
bits.

0 0 1 1 0 1 0 11

0

0 1 1 0 1 0 1 00

0

1 1 0 1 0 1 0 00

1

1 0 1 0 1 0 0 11

1

 EE 209 Lab 6 - We Value Your Feedback

Last Revised: 2/14/2017 3

At each time step the LFSR value will be XOR’ed with the incoming byte of data
(plaintext) to produce an output byte (cipertext).

The Design: Study the diagram and then read about its operation below.

0 1 1 0 0 0 0 1

0 0 1 1 0 1 0 11lfsr

in_byte_q

out_byte 0 1 0 1 0 1 0 0

D[8:0]

Q[8:0]

LOADshload

{0,KEY[7:0]}

Shift Reg.SHIFTvalid

D_IN

CLK
RESETreset

7

0

S[2:0]

lfsr[0]

8-to-1

Mux

lfsr[7]

lfsr[8:0]

clk

lfsr[8]

lfsr_fsm
running

shload
clk

reset

start

stop

RST

D[7:0] Q[7:0]

REG

CLK

RST

D Q
DFF

CLK

x8

tap[2:0]

in_byte[7:0]

in_en valid out_en

out_byte[7:0]

clk

reset

clk

reset

EE 209 Lab 6 - We Value Your Feedback

4 Last Revised: 2/14/2017

The LFSR design below uses a shift register that can either a.) load new data (i.e. the
key), b.) shift to the left, or c.) hold its current value. The next input bit (D_IN of the
shift register) bit is generated by XORing the LFSR’s leftmost bit with a selectable
tap bit (using an 8-to-1 mux).

The cipher text (out_byte) is produced by XORing the lower 8-bits of the LFSR with
the 8-bits of the registered input byte. An enable (in_en) is used to indicate when
an incoming byte actually represents valid data (as opposed to garbage data during
an unused clock cycle). Both in_data and in_en are registered to ensure we have a
full clock cycle to perform the desired operation and send it to whatever logic is
connected to the outputs. Thus the internal logic of the LFSR looks at in_byte_q
and in_en_q (the registered versions of the actual input data). We generate not
only the output data (out_byte) but out_en to indicate when that out_byte
represents actual encrypted data and should be consumed by whatever logic is
connected to the outputs. Again there may be dead cycles where no new data is
input. Thus, in_en indicates to our LFSR when new input data is valid and we
generate out_en to tell the next logic device when our output data is valid.

A state machine will govern the operation of the system by controlling when it
starts (i.e. loads a new key value) and when it stops (i.e. forces out_en to 0 and
stops the LFSR from shifting despite valid input data being present). The LFSR
should only shift when valid input data is present and the system is in the STARTED
state. A state machine diagram is presented below.

STOPPED LOAD_KEY

~start

startRESET

shload 1

~start stop

STARTED
running 1

start

~start ~stop

4 Prelab
Given a key of 0x9e and using tap bit 1, manually (paper and pen) generate the first
eight LFSR values (each value should be a 9-bit value shown in hex such as: 0x14f or
0x02d). Then assume an input data sequence of 0x61, 0x62, 0x63, 0x64, 0x65,
0x66, 0x67, 0x68. What would the 8 encrypted output values be? Place your
answers in a text file named: prelab.txt and submit them with your files. To be
clear we expects 2 sequences of 8 hex values. The first is the LFSR values (these
should be 9-bit answers shown in hex). The second is the encrypted values (these
should be 8-bit answers shown in hex).

 EE 209 Lab 6 - We Value Your Feedback

Last Revised: 2/14/2017 5

5 Procedure
1. Download the project skeleton zip file from our website and extract it to a

folder. Then load the project file (the file with the .xise extension) in Xilinx's
Project Navigator

2. Open the shlreg9.v Verilog file. This is where the basic 9-bit shift register
should be implemented. It should function according to the following function
table:

CLK RESET LOAD SHIFT Q*[8:0]

0,1 X X X Q[8:0]

PosEdge 1 X X 0

PosEdge 0 1 0 D[8:0]

PosEdge 0 0 1 {Q[7:0],D_IN}

PosEdge 0 0 0 Q[8:0]

We have provided the raw D-FFs for the 9-bits. Your job is to use the LOAD and
SHIFT inputs along with D[8:0] and D_IN to design the logic that provides the
inputs to these flip flops. Note that for each FF the next value is one of these 3
options: the old value of Q[i], the new D[i] input, or the shifted input (i.e. Q[i-1]
or D_in for Q[0]). We have provided a 3-to-1 mux in case you find it useful.

3. Back in the overall LFSR design (i.e lfsr.v file), create an instance of your shift
register.

a. Note: That the key input is only 8-bits while the shift register is 9-
bits. Thus the D-input to the shift register can be formed by
prepending a 0 to the key. This can be done in Verilog using the bit
concatenation operator {}. By separating the signals by commas and
placing them in {} Verilog will create a concatenated signal (i.e. {1’b0,
key} will concatenate a 1-bit value of 0 and the entire 8-bit key signal
to form a 9-bit result signal).

b. Also implement the feedback to D_IN by adding an XOR gate and 8-
to-1 mux (you should be able to find an 8-to-1 mux in one of your
previous designs) selected by the tap[2:0] input.

4. Add the eight XOR gates to produce the ciphertext (out_byte).

5. Add a new source file (lfsr_fsm.v) to your design. (To do this select

Project..New Source..Verilog Module and enter the appropriate filename, and
follow the dialog boxes to add appropriate input/output shown below). In this
file, design the state machine to implement the state diagram shown earlier in
this document and reprinted below.

EE 209 Lab 6 - We Value Your Feedback

6 Last Revised: 2/14/2017

lfsr_fsm
running

shload
clk

reset

start

stop

STOPPED LOAD_KEY

~start

startRESET

shload 1

~start stop

STARTED
running 1

start

~start ~stop

Block Diagram State Diagram

6. Back in the overall LFSR design (i.e lfsr.v file), create an instance of your state

machine and connect the correct inputs and outputs. Use its outputs to
produce the shift register’s load and shift signals as well as out_en.

7. Simulate your design using the provided testbench. The testbench provides
input stimulus for 3 runs of the LFSR. Correct results are shown below along
with an explanation.

lfsr

loaded w/ key

cipher_text

recovered plain text

Here we start the operation when start1 goes high. This causes the state
machine to move to the LOAD_KEY state in the next cycle and actually load the
LFSR with the key in the following cycle. Data is then input (shown when in_en =
1) and the byte sequence 0x61, 0x62, …, etc. is input. These bytes are XOR’d
with the LFSR values (you should be able to double-check the LFSR values by
manually shifting and XORing the tap with the MSB for each cycle). The
sequence has a 1 clock delay at the output (i.e. enc_byte) since we register the
in_byte. The enc_byte is then input to the decrypting LFSR which then recovers
the original.

 EE 209 Lab 6 - We Value Your Feedback

Last Revised: 2/14/2017 7

start

Above is another run of the LFSR with a different key and tap.

stop

start stop out_en forced off

out_en forced off

In this last run we start the encryptor but stop it (via stop1) half way through.
This should cause the state to return to STOPPED and thus out_en should be
forced off. The decryptor LFSR is stopped and never started so it should never
have its output enabled.

8. In the testbench, add one more test case sequence using the key and tap from
the prelab. (You may copy and paste the code from Test sequence 1 or 2 in the
testbench, altering the key and tap to create this new test sequence.). Run the
simulation and verify your prelab answers are correct. If not determine where
you went wrong and go back and update your prelab answers or the design if
that is the cause of the error.

9. Once your design is complete and working, show your simulation to your TA
and get their sign-off on the rubric sheet. Then submit your files online.

Interested students may read more about LFSRs for encryption or about more advanced
encryption algorithms suitable for hardware implementation such as AES.

EE 209 Lab 6 - We Value Your Feedback

8 Last Revised: 2/14/2017

6 EE 209 Lab 5 Grading Rubric

Student Name: _____________________________________

TA sign-off (correct simulation): ______________________

Item Outcome Score Max.

Design

 Correct LFSR prelab sequence

 Correct Encrypted output prelab sequence

 Correct slreg9.v implementation (can hold,

load, and shift left)

 Valid state machine design

 Correct tap selection and D_IN implementation

 4th Test sequence added to testbench (tap = 1,

key = 0x9e)

 Correct simulation (TA Sign-off)

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

1

1

3

2

1

1

2

SubTotal 10

Late Deductions (-1 pts. per day)

Total 10

Open Ended Comments:

