
Last Revised: 4/17/2017 1

EE 209 Project Part 2 – Blaze of Glory

1 Introduction
In this project you will integrate your heap hardware engine with a soft-core
processor and glue logic so that the heap engine can be used by software executing
on the processor. This lab should be completed INDIVIDUALLY!

2 What you will learn
This lab is intended to teach you how custom hardware integrates with a processor
core and software similar to what you'd see on a modern system-on-chip (SoC)
design.

3 Background Information and Notes
1. Overview

The user will be allowed to choose from 4 operations: SIZE, TOP, POP, and PUSH
using the buttons on the FPGA board. For a PUSH operation, the data value to
be added (i.e. DIN) will be the current value of the SWITCHES. After completion
of either of the 3 operations: TOP, PUSH, and POP the top value of the heap
should be displayed on the 7-segment displays. If the SIZE operation is chosen,
then the current number of elements in the heap should be displayed on the 7-
segment displays. Note: When the heap becomes empty, we will still display
whatever is in the memory element 1 (i.e. the old top). The I/O mapping is
shown below.

SW7 SW0

BTNU

RESET

BTND

BTNRBTNL B8

LD7 LD0

DISP[7:0]
(i.e. TOP or SIZE Result)

POP

TOP

SWITCHES = DIN (value to push) SIZE

PUSH

LEDS may be used for DEBUG

Provided to heap_soc as:
 btns = {SIZE, TOP, POP, PUSH}

Essentially, you'll write software to poll the push-buttons and when you find a
pressed button, have your software initiate the operation, poll to see when the
operation is done, acknowledge the operation is done, and then read and display
the result of the operation (either the TOP or SIZE value) on the 7-segment

EE 209 Project Part 2 - Blaze of Glory

2 Last Revised: 4/17/2017

displays. At this point, you will repeat and start polling on the pushbuttons
again, repeating the entire process. The button mapping is shown below.

PushButton (BTN[3:0]) Desired Operation

4’b1000 Read and display the SIZE of the heap

4’b0100 Read and display the TOP element of the heap

4’b0010 Pop the heap

4’b0001 Push a new value (din=SWITCHES) to the heap

2. PicoBlaze Soft-core Processor

The PicoBlaze is a soft-core processor design available from Xilinx that can be
synthesized easily to work on Xilinx' FPGA products. A soft-core processor
means the actual HW for the processor logic is not already built on the FPGA but
instead it must be synthesized into the appropriate FPGA form and then the
FPGA fabric "implements" the processor logic. This is unlike some of Xilinx's (and
other vendors') new product lines that have several processor cores built directly
onto the FPGA chip and surrounded by the traditional FPGA fabric which can be
used for custom logic processing.

We call the soft-core a 3rd party IP (Intellectual Property) because many designs
for specific processing tasks already exist and are sold by 3rd party companies to
be integrated into your design and placed on an FPGA or ASIC. A System-on-
chip is one that comprises software running on a general purpose processor
along with custom hardware for specific tasks. You will implement a small SoC
here.

The PicoBlaze processor is an 8-bit microcontroller with 16 registers (names s0-
sf) and 8-bit address, input data, and output data ports for communicating with
external logic. More details for this important aspect are discussed in the next
sections, but below is a block diagram of the system. The heap engine is
essentially what you completed in the previous part of this project. The
Picoblaze will be provided to you but you will need to add all the periphery logic
needed to interface the two designs. Please refer to this diagram below and
flesh it out in more detail as exactly what will be needed in each of the boxes.

H
E

A
P

CLK

RST

SIZE[7:0]

DONEFLAG

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
P

O
R

T
IDIN

D
A

T
A

8

8

8

8

LEDS[7:0]

{4'b0000,BTNS[3:0]}

{7'b0000000,DONEFLAG}

WS (WEN)

din[7:0]

pop
push

SWITCHES[7:0]

DISP[7:0]

DOUT[7:0]

DONE

ACK CLK/RST

 EE 209 Project Part 2 - Blaze of Glory

Last Revised: 4/17/2017 3

3. Exposing Your Hardware I/O to Software: Addressable registers

To interface HW with software we use the normal input/output reads/writes the
processor can perform and add "addressable" registers on the periphery of the
CPU which will interface to our custom hardware. In this case the CPU will need
to provide the DIN[7:0] input to the heap engine as well as the PUSH and POP
signals. In addition, the CPU can retrieve results by reading (input) again using
addresses to identify what value is desired. In the PicoBlaze this input/output
read/write capability is performed by the instructions: INPUT and OUTPUT

INPUT sx, hex_addr

OUTPUT sx, hex_addr

The input instruction will output an 8-bit address known as a PORTID (specify it
in hex in your assembly). Your logic will need to examine this PORTID (or some
subset of its bits) to control what value is selected (generally via some muxing)
and placed at the INDATA[7:0] input of the processor. It is your responsibility to
add the muxes and use the PORTID address bits to select the correct value for
the processor to read. Whatever is read is placed into the register sX for further
examination by your software. We will ask you to use the following
address/memory map:

Address / PORTID
(in binary)

Value to Select Description

0000 0000 {4’b0000, btn[3:0]} 4 Push buttons from the
FPGA = {SIZE, TOP, POP,
PUSH}.

0000 0001 switches[7:0] DIN value to be used for
PUSH operations

0000 0010 {7’b0000000,doneflag} Done flag indicating a
PUSH or POP is complete

0000 0011 dout[7:0] TOP element from the
heap

0000 0100 size[7:0] Number of elements in
the heap

The OUTPUT instruction outputs the provided 8-bit address/PORTID as well as
the provided data from the register sX on to the OUTDATA bits. In addition a 1-
bit signal: write strobe (aka 'wen' = write enable) is asserted for a clock cycle
and can be used as a register enable along with appropriate PORTID bits. First
we will assign a unique address to each register of information we want our
processor to be able to write to/assign.

EE 209 Project Part 2 - Blaze of Glory

4 Last Revised: 4/17/2017

Address / PORTID
(in binary)

Register/Signals to Generate Description

0000 0001 din[7:0] Value to be pushed to
your heap

0000 0010 Start signals:
 8’b0000 0010 = POP
 8’b0000 0001 = PUSH

The POP and PUSH start
signals should share the
same address with the
POP signal being bit 1 and
PUSH being bit 0

0000 0100 Acknowledge: Any data value
is acceptable

Any value written to this
address should cause the
DONEFLAG to be reset

0000 1000 disp(7:0) Whatever value is stored
here will be displayed on
the FPGA’s 7-segment
displays

0001 0000 leds(7:0) *See Note below

* Any value on this output will be displayed on the discrete LEDs (above the
switches). This can be used for 2 purposes: 1.) Debugging: You can add output
statements in your software program to output a certain pattern to let you know
you got to that point in your code. 2.) Operation Count: Count and display (in
binary) the number of operations (SIZE, TOP, POP, or PUSH) performed by the
user). This will help us know your software is operating correctly and can also be
helpful in debugging.

Your final submission must display the operation count on the LEDs. See the
software implementation below.

Now by placing an 8-bit register or flip-flop and adding logic that looks at the
appropriate bits of PORTID as well as the write strobe ('wen') signal we can make
the register only capture data when the processor outputs to that specified
register. The data to be captured is available on the OUTDATA bits.

4. The Software Program
With your memory map in place and the basic concept of what hardware is
needed to interface the processor to the heap engine, we can now write
software to control it. Below is a C program that DESCRIBES what your assembly
code should do. You may not want to implement it 1-for-1 but make the
assembly code perform equivalently.

 EE 209 Project Part 2 - Blaze of Glory

Last Revised: 4/17/2017 5

// In C, if we know the address of an I/O device in an embedded

// processor we can just make our own pointer to it.

//

// Pointers to inputs

#define BTNS (const unsigned char*) (0x00)

#define SWITCHES (const unsigned char*) (0x01)

#define DONE (const unsigned char*) (0x02)

#define DOUT (const unsigned char*) (0x03)

#define SIZE (const unsigned char*) (0x04)

// Pointers to outputs

#define DIN (unsigned char*) (0x01)

#define START (unsigned char*) (0x02)

#define ACK (unsigned char*) (0x04)

#define DISPLAY (unsigned char*) (0x08)

#define LEDS (unsigned char*) (0x10)

// Actual embedded code that you should translate to

// assembly in any *equivalent* manner. It does not need

// to be a 1-to-1 translation (i.e. variables here can

// just be some register that you choose in the PicoBlaze).

unsigned char opcnt = 0;

unsigned char btnval;

while (true)

{

 ++opcnt;

 *LEDS = opcnt; // display opcnt on LEDs

 while((btnval = *BTNS) == 0x00) {} // poll the buttons

 if(btnval & 0x08) // if SIZE op

 {

 *DISPLAY = *SIZE;

 }

 else if(btnval & 0x04) // if TOP op

 {

 *DISPLAY = *DOUT;

 }

 else

 {

 unsigned char myop;

 if(btnval & 0x02) // if POP op

 {

 myop = 0x02;

 }

 else if(btnval & 0x01) // if PUSH op

 {

 *DIN = *SWITCHES;

 myop = 0x01;

 }

 *START = myop; // start the heap engine

 // Poll for completion of the operation

 while(*DONE == 0) {}

 *ACK = 1; // acknowledge the operation to turn

 // off the done flag

 *DISPLAY = *DOUT; // show the top value

 }

 // one human button press can be long so we should wait

 // for the button press that started at the top of this

 // iteration to complete so that one press doesn't cause

 // multiple operations

 while((btnval = *BTNS) != 0x00) {}

}

EE 209 Project Part 2 - Blaze of Glory

6 Last Revised: 4/17/2017

5. Select Instruction review
Below is an introduction to some of the Picoblaze assembly instructions. More
info can be found in the Picoblaze PDF posted with this assignment.

Instruction Description

COMPARE sX, YY (YY = 8-bit hex const.) Compares the number in the sX register with
the constant YY by subtracting and
determines if the result is Zero or NotZero
(to be followed by an appropriate Jump)

COMPARE sX, SY Compares the number in the sX register with
the number in the sY register by subtracting
and determines if the result is Zero or
NotZero (to be followed by an appropriate
Jump)

AND sX, YY (YY = 8-bit hex const) Performs bitwise AND of sX and YY. Sets the
Z flag if the result of the ANDing is 0.

JUMP Z, Label Jump to the instruction with the given Label
if the previous COMPARE result was Zero

JUMP NZ, Label Jump to the instruction with the given Label
if the previous COMPARE result was NotZero

LOAD sX, YY (YY = 8-bit hex constant) Loads the 8-bit constant YY into the register
sX

INPUT sX, YY (YY = 8-bit PORT ID) Outputs the address YY on the PORTID
output of the Picoblaze processor and then
captures whatever data is present on the
INDATA input placing it in sX

OUTPUT sX, YY (YY = 8-bit PORT ID) Outputs the address YY on the PORTID
output of the Picoblaze processor and the
data in register sX on the OUTDATA bits of
the processor. It also asserts the write
strobe ('wen') signal of the processor for a
clock signal to indicate when your logic
should capture the output data.

6. Compiling your Picoblaze Assembler

The Picoblaze assembler (i.e. converts your human-readable assembly
description to a hardware-level description given as a .vhd file) is done by a
Python script. Rather than making each person install python and get the system
working we instead have provided a web-service to do this for you. If you simply
go to:

http://bits.usc.edu/codedrop/?course=ee209-sp17&assignment=pasm&auth=Google#

http://bits.usc.edu/codedrop/?course=ee209-sp17&assignment=pasm&auth=Google

 EE 209 Project Part 2 - Blaze of Glory

Last Revised: 4/17/2017 7

and login with your USC credentials you can upload a .psm file, click "Check my
submission" and scroll down to the results. If successful, you should see a link to
the output heap2_prog.vhd file. You can then save that file to your Xilinx
project directory, replacing the default one provided to you in the skeleton
project. If the assembly file has syntax errors they should be shown to you on
the webpage. Try to fix the problem and re-upload the file and repeat the
process.

4 Prelab
Ensure your part1 of the heap engine is working before you attempt part 2.

5 Procedure
Be sure you have read the Background Notes and Information before you start this
project.

1. Download the skeleton project: heap2.zip and extract it to a folder.
2. Find your 'ctrlpush.v' and 'ctrlpop.v' files and all other Verilog files (reg8e.v,

dff1s.v, …, etc.) and copy them from the Project Part 1 folder and copy it to
your 'heap2' project folder. **DO NOT COPY the heap.v** file as we have
provided a slightly update version of this file that adds logic to produce the
DONE signal when a push is performed on a full heap or a pop on an empty
heap. This will be necessary for your Picoblaze software to execute
correctly. So please ensure you do not overwrite this new version of
heap.v with your old version.

3. Then open the 'heap2' project, go to the Project menu and click "Add
Source". Be sure you navigate to your heap2 project folder that you just
extract the project and find all your Verilog (.v) files and add them to the
project.

4. In heap_soc.v ('student_design') we have provided the Picoblaze processor
component, the program memory, and an instance of your heap engine.
You should now add the peripheral registers needed to receive output
from your Picoblaze processor and provide input to your heap engine. You
will need to ensure the registers are only enabled when the desired port ID
(address) is output by the Picoblaze. Add the muxing necessary to read
values from your heap engine or the buttons and switches into your
processor.

5. Write the assembler program 'heap2_prog.psm' that will control your
square root engine. It is located in your project folder. Edit it in an editor
and then assemble it on our provided website and download the generated
heap2_prog.vhdl file into your 'heap2' project folder (replacing the
previous one).

6. Change to 'Simulation' view and use our provided testbench program to
simulate your design. We provide tasks (functions) to perform the various

EE 209 Project Part 2 - Blaze of Glory

8 Last Revised: 4/17/2017

operations. In the stimulus input block, please add calls to exercise various
sequences of operations. We have started this for you by calling a push of
the value 7 and then a size operation. Feel free to add or alter the
testbench as needed.

7. Synthesize, Implement, and generate the programming file for the FPGA.
During lab office hours download your .bit file to the FPGA and examine
the operation on the FPGA by pressing the any of the four push buttons.
The output 7-segment displays should be alternating display of the input X
and the output DISP value (at around 1 second each).

8. Demo to your TA & submit your .psm file and other indicated files
[heap_soc.v, heap_soc_tb.v, heap2_prog.psm, heap2_prog.vhdl, and
heap.v, ctrlpush.v, ctrlpop.v] using the provided link from our course
website page.

 EE 209 Project Part 2 - Blaze of Glory

Last Revised: 4/17/2017 9

6 EE 209 Project Part 2 Grading Rubric
Student Name: ___

TA Initials of DEMO: __________________________________

Item Outcome Score Max.

Periphery Logic

 Correct implementation of done input muxing

 Correct implementation of dout input muxing

 Correct implementation of size input muxing

 Correct implementation of btns input muxing

 Correct implementation of switches input muxing

 Correct implementation of din output

 Correct implementation of push/pop output

 Correct implementation of ack output / doneflag

reset

 Correct implementation of disp output

 Correct implementation of leds output

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

1

1

1

1

1

1

1

2

1

1

ASM

 Assembly file wait for a button press

 Assembly file correctly performs SIZE

 Assembly file correctly performs TOP

 Assembly file correctly performs PUSH

 Assembly file correctly performs POP

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No

1

1

1

2

2

Test Cases

 Works for instructor test cases

___ / 6

6

SubTotal 25

Late Deductions (-5 pts. per day)

Total 25

Open Ended Comments:

