
1

CSCI 350
Pintos Intro

Mark Redekopp



2

Resources

• Pintos Resources
– https://web.stanford.edu/class/cs140/projects/pintos/pintos.html#SEC_Top

• Skip Stanford related setup in section 1.1 and 1.1.1

– http://bits.usc.edu/cs350/assignments/Pintos_Guide_2016_11_13.pdf
• Keep this handy!!!

https://web.stanford.edu/class/cs140/projects/pintos/pintos.html#SEC_Top
http://bits.usc.edu/cs350/assignments/Pintos_Guide_2016_11_13.pdf


3

Emulated OS

• Could run on an actual x86 machine

– But painful to debug for students

• Runs on at least two emulators:

– bochs (project 1)

– qemu (project 2-4?)



4

Startup

• src/threads/start.s

• src/threads/init.c

– Main entry point for Pintos



5

Project 1 Area

• All your project 1 code is in:

– src/threads

– src/devices/timer.*



6

Tour of thread.h and thread.c

• thread_init()

– Initialize the threading system & turns main() into a thread

• thread_start()

– Start the threading system

– Creates an "idle" thread to run if no other threads ready 
which executed idle()

• thread_create()

– Create a thread's data structure

– Uses init_thread() helper function

• schedule(), next_thread_to_run(), switch.S

– Select next "ready" thread and perform a context switch



7

PRACTICALS



8

Lists

• Look in 
lib/kernel/list.h(.c)

• struct list

• struct list_elem

struct list ready_list;

struct Item {

int tid, priority;

struct list_elem elem;

// could contain other list_elems if 

//  it is desirable to be a member of many lists

};

struct Item first;

void init() 

{

list_init(&ready_list); // construct empty list

list_push_back(&ready_list, &first.elem);

}

prev

next

prev

next

head tail

struct list ready_list

struct list_elem struct list_elem

0x0prev

next

prev

0x0next

head tail

struct list ready_list

struct list_elem struct list_elem

prev

next

priority

tid

s
tr

u
c
t 

It
e

m



9

Lists

• Iterating

– Uses struct list_elem*

• list_entry macro to get 
pointer to enclosing struct

struct list_elem* iter = list_begin(&ready_list);

while(iter != list_end(&ready_list))

{

struct Item* curr = 

list_entry(iter, struct Item, elem);

// do something with curr Item

iter = list_next(iter);

}

struct list ready_list;

struct Item {

int tid, priority;

struct list_elem elem;

// could contain other list_elems if 

//  it is desirable to be a member of many lists

};

struct Item first;

void init() 

{

list_init(&ready_list); // construct empty list

list_push_back(&list.first);

}

0x0prev

next

prev

0x0next

head tail

struct list ready_list

struct list_elem struct list_elem

prev

next

priority

tid

s
tr

u
c
t 

It
e

m

0x108iter 0x100

list_entry(iter, struct Item, elem);

0x108 offset of 8 bytes into the struct

0x100

0x108iter

struct Item*



10

Building and Running

• Navigate to src/threads

– $ make

• Go to build directory

– $ cd build

• To run all tests and see which pass and which fail

– $ make check

• To run a single threads test

– $ pintos -v -- -q run alarm-multiple

– Options before the '--' are generally to configure the emulator and Pintos VM 
environment (e.g. virtual disk, etc.)

– Arguments after the '--' tell Pintos what you want to do after the OS boots 
(e.g. run a kernel test, run a user program, etc.)

– Replace alarm-multiple with the name of the test to run (see test names in 
src/tests/threads)

– For project 1, tests are compiled into the kernel and available to run

– For other projects, you'll run separate user applications on top of the kernel



11

Building and Running

• To check if the output is as expected for a single test
– (Section 1.2.1 of Stanford Pintos site)

– Go to the src/threads/build directory

– $ make tests/threads/alarm-multiple.result

– (Replace 'alarm-multiple' with the desired test name)

– If that .result file already exists, just delete it
• $ rm tests/threads/alarm-multiple.result



12

Install GDB macros

• In a terminal, git clone (or pull) the pintos-base
repo

• Navigate to the pintos-base folder

• Copy the macros to your home folder

– $ cp src/utils/pintos-gdb-macros ~

• Point the pintos-gdb script to that file

– $ which pintos-gdb
• Note the location and navigate to that folder

– Edit pintos-gdb in a text editor (sublime, etc.)
• Change the line the starts GDBMACROS=… and replace the … with 
/home/csci350/pintos-gdb-macros



13

Debugging

• Start Pintos in the emulator with the --gdb option
– $ pintos --gdb -v -k -T 60 --bochs -- -q run alarm-single

• Connecting via pintos-gdb

– In a separate terminal window, navigate to the 'build' folder in 
the src/threads (or whatever project you are working on)

– Run pintos-gdb
• $ pintos-gdb kernel.o

• Attach to the running Pintos instance
– target remote localhost:1234 (or "debugpintos" w/ macros)

– Set breakpoints ( break init.c:90 ) 

– Resume the program ( cont )

– Use s = step and n = next



14

Debugging

• Use print to print a variable

• Accessing current thread TCB
– print $esp

• Note the address and change the last 3 digits to 000 in the next 
statement (e.g. 0xc000ee84 => 0xc000e000)

– print ((struct thread*)0xc000e000)->name

• intr0e error is often due to context_switch at 
wrong time (i.e. disable interrupts or do your 
work before you yield, etc.)



15

Helpful Breakpoints

• thread.c : schedule()

• thread.c : next_thread_to_run()



16

Project 1

• Only responsible for parts 1 (thread_sleep / 
alarms) and 2 (priority scheduling and 
donation)


