
Last Revised: 4/19/2017 1

EE 209 Project Part 1 – Heaping it on

1 Introduction
In this project you will complete the control unit and datapath for a HW-based priority
queue utilizing a heap data structure. You should work on this lab INDIVIDUALLY!

2 What you will learn
This lab is intended to teach you how to implement state machines, use datapath
components and perform a non-trivial digital design.

3 Background Information and Notes
1. The Data Structure

A priority queue is a common data structure that allows values to be inserted in any
order but only allows retrieval and removal of the smallest element in the priority
queue. While there are many implementations for a priority queue, one of the
simplest and most efficient is a binary heap. A binary heap is a binary tree that
stores the values in the priority queue, but also guarantees that the “heap”property
is maintained for all nodes. The heap property states that: a parent must be less
than both of its children, but no ordering constraint exists between the two children.
If that property holds then the smallest element must live at the root (top) of the
binary tree and can easily be accessed when needed. However, when inserting and
removing new values we must take care to maintain the heap property.

A binary heap. Each parent is smaller than both children.

Push: Push is a fancy name for adding an element to the heap. When a new
element is added we ALWAYS add it to the bottom left-most free location in the
tree. By always placing it there, it may be the number is smaller than its parent. So,
what we will do is repeatedly compare the new child with its parent and if it is

7

918

19 35 14 10

28 39 36 43 16 25

EE 209 Project Part 1 - Heaping it on

2 Last Revised: 4/19/2017

smaller swap the two. The child can continue to move up and swap places with its
parent until it reaches the root of the tree or until it encounters a parent that is
smaller than the child. See the website link below for visualization purposes.

Pop: Pop is a fancy name for removing an element from the heap. When we
perform a pop operation we ALWAYS remove the top/root element. With it gone
we need someone to take its place. So, though it may seem strange at the moment,
we actually take the bottom-left most value in the tree (which is likely a “large”
number and consider it to be the new root. That would likely violate the heap
property and so what we will do is compare it to its smallest child (whichever is
smaller of its left and right child). If the smallest child is less than the parent we
swap their locations and repeat the process on the value that got demoted (i.e. the
old parent). This process of comparing a parent to its smallest child and swapping
them can continue until the node has no children (i.e. is a leaf node) or until neither
of its children are smaller than it.

Storing the heap in an array: Finally, to store the tree it turns out we can use a
simple array (and thus memory device for our logic implementation). For a binary
tree we will place the root at location 1 in the array/memory (leaving location 0
empty and never using it). By placing the root at location 1 in the array/memory it
allows simple arithmetic to find the location of a node’s left or right child or its
parent. Given a node at index, idx, we can find its children and parent by applying
the following formula:

parent(idx) = idx/2
left(idx) = 2*idx

right(idx) = 2*idx+1

Below is a sample heap and you can verify the formula.

At this point if you feel unsure of how a heap would work we strongly encourage
you to play with this visualization tool:
https://www.cs.usfca.edu/~galles/visualization/Heap.html

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

Parent(5) = 5/2 = 2

Left(5) = 2*5 = 10

Right(5) = 2*5+1 = 11

1

2 3

4 5 6 7

8 9 10 11 12 13 14

https://www.cs.usfca.edu/~galles/visualization/Heap.html

 EE 209 Project Part 1 - Heaping it on

Last Revised: 4/19/2017 3

Finally, the push and pop pseudocode is described below. (Assume a ‘size’ variable
is maintained from operation to operation and is initialized to 0 upon reset/startup.

Push(val)
// precondition:
// the heap is not full

Pop()
// precondition:
// the heap is not empty

idx = ++size;
// while a parent exists
while(idx > 1){
 parent = M[idx/2];
 // check if we should
 // promote val
 if(val < parent){
 M[idx] = parent;
 idx = idx / 2;
 }
 else break;
}
// Place val in its correct
// location
M[idx] = val;

parent = M[size--];
idx = 1; cidx = 2;
// while left child exists
while(cidx <= size){
 child = M[cidx];
 // see if right child exists
 // and is smaller
 if(cidx+1 <= size){
 if(M[cidx+1] < child){
 child = M[cidx+1];
 cidx = cidx + 1;
 } }
 // see if the smaller child
 // is less than the parent
 if(child < parent){
 M[idx] = child;
 idx = cidx;
 cidx = 2*cidx;
 }
 else break;

}
M[idx] = parent;

2. Block Diagram
Our heap implementation will allow storage of up to 255 unsigned 8-bit numbers.
The next page shows the high level block diagram of the system you are to design.
We will provide a good deal of support logic that will allow you to design the push
and pop controllers separately while our logic handles interfacing the two
controllers to the actual memory the array is stored in. In addition, our logic will
provide the ‘size’ counter and you can provide a simple ‘increment’ or ‘decrement’
signal to us. Essentially, you can break your design into two pieces: the push logic
and the pop logic, design them separately and our logic should handle the rest. The
key task of your controllers is to supply the correct signals to the control the
array/memory.

EE 209 Project Part 1 - Heaping it on

4 Last Revised: 4/19/2017

The primary inputs and outputs of the system are described below:

 push and pop: Control signals which should be high for a clock cycle to start
the respective operation.

 din: For push operations a data value input (din) should be given with the
new number to be added to the heap.

 dout: When not processing a push/pop operation this should output the
top/smallest number stored in the heap; during a push/pop operation dout
is arbitrary/undefined .

 done: Should be high for 1 cycle once a push/pop operation is completed.

 size: The current number of elements in the heap.

 valid: A signal indicating the dout number is valid. This signal will be false
when there are no numbers in the heap or while a push/pop operation is in
process; it will be true otherwise. This is really a convenience signal for you
when looking at waveforms. We could remove it and just realize that the
time between when we assert push/pop and the assertion of the done
signal will yield undefined dout values.

Heap

Engine

done

size[7:0]

valid

clk

reset

push

din[7:0] dout[7:0]

pop

3. The Provided Interface Logic
To make the design more manageable we have split the push and pop controllers
into separate subdesigns and then provided all the high-level control/interface logic
needed to share the memory and produce the combined outputs. In this way you
can design each subcontroller (push and pop controller) separately with the idea
that they fully “own” the memory and our provided logic will multiplex
appropriately. Thus as you design each subcontroller, assume your inputs and
outputs (mdout, maddr, mdin, and mwen) are solely under your control.

 EE 209 Project Part 1 - Heaping it on

Last Revised: 4/19/2017 5

clk

din[7:0] dout[7:0]

addr[7:0]

256x8 Memory

(syncrhonous write,

asynchronous read)

maddr[7:0]

wenmwen

clk

m
d

o
u

t[
7

:0
]

mdin[7:0]

clk

mdin[7:0]

maddr[7:0]

ctrlpush

mwen

mdout[7:0]

reset

sizeinc

done

size[7:0]

din[7:0]

start

clk

mdin[7:0]

maddr[7:0]

ctrlpop

mwen

mdout[7:0]

reset

sizedec

done

size[7:0]

start

pushmaddr[7:0]

popmaddr[7:0]

pushmdin[7:0]

popmdin[7:0]

pushdone

popdone

pushmwen

popmwen

sizeinc

sizedec

pushstart

popstart

Up/Down Counter

q[7:0]

clk

reset

sizeinc

sizedec

sizeinc

sizedec

clk

reset

clk

reset

clk

reset

size[7:0]

0

1

2

0

1

2

pushmaddr[7:0]

pushmdin[7:0]

popmaddr[7:0]

popmdin[7:0]

8'h00 (unused)

8'h01

pushmwen

popmwen

-
top

...

0

1

2

255

Encoder0

1

2pushworking

popworking

top

Y[1:0]

din[7:0]

Controllerpush

pop
pushworking

popworking

top

pushworking

popworking

top

clk

reset

clk

reset

pushdone

popdone
CLK

Q

clk

D

DFF

donedone

valid
valid

pushstart

popstart

pushstart

popstart

done

valid

dout[7:0]

size[7:0]clk

reset

You

Complete

You

Complete

The memory where we will store are array/heap of data is a 256 row by 8 column
memory. It is a “single-ported” memory meaning it can only perform one operation
per cycle (either read or write but not both simultaneously). The memory allows
asynchronous read (value is available on the same clock as we supply the address)
but synchronous write (i.e. write takes place on the trailing clock edge of the cycle in
which we assert mwen. The memory will perform writes when mwen=1 and reads
when mwen=0 (by default).

The size counter is an 8-bit up/down counter that will perform Q*=Q+1 when sizeinc
is asserted and Q*=Q-1 when sizedec is asserted. You should not assert both sizeinc
and sizedec at the same time. The size count can be used to not only indicate how
many elements are stored but also as the address/index where the last element is
located. This will be useful for the push and pop operations.

4. The Push Controller

The push controller should take a new data value (din), write it to the end of the
memory array and then perform the process of moving it up the tree if it is less than
its parent. The main issue in doing this is the memory allows only one operation
(read or write) per clock. So, we need some state machine/sequencing to order
those operations. Similarly, we’ll need an address/index (to track the current
location and its parent location. Finally, we’ll need to compare din to the parent at
each step so we’ll need a register to store the parent. A state diagram showing the
major register, counter, and memory operations is shown below.

EE 209 Project Part 1 - Heaping it on

6 Last Revised: 4/19/2017

clk

mdin[7:0]

maddr[7:0]

ctrlpush

mwen

mdout[7:0]

reset

sizeinc

done

size[7:0]

din[7:0]

start

You

Complete

RESET

IDLE INIT

idx* size+1

size* size+1

PARENT

p* M[idx/2]

COMP

if(din < p)

 M*[idx] p

 idx* idx/2

DONE

M*[idx] din

done

size > 0
start

~start

(din<p) &&
(idx/2 != 1)

(din>=p) ||
(idx/2 == 1)

!(size > 0)

In the above state diagram, realize that M[loc] refers to the value of the memory at
address, loc. IDX is a value you will maintain as the current address/index of the
added element. P is a register that can store the value of the parent item (not its
index which is easily derived as idx/2). Remember that size is maintained in the logic
we provided and not in your push controller. Thus, you only need to assert the
sizeinc output which will cause the size counter to increment on the next cycle. You
will need to study the state diagram and the operations performed in each to derive
a datapath for your push controller and then implement it in Verilog in ctrlpush.v.
You will also implement the state machine controller (for the above state diagram)
in the same file.

5. The Pop Controller
The pop controller should copy the last value in the array over the value to be
removed at address/index 1 of the memory. From there it should iterative move
that value (a.k.a. the parent) down swapping it with its smallest child if in fact that
child is smaller than the parent. A state diagram showing the major register,
counter, and memory operations is shown below.

 EE 209 Project Part 1 - Heaping it on

Last Revised: 4/19/2017 7

clk

mdin[7:0]

maddr[7:0]

ctrlpop

mwen

mdout[7:0]

reset

sizedec

done

size[7:0]

start

You

Complete

RESET

IDLE INIT

idx*

cidx*

p* M[size]

size* size-1

CHILD

c* M[cidx]

DONE

M*[idx] p

done

size > 2
start

~start

!(size > 2)

RCOMP

if(M[cidx+1] < c)

 c* M[cidx+1]

 cidx* cidx+1

PCOMP

if(c < p)

 M*[idx] c

 idx* cidx

 cidx* 2*cidx

(c<p) &&
(2*cidx <= size)

(c >= p) ||
(2*cidx > size)

! [(cidx+1) > size]

(cidx+1) > size

In the above state diagram, realize that M[loc] refers to the value of the memory at
address, loc. IDX is a value you will maintain as the current address/index of the
“parent” element. P is a register that can store the value of the parent item. CIDX is
a value that should store the index/address of the smallest child and c is a register
that can store the value of the smallest child. Remember that size is maintained in
the logic we provided and not in your pop controller. Thus, you only need to assert
the sizedec output which will cause the size counter to decrement on the next cycle.
You will need to study the state diagram and the operations performed in each to
derive a datapath for your pop controller and then implement it in Verilog in
ctrlpop.v. You will also implement the state machine controller (for the above
state diagram) in the same file.

6. Helpful Verilog Notes:
Concatenation: To concatenate different sets of bits to form a large bus simply place
the signals in { … } separate by commas (i.e. assign X = { A[3:0], B[3:0} would create
an 8-bit signal with X[7:4] provided from A and X[3:0] provided from B. You can also
concatenate constants (e.g. x = { A[3:0], 4’b0000 }).

EE 209 Project Part 1 - Heaping it on

8 Last Revised: 4/19/2017

Multiply and Dividing by 2: One can multiply or divide a number X by 2n by simply
shifting X left or right (respectively) by n-bits. Think how you can use the
concatenation Verilog tip above to easily produce 2*X or X/2.

Comparison and addition: Rather than using dedicated adders and comparators we
can use the Verilog operators in our assign statements. For example if we want a
signal to indicate true/false if (X+1) > 2 we could simply declare a wire such as
‘xp1_gt_2’ and then use an assign statement like:
assign xp1_gt_2 = ((X[7:0] + 1) > 2). The synthesis tool will infer that an
incrementer and comparator are needed. This should save you from having to wire
up a lot of adders and comparators. Though we have provided an 8-bit adder and
comparator module in adder8.v and comp8.v.

Registers & DFFs: We provide an 8-bit register (reg8e.v) and a DFF (dff1s.v) for you
to use. Tip: Use a 1-hot state machine approach to design the control unit FSMs.

4 Procedure
You will design and implement the push and pop controllers to complete the overall
priority queue / heap engine. We have provided the start of a testbench with functions
(aka ‘tasks’ in Verilog) that will generate the input/output sequence needed to push or
pop a value from the heap engine. For part 1 we will only use simulation to ensure a
working design (no implementation on the FPGA board).

1. Download the heap1 project .zip. Extract the files to a folder.

2. Examine the top-level logic in heap.v

3. Implement the datapath and FSM control for the push controller in ctrlpush.v.

4. Implement the datapath and FSM control for the pop controller in ctrlpop.v.

5. If you need to add modules not provided, just add their definition in ctrlpush.v or

ctrlpop.v.

6. Understand and then update the provided testbench heap_tb.v to simulate your
design. We suggest testing cases where values are placed in different orders,
performing pushes and pops when the last item is a left child and when it is a right
child, interspersing pushes and pops, making the heap go empty by popping values
and then adding more. Verify the correctness of your design. HINT: First build the
push controller and test that (make the pop controller outputs 0s) first to ensure
you get it working before building and testing the pop controller.

 EE 209 Project Part 1 - Heaping it on

Last Revised: 4/19/2017 9

7. Once you are satisfied your design works, go back to the ‘Implementation’ view,
select your top-level heap.v file, and synthesize your design. Ensure it synthesizes
without errors (warnings are okay). Then, at the top of the processes pane, click on
“Design Summary/Reports” and in the right window select “Synthesis Report” (see
the screen capture below). Scroll through and read the output of this report. In
particular, look at the “Advanced HDL Synthesis” about 1/2 of the way down and
look at the blocks/macros that are used. Continue to scroll and find the ‘Device
Utilization summary’ which indicates the size/area of your design (i.e. how much of
the FPGA’s resources your design is using). Below that will be the timing report
which will list the critical path and its delay (which sets the frequency at which you
could run this design). Answer the questions in the review section below through
your examination of these areas.

8. Submit your design files: ctrlpush.v, ctrlpop.v, and heap_tb.v as well as your
answers to the review questions below (in a file name review.txt) via the link on
the website.

5 Review
1. In the synthesis report, how many flip-flops does your design use? How many

adders/subtractors are used? How many comparators are used? In the device
summary section, how many slices LUTs are used? What percentage is that
number vs. the total available on the chip?

2. Examine the timing report. What is the minimum period and maximum
frequency at which we can run this design?

EE 209 Project Part 1 - Heaping it on

10 Last Revised: 4/19/2017

6 EE 209 Project Part 1 Grading Rubric
Student Name: ___

Item Outcome Score Max.

Push Correctness

 FSM NSL is correctly described

 Datapath is correctly described

Yes / No

Yes / No

1

1

Pop Correctness

 FSM NSL is correctly described

 Datapath is correctly described

Yes / No

Yes / No

1

1

Instructor Test Cases

 Test Case 1 (Separate)

 Test Case 2 (Integrated)

Yes / No

Yes / No

2

3

Review Questions are accurate. Yes / No 1

SubTotal 10

Late Deductions (-1 pts. per day)

Total 10

Open Ended Comments:

