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Overview

• Which thread should be selected to run on 
the processor(s) to yield good performance?

• Does it even matter?

– Does the common case of low CPU utilization 
mean scheduling doesn't matter since the CPU 
is free more often that it is needed

– Yes in certain circumstances!
• Scheduling matters at high utilization (bursts of heavy 

usage)

• Google and Amazon estimate they lose approximately 
5-10% of their customers if their response time 
increases by as little as 100 ms (OS:PP 2nd Ed., p. 314)

– When do you care about scheduling at the 
grocery store checkout…at 6 a.m. or 5 p.m.

• Many OS scheduling concepts are applicable 
in other applications: web servers, network 
routing, etc.

“The Case for Energy-Proportional 

Computing”, Luiz André Barroso, Urs Hölzle, 

IEEE Computer, vol. 40 (2007).

http://research.google.com/pubs/LuizBarroso.html
http://research.google.com/pubs/author79.html
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Choices

• Under heavy utilization important choices must be 
made

– Should you turn away some users so others experience 
reasonable response times?

• If so, which users should you turn away?

– How much benefit would additional resources have?
• In most cloud providers, you can dynamically reprovision (i.e. spin 

up more servers on the fly)

– Can you predict the degradation if the number of requests 
doubles?

• Might it be worth it to switch scheduling strategies on the fly?

– Do insights into the context and kind of requests matter?
• Denial-of-service attack?
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Terminology

• Task (job): A user request

• Workload: The mix (type) of tasks and their arrival time
– Compute bound:  Processor resources impose a bound on performance

– I/O bound:  I/O delay imposes a bound on performance

• Response Time (delay): Time from when the user submits the task until 
the user experiences its completion

• Throughput: Rate at which tasks are completed

• Predictability: Low variance in response times of repeated requests

• Scheduling overhead: The time to switch from one task to the next

• Fairness:  Equality in the number and timeliness of resources allocated to 
a task

• Starvation:  Lack of progress of a task due to resources given to another 
(higher-priority) task
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Uniprocessors

• Let's start with a simple uniprocessor system 
assuming:

– Preemptive multitasking: OS can switch thread at its 
discretion

– Work-conserving: If a task is ready, the OS will not leave 
the processor idle (in preparation for some future event)

• Possible scheduling algorithms:

– FIFO (FCFS = First come first serve)

– SJF (Shortest Job First)

– Time-sliced Round-robin
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FIFO

• Under FIFO, the job that arrives first 
runs to completion

• Avoids overhead increasing 
throughput

– Optimal since least possible overhead of 
context switching

• Maintains a simple queue

• Is it fair?

– In one sense, yes.

– But worst-case response times may 
result if long running job arrives 
before the short ones (grocery 
store)

• If jobs are all of equal size, then it 
can be optimal
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Shortest Job First (SJF)

• Requires prior knowledge of length of 
task

– Impossible?

• Uses some form of priority queue to 
determine next job to run (i.e. shortest 
duration)

• It is preemptive!
– If a shorter job arrives during execution of 

another, SJF will context switch and run it

– Thus, it is actually Shortest Remaining Job First 

• Provides optimal average response time

• Provides worst-case variance in response 
time

– A shorter job can always come in and "cut" in 
front of a waiting task (i.e. starvation)

• Can you game the SJF system if you are a 
long task?
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Round Robin

• Execute each task for a given time 
quantum and then preempt

– No more starvation

• How to choose the time quantum
– To short, overhead goes up due to excessive 

context switches (also consider caching effects 
when switching often)

– To long, response times suffer (see bottom 
graphic)

• FIFO and SJF can be thought of as special 
cases of RR

– FIFO (RR with time quantum = inf.)

– SJF (approx. RR with time quantum = epsilon)
• Assume 0 overhead switch, set epsilon to 1 instruc.

• Within a factor of n if n schedulable tasks

• Predictable though higher response 
times

– Why?
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Round-Robin On Equal Size Tasks

• Poor effect on response time but low 
variability

– Consider a server streaming multiple videos
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Mixed Workloads
• All examples thus far have been compute bound (i.e. tasks are able to use the 

processor for their entire time quantum)

• Under mixed workloads (some I/O and some compute bound tasks) issues of 
fairness arise even in round-robin

• Consider an I/O bound process in the presence of two other compute bound tasks 
(compute for full 100 ms of their time quanta)

– I/O process starts a 10 ms disk read, compute briefly (1 ms) and then blocks, yielding its time slice

– Recall, we assume work-conserving so we won't just idle waiting for the disk to finish
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Max-Min Fairness

• Idea: Give priority to processes that aren't using 
their fair share of resources

• Note: max-min is not necessarily on top of round-
robin

• Max-min:  Maximize (responsiveness to) the 
minimum request

– If any task needs less than its fair share, give the 
smallest (minimum) its full (maximum) request (i.e. 
schedule)

– Split the remaining time among the N-1 other 
requests using the above technique (i.e. recursively)

– If all tasks need more than an equal share, split 
evenly and round-robin

• Max-min Approximation:  Give priority to task 
that has received the least processor time

• Originally used/proposed for network link 
utilization (a short download in the face of a long one)

Consider 4 programs: 
• P1 wants 10% of processor's time
• P2 wants 20% of processor's time
• P3 and P4 each would want 50% of the 

processor's time on their own. 

Fair share would be 25% each

1. Since P1 is minimum and wants < 25% we'll 
always schedule it (maximize it) when it is 
available in the ready list

2. We now have 90% of the processor we can 
split 3 ways (i.e. fair share is now 30%)

3. We recurse and give P2 it's 20% (scheduling 
it when it's available but P1 isn't).

4. We split the remaining 70% between P3 
and P4 (35% each) using round-robin as 
needed

Example



12

MLFQ

• Multi-Level Feedback Queue

– Implemented by most modern OSs

• Unix, Linux, Windows (w/ some variation), Mac OSX?

– Like round-robin but with multiple queues of 
different priority

• Goals:  Reasonable compromise to achieve:

– Response time, Low overhead, No-starvation, 
fairness, de-prioritize background tasks

– A compromise to achieve similar results as max-
min fairness
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MLFQ Rules
• Multiple queues with different priorities

– Higher priority queues => Smaller time quantum

– Lower priority queues => Larger time quantum

• Rules:

– Rule 1: Higher priority always runs, preempting lower 
priority tasks

– Rule 2: RR within same priority

– Rule 3: All threads start at highest priority

– Rule 4a: If thread uses up quantum, reduce priority (i.e. 
move to lower priority queue)

– Rule 4b: If thread gives up processor, stays at same level
• Alternative: once total quantum is taken up, demote

• Shorter tasks finish quickly; I/O bound tasks get priority

– Rule 5: After some time S, move threads back to highest 
priority

• Avoids starvation

• Uses recent past to predict future

Key Idea:  We can't predict the 
length of a job so assume it is short 
and then demote it the longer it 
runs.
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MLFQ Examples

Refer to the source of these images for a nice writeup: 

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 1: A long running job

– Starts at high priority and 
migrates to lower priority with 
longer time slices

• Example 2: A short job arrives 
during execution of the long 
running job

– Preempts long job and may 
complete before it reaches Q0

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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MLFQ Examples

Refer to the source of these images for a nice writeup: 

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 3: I/O bound job 
and compute bound job

– I/O bound job preempts 
compute-bound job

– Any issue with this scheme?

• Example 4: Intermittent 
priority boosts to avoid 
starvation

– Helps if a compute-bound 
job transitions to become 
interactive (I/O-bound)

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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MLFQ Examples

Refer to the source of these images for a nice writeup: 

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 5: Change Rule 4 
to avoid gaming the system

– Consider a program that 
"sleeps" for 1 ms after 
computing for 99 ms

– Rule 4b: If thread gives up 
processor, stays at same level

– New Rule 4: Once total 
quantum is taken up (over 
several context switches), 
demote

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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MULTIPROCESSOR PERFORMANCE

Effects of caching, false sharing, etc.
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Cache Coherency
• Most multi-core processors are shared memory systems where 

each processor has its own cache 

• Problem:  Multiple cached copies of same memory block
– Each processor can get their own copy, change it, and perform 

calculations on their own different values…INCOHERENT!

• Solution: Snoopy caches…
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Snoopy or Snoopy
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Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options:  When a block is modified
– Go out and update everyone else’s copy

– Invalidate all other sharers and make them come back to you to get a fresh copy

• “Snooping” caches using invalidation policy is most common
– Caches monitor activity on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others
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SpinLocks
• Consider a spinlock held by a thread on 

P3 (not shown) for a "long time" while 
thread 1 and 2 (on P1 and P2) try to 
acquire the lock

• Continuous invalidation of each other 
reduces access to the bus for others 
(especially P3 when it tries to release)
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{
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False Sharing

• Thread-independent (i.e. non-
shared) variables allocated on the 
same cache line 

• Can cause a large performance 
degradation due to cache 
coherence (invalidates, etc.)

int x = 0;

int y = 0;

void t1() { 

for(int x=ITERS; x > 0; x--); 

y = 1;

}

void t2() { 

while( y == 0);

printf(“Y was set to 1\n”);

}

T1 

(Wr. X)

$

T2 

(Rd. Y)

$

XCache Line Y

E I

T1 

(Wr. X)

$

T2 

(Rd. Y)

$
S S

YCache Line

XCache Line

int x = 0;

int y __attribute__ ((aligned (64))) = 0;

…

False Sharing Example

One solution: Alignment



23

Is Cache Coherency = Atomicity?

• No, cache coherence only serializes writes and does not 
serialize entire read-modify-write sequences
– Coherence simply ensures two processors don’t read two different 

values of the same memory location

• Consider our sum example ( sum = sum + local_sum; )
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if P2 Writes X it will get updated line from P1, 

but immediately overwrite it (not required to re-

read anything if not using locks, etc.)
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MULTIPROCESSOR SCHEDULING
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Typical Multicore Organization

• How do scheduling choices change when we have multiple 
processors that can be scheduled at the same time?

L1 $

Main Memory

P

Shared L2

Cache

Interconnect (On-Chip Network)

L1 $

P

L1 $

P

L1 $

P
This can be a shared bus or a 

more complex switched network

Chip Multi-

Processor
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Scheduler Data Structure Issues

• Allow processor affinity (i.e. 
which processor a thread is 
schedule on) for threads

– Warm caches vs. cold caches

• Single task queue (or MLFQ) or 
one for each processor

– Single queue suffers from 

• Locking contention

• Cache coherence

P1

$

P2

$

M

If a thread is scheduled on one 

core, context switched, and then 

scheduled again on another core, 

data may need to migrate.  This 

reduces performance. 

P1

$

P2

$

M

MLFQ

Cached copies of the MLFQ data 

structure must be kept coherent as 

processors modify it.
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Scheduler Data Structure Solutions

• Each processor can maintain its own 
queue, reducing lock contention and 
cache coherence performance 
penalties
– Threads essentially stay "pinned" to a 

certain processor

• Rebalancing across processor 
scheduling queues can be done only 
when it is "worth" it
– i.e. When the benefit of being able to 

schedule a thread on a different processor 
outweighs the cost of the locking and 
caching penalties (both for the scheduler 
queue and thread data) 

P1

$

P2

$

M

MLFQ

Separate scheduling queues avoids 

costly coherence.  Migrate threads 

(e.g. T1) only when the overhead is 

outweighed by the rebalancing.

T1
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Oblivious Thread Scheduling

• Consider a single program written to optimize 
performance by breaking work into many parallel 
threads

• Knowing the structure of a parallel program can be 
crucial to scheduling those threads in such a way as 
to achieve optimal performance

• If the thread scheduler is oblivious to the nature of 
the parallel program, performance can be severely 
impaired

– The next slide(s) show a few examples
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Oblivious Scheduling Pitfalls

• Basic problem:  Scheduler may treat all threads 
equally (i.e. many threads from many processes)

– By not knowing which threads come from what 
processes or that thread's role in the overall 
program, performance may suffer

• Various parallel program architectures may 
exhibit poor performance if threads from the 
program are improperly scheduled

– Bulk Synchronous Parallel (BSP):  All threads 
compute, wait for others to finish computing, 
then exchange data for the next computation 
period

• Since threads must wait for all others, delaying a single 
thread may force all others to wait

– Staged (Producer/Consumer):  Each thread 
performs one part of the work on an overall task. 

• Delaying one can mean others don't have enough useful 
work

Stage 

1

Stage 

2

Stage 

3

Bulk Synchronous Parallel

Staged

(Producer/Consumer)
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More Pitfalls

• Various parallel program architectures may 
exhibit poor performance if improperly 
scheduled

– Critical path:  Sometimes certain tasks (threads) 
are on the critical path of finishing the overall job 
while others have more slack on their deadlines

• If the critical path threads don't get scheduled the 
overall job performance will suffer

– Preemption of a lock holder

• Lock holder is context-switched thus holding off 
other threads from the program T1

T2 T3

Critical Path

Time
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Gang Scheduling

• Gang Scheduling 
attempts to schedule (all 
of) the threads from one 
program on the 
processors at the same 
time 

Prog. A

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A

T4-A X X

T1-A T2-A T3-A

T4-A X X

Assume 1 Progs (PA) with 4 threads and two 

unrelated background threads

Bgrd. D Bgrd. E

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A T4-A

T1-A T2-A T3-A T4-A

T1-A T2-A

T3-A T4-A

Assume a BSP style program.  T1-T3 can't run 

again until T4 does.  

Gang Scheduling may allow more progress in 

the same time window.
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Law of Diminishing Returns

• If a project would take 12 hours 
alone, does working in a group of 
2 mean it will take 6 hours?

• Likely not. Communication adds 
overhead.
– And a team of 4 will almost 

certainly take much longer than 3 
hours

• Many parallel programs do not 
continue to give linear speedup 
gains as you add more and more 
processors
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Revisiting Gang Scheduling

• Just because we have 4 processors doesn't 
mean we should use 4 threads for a given 
program.  

• Space sharing indicates multiple programs 
share the physical processors by using 
different subsets 

• This is in contrast to time sharing where all 
processors are used for one program and 
then is swapped at the next time quantum

• We might achieve better throughput (not 
response time) for both Prog. A and Prog. B 
by only using 2 threads

– Notice here we don't need to context switch!

Prog. A

Assume 2 Progs (PA-PB) each with 4 threads

Prog. B

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A T4-A

T1-B T2-B T3-B T4-B

T1-A T2-A T3-A T4-A

T1-B T2-B T3-B T4-B

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

Time Sharing

Space Sharing
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ENERGY-AWARE SCHEDULING
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Energy vs. Performance Tradeoffs

• Modern HW systems can trade performance 
for power consumption (i.e. energy)

– Increase performance (rate of instruction 
execution) by consuming more power

– Heterogeneous cores (some high-performance 
high power cores and some low-performance low 
power cores)

– Powering on or off cores and I/O devices
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Energy Policies & Scheduling

• On battery powered devices (laptops and phones) 
user's can often select an energy policy

– Lower performance and greater battery life

– Better performance and lower battery life

– Or a blend!

• To achieve this blend the scheduler needs to be 
involved

– Should I schedule this thread on the high performance, 
high power core?

– Would allowing threads from this program to get all the 
resources for a few time slices allow the some I/O device 
to be powered down temporarily?
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Basic Approach

• If the lower performance is below human 
perception:

– Then lower performance and save energy

• If the lower performance is above human 
perception:

– Then optimize for performance so the user 
doesn't notice any difference

• Long-running and background tasks

– Try to achieve balance taking into account the 
available energy (i.e. battery level)
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REAL-TIME SCHEDULING
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Real-Time Constraints

• Hard and Soft Real-time

– Hard Real-time: Missing a 
deadline results in failure (i.e. 
no value for the computation)

– Soft Real-time: 
Performance/usefulness 
degrades if deadlines missed

• Programs often have 
deadlines and scheduler must 
do its job trying to meet those 
deadlines
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Real-Time Scheduling Strategies

• Over-provisioning
– Ensure the HW is more than needed keep up with the software 

workload

– Ensure utilization is never too high

• Scheduling is almost always based on priority
– Highest priority ready thread is chosen

• A more abstract scheduling strategy is Earliest Deadline First 
(EDF)
– Choose the next thread to run based on the earlier deadline

• Priority donation
– Solves priority inversion by having higher priority tasks that need a 

resource held by a low priority task to donate its high priority
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Scheduling Review 1

• OS:PP 2nd Ed. Exercise 7.4
Task Length Arrival Time FIFO 

Completion 
Time

FIFO 
Response 
Time

SJF 
Completion 
Time

SJF 
Response 
Time

RR (10)
Completion 
Time

RR (10) FIFO 
Response 
Time

0 85 0

1 30 10

2 35 15

3 20 80

4 50 85

Average: Average: Average:
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Scheduling Review 2

• OS:PP 2nd Ed. Exercise 7.13

– Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

– Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each 
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms. 

– Task C: Identical to B but arrives after B, still at time 0

– Assume 0-time context switch, when will each task finish using:

Completion 
Time:

A B C

FIFO

RR (1 ms)

RR (100 ms)

SJF

MLFQ 
(highest priority = 
1 ms time slice)
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Scheduling Review 2 Answers

• OS:PP 2nd Ed. Exercise 7.13

– Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

– Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each 
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms. 

– Task C: Identical to B but arrives after B, still at time 0

– Assume 0-time context switch, when will each task finish using:

Completion 
Time:

A B C

FIFO 100 200 300

RR (1 ms) 140 121 122

RR (100 ms) 100 200 22

SJF (on compute) 140 100 102

MLFQ 
(highest priority = 
1 ms time slice)

142 104 106
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QUEUEING THEORY
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Motivation

• Queuing theory provides some 
mathematical model of a  
scheduling system that will 
allow us to perform "back of the 
envelope" calculations:

– Understand response time as a 
function of arrival rate or service 
(job execution) time

– Expected queue sizes

– Others

Server

Queuing 

of Jobs

Arrivals
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Definitions
• λ (lambda) for arrival rate (e.g. 500 jobs/second)

• μ (mu) for service rate (e.g. 1000 jobs/second)

• S = 1/μ = service time

• W (Wait time) = Time spent waiting in a queue to be 
serviced

• R = Response time = Total time spent in the system
– R = W + S

• U = Utilization = Percent of time the server is busy
– λ/μ = when λ < μ

– 1 = when λ >= μ

– May not always want to maximize utilization

• X = Throughput (jobs processed per unit time)
– Is X = μ or λ?

– X = λ when U < 1

– X = μ when U = 1

• N = Number of tasks in the system 
– Q + U = Number of waiters + Number of jobs being serviced

Server

Queuing 

of Jobs

Arrivals

λ μN
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Little's Law

• Stability:  When λ < μ

– What if λ >= μ?

• Delay and queue length will grow without bound

• For a stable system (λ < μ)

– Little's Law says:  N = X*R

• Number in the System (Waiters) = Throughput * Response Time

• Since over the long-term, throughput (X) = λ

– N = λ*(W+S) = λ*(W+(1/μ)) = λ*W + U

• If we expect 100 jobs/second & service time is 5 ms what utilization will 
our server run at?

– U = λ / μ = λ * S = 100 j/s * .005s = 0.5

• If 10,000 jobs arrive per second and experience 100 ms response time, 
what is the average number of jobs in the system:

– N = 10,000 * .1 = 1000

– True, regardless of what's inside the system
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Inter-Arrival Times

• Much of the performance of a system 
depends on the distribution of interarrival 
times

• Assume λ < μ

– Example: 

• λ = 1000 (1 job per 1 ms)

• μ = 2000 (1 job per 0.5 ms)

• Constant inter-arrival times:  If jobs arrived 
exactly every 1 ms, what would Q (average 
occupancy/length of the queue) be?

– Q = 0 !!  and R = 0.5 ms

– So do we not need a queue at all?

Response Time & Throughput as a 

function of λ for 

CONSTANT INTER-ARRIVAL times
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Bursty Inter-Arrival Times

• Much of the performance of a system 
depends on the interarrival times

• Assume λ < μ

– Example: 

• λ = 1000 (1 job per 1 ms)

• μ = 2000 (1 job per 0.5 ms)

• Bursty arrival times: But what if all 1000 
jobs arrived at the t=0 sec. and then 
another 1000 jobs at t = 1 sec.

– Q ≈ 250

– R ≈ 250 ms

• Burstiness always increases response 
time

Response Time & Throughput as a 

function of λ for 

BURSTY INTER-ARRIVAL times
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Modeling Arrivals

• So how should we model arrivals (i.e. inter-arrival 
time)

• Model both inter-arrival and service times using 
probabilistic distributions.

• Which distribution?

– Uniform

– Gaussian

– Exponential, p(t=x) = λe-λx because it is 
memoryless

• Memoryless: likelihood of an event occurring is 
independent of how long we've already waited or 
what other events have already happened

• This is just a model and not all workloads exhibit its 
characteristics but many do
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Using Exponential Distributions

• Under exponential inter-arrival 
and service times the math says:  

– 𝑅 =
𝑆

1−𝑈
=

1

𝜇

𝜇−𝜆

𝜇

=
1

𝜇−𝜆

• Example 1 :
– At 20% utilization:

• R = S/(1-0.2) = 1.25S

– At 25% utilization
• R = S/(1-0.25) = 1.33S

– 5% increase in U => 8% increase in R

• Example 2
– Difference at 90% and 95% 

utilization increases R by a factor of 
2 (i.e. 100% increase)
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What Ifs?

• Currently we are using FIFO scheduling; would other policies 
work better?
– For exponential service times, FIFO works as well as RR because expected 

service time remaining is independent of what's already there, you are better 
off finishing current jobs first

– So what about non-exponential distributions for service time? 

– Many workloads for serving web pages and tasks in an OS are more bursty
and exhibit so called heavy-tailed distributions

• More long tasks and more shorter tasks thus SJF and RR performs better than FIFO

– SJF is good, except it can greatly increase average response time at high 
utilization

• Why?

• Multiple servers: single queue or multiple queues
– If multiple queues, the response time curve depends on arrivals to that queue

– If single queue, response time is always better (likelihood of being queued 
behind a large task is much less)
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OVERLOAD MANAGEMENT
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Overload Management

• What if burstiness causes a period where λ > μ
– If you use RR what will happen?

• Sometime to give good service to some you must reject 
others

• What do we do when overload occurs?
– Drop jobs

– Decrease service (throttle download bandwidth, disable certain 
features)

• Algorithms should be designed with overload in mind as many 
default applications will actually do MORE work under heavy 
loads
– Caches under heavy load (thrashing)

– Naïve network protocols for resending packets when they don't reach 
the sender (they might have been dropped for a reason!)


