CSCI 350
Ch. 7 — Scheduling

Mark Redekopp
Michael Shindler & Ramesh Govindan



- USCViterbi @
Overview

*  Which thread should be selected to run on
the processor(s) to yield good performance?

e Does it even matter?

0025 [

— Does the common case of low CPU utilization
mean scheduling doesn't matter since the CPU
is free more often that it is needed

002 [f]

a.0s [ ]

Fraction of time

— Yes in certain circumstances! om |

* Scheduling matters at high utilization (bursts of heavy
usage)

QL00sS |

* Google and Amazon estimate they lose approximately % @1 02 03 04 05 06 OF OB 03 10
5-10% of their customers if their response time Ll it
increases by as little as 100 ms (OS:PP 2" Ed., p. 314)

Figura 1. Average CPUutization of more than 5,000 servers during a six-month perod.
Sarvers are rarely completely kdie and seldom operate near ther maximumut¥ization,

— When dO you care abOUt SChEdUIing at the Inste ad operating most of the time at between 10 and 50 percent of thelr maximurm

utilization keves.
grocery store checkout...at 6 a.m. or 5 p.m.
“The Case for Energy-Proportional

* Many OS scheduling concepts are applicable Computing”, Luiz André Barroso, Urs Holzle,
. . . IEEE Computer, vol. 40 (2007).
in other applications: web servers, network
routing, etc.



http://research.google.com/pubs/LuizBarroso.html
http://research.google.com/pubs/author79.html

Choices

* Under heavy utilization important choices must be
made

— Should you turn away some users so others experience
reasonable response times?

* If so, which users should you turn away?

— How much benefit would additional resources have?

* In most cloud providers, you can dynamically reprovision (i.e. spin
up more servers on the fly)

— Can you predict the degradation if the number of requests
doubles?

* Might it be worth it to switch scheduling strategies on the fly?
— Do insights into the context and kind of requests matter?

* Denial-of-service attack?



- 00000000 USCViterbi @
Terminology

* Task (job): A user request
The mix (type) of tasks and their arrival time

— Compute bound: Processor resources impose a bound on performance
— 1/0 bound: 1/0 delay imposes a bound on performance

* Response Time (delay): Time from when the user submits the task until
the user experiences its completion

* Throughput: Rate at which tasks are completed
* Predictability: Low variance in response times of repeated requests
* Scheduling overhead: The time to switch from one task to the next

* Fairness: Equality in the number and timeliness of resources allocated to
a task

e Starvation: Lack of progress of a task due to resources given to another
(higher-priority) task



Uniprocessors

e Let's start with a simple uniprocessor system
assuming:

— Preemptive multitasking: OS can switch thread at its
discretion

— Work-conserving: If a task is ready, the OS will not leave
the processor idle (in preparation for some future event)
* Possible scheduling algorithms:
— FIFO (FCFS = First come first serve)
— SJF (Shortest Job First)
— Time-sliced Round-robin



i, TS(“Viterbi -

School of Engineering

T1 arrives
 Under FIFO, the job that arrives first e
runs to completion 0
* Avoids overhead increasing h 40
throughput & 2
— Optimal since least possible overhead of T3 >
context switching T4 5
* Maintains a simple queue TS 5
+ lsitfair o M e e
— In one sense, yes.
— But worst-case response times may TO ®
result if long running job arrives LR >
before the short ones (grocery T2 oy 5
store) T3 5
* |Ifjobs are all of equal size, then it T4 5
can be optimal T5 5

Workload 2 (Avg. Resp. time =
(5+10+15+20+25)/5=15



i, TS(“Viterbi -

Shortest Job First (SJF)

T1 arfrive
e Requires prior knowledge of length of Toqrives
task TO
— Impossible? T1 40
 Uses some form of priority queue to T2 - 5
determine next job to run (i.e. shortest 3 z
duration)
. . T4 5
* Itis preemptive! T c

— If ashorter job arrives during execution of

another, SJF will context switch and run it Workload 1 (Avg. Resp. time =

(5+10+15+20+60)/5 = 22
— Thus, it is actually Shortest Remaining Job First

T1 arrives
* Provides optimal average response time T2-4 grrives
T6 arrives
* Provides worst-case variance in response 0 40
time
T1 8 32
— Ashorter job can always come in and "cut" in
front of a waiting task (i.e. starvation) T2 5
. T3
 Can you game the SJF system if you are a 2
T4
long task? e 2
5

T6 5



i, TS(“Viterbi

School of Engineering

Round Robin

T1 arrives
. . T2{5 arrives
* Execute each task for a given time
guantum and then preempt TO
— No more starvation T1 —t- 5 35
* How to choose the time quantum T2 5
— To short, overhead goes up due to excessive T3 5
context switches (also consider caching effects
when switching often) T4 5
— Tolong, response times suffer (see bottom T5 5
graphic) Time quantum =5 ms
* FIFO and SJF can be thought of as special Avg. Resp. time = (60+10+15+20+25)/5 = 26
cases of RR
— FIFO (RR with time quantum =inf.) TO ®
— SJF (approx. RR with time quantum = epsilon) T1 el 20 20
* Assume 0 overhead switch, set epsilon to 1 instruc. T2
*  Within a factor of n if n schedulable tasks >
* Predictable though higher response T3 5
times T4 5
—  Why? T5 5

Time quantum =20 ms
Avg. Resp. time = (60+25+30+35+40)/5 = 38



i, TS(“Viterbi -

School of Engineering

Round-Robin On Equal Size Tasks

* Poor effect on response time but low
variability

— Consider a server streaming multiple videos

Tasks Round Robin (1 ms time slice)

Time



i, TS(“Viterbi

School of Engineering

Mixed Workloads

* All examples thus far have been compute bound (i.e. tasks are able to use the
processor for their entire time quantum)

* Under mixed workloads (some |/O and some compute bound tasks) issues of
fairness arise even in round-robin

* Consider an |/O bound process in the presence of two other compute bound tasks
(compute for full 100 ms of their time quanta)

— 1/O process starts a 10 ms disk read, compute briefly (1 ms) and then blocks, yielding its time slice
— Recall, we assume work-conserving so we won't just idle waiting for the disk to finish

Tasks
I/0 Bound
Issues 1/0 Issues 1/0
I/0  Completes I/0  Completes
Request Request
CPU Bound
CPU Bound

Time



B ()5 C Vierbi
Max-Min Fairness

* ldea: Give priority to processes that aren't using

their fair share of resources Example

Consider 4 programs:

* Note: max-min is not necessarily on top of round- « P1wants 10% of processor's time
robin * P2 wants 20% of processor's time
. o . * P3and P4 each would want 50% of the
* Max-min: Maximize (responsiveness to) the processor's time on their own.

minimum request Fair share would be 25% each

— If any task needs less than its fair share, give the
. . . . 1. Since P1is mini d wants < 25% we'll
smallest (minimum) its full (maximum) request (i.e. nce P2 15 minimuim and wants < 257 We
always schedule it (maximize it) when it is

schedule) available in the ready list

: s : 2. We now have 90% of the processor we can
— Split the remaining time among the N-1 other
P 8 8 split 3 ways (i.e. fair share is now 30%)

requests using the above technique (i.e. recursively) 3. We recurse and give P2 it's 20% (scheduling

it when it's available but P1 isn't).
. 4. We split the remaining 70% between P3
evenly and round-robin and P4 (35% each) using round-robin as

* Max-min Approximation: Give priority to task needed
that has received the least processor time

— If all tasks need more than an equal share, split

* Originally used/proposed for network link
utilization (a short download in the face of a long one)



 Multi-Level Feedback Queue

— Implemented by most modern OSs
e Unix, Linux, Windows (w/ some variation), Mac OSX?
— Like round-robin but with multiple queues of
different priority

* Goals: Reasonable compromise to achieve:

— Response time, Low overhead, No-starvation,
fairness, de-prioritize background tasks

— A compromise to achieve similar results as max-
min fairness



i, TS(“Viterbi -

MLFQ Rules

 Multiple queues with different priorities
— Higher priority queues => Smaller time quantum
— Lower priority queues => Larger time quantum

Priority ~ Time Slice (ms) Round Robin Queues
* Rules: 1 " = o Newor0
— Rule 1: Higher priority always runs, preempting lower e
priority tasks ] 5 T o e
— Rule 2: RR within same priority
— Rule 3: All threads start at highest priority : “ LT
— Rule 4a: If thread uses up quantum, reduce priority (i.e. 8 ol

move to lower priority queue)

— Rule 4b: If thread gives up processor, stays at same level

* Alternative: once total quantum is taken up, demote Key Idea: We can't predict the
length of a job so assume it is short
and then demote it the longer it

— Rule 5: After some time S, move threads back to highest runs.
priority

e Avoids starvation

* Shorter tasks finish quickly; 1/0 bound tasks get priority

* Uses recent past to predict future



MLFQ Examples

Q2

 Example 1: A long running job

Q1

— Starts at high priority and
migrates to lower priority with Qo
longer time slices o s w0 o

Figure 8.2: Long-running Job Over Time

* Example 2: A short job arrives
during execution of the long a2
runningjoo

— Preempts longjobandmay =
complete before it reaches Q0 " e

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

Refer to the source of these images for a nice writeup:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfg.pdf



http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

 Example 3:1/0 boundjob
and compute boundjob

— 1/0O bound job preempts “

compute-bound job

Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

— Any issue with this scheme?

e Example 4: Intermittent
priority boosts to avoid
starvation

_ HeIpS if a CompUte-bound 0 50 100 150 200 0 50 100 150 200
jOb transitions to become Figure 8.5: Without (Left) and With (Right) Priority Boost
interactive (I/0-bound)

Refer to the source of these images for a nice writeup:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfg.pdf



http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

MLFQ Examples

* Example 5: Change Rule 4
to avoid gaming the system

— Consider a program that
"sleeps" for 1 ms after o
computingfor9 ms s

— Rule 4b: If thread gives up [ QOJM_!)H_MI_JI_JI_JI_

0 50 100 150 200

processor, stays at same level

— New Rule 4: Once total
guantum is taken up (over
several context switches),
demote

Refer to the source of these images for a nice writeup:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfg.pdf

Q1

100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance


http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

Effects of caching, false sharing, etc.

MULTIPROCESSOR PERFORMANCE



P USCViterbi
Cache Coherency

* Most multi-core processors are shared memory systems where
each processor has its own cache

* Problem: Multiple cached copies of same memory block

— Each processor can get their own copy, change it, and perform
calculations on their own different values...INCOHERENT!

* Solution: Snoopy caches...

Example of incoherence

if P2 Writes X we
if P2 Reads X it now have two

@ o @ mreex @ mwer @ WSANx @ NS
P1 P2 P1 P2 P1 P2 || P1 |A P2 P1 P2
\
s N S | [ TS | S| s | s 1 Ts\T>s
K " 'l
, I I
\
\

’ - \

I \

Y Y M M .M
Block X i






P USCViterbi
Solving Cache Coherency

* If no writes, multiple copies are fine
 Two options: When a block is modified

— Go out and update everyone else’s copy
— Invalidate all other sharers and make them come back to you to get a fresh copy
* “Snooping” caches using invalidation policy is most common

— Caches monitor activity on the bus looking for invalidation messages
— If another cache needs a block you have the latest version of, forward it to mem & others

Coherency using “snooping” & invalidation

P1 wants to writes X, if P2 attempts to
so it first sends read/write x, it will P1 forwards data to
0 P1 & P2 Reads X e “invalidation” over e Now F\’/\}r::tznxsafely e miss, & request the ° to P2 and memory
the bus for all sharers block over the bus at same time
g A~ 5 / T T T "T T T
// 1 $ I/ $ 1
7 \ \ y ! ,
\\N —”1 \\~ —’/ :\\\ //

Invalidatg

block X if

\ you have \\
M t M M M
Block X — — B




i, TS(“Viterbi -«

SpinLocks

Consider a spinlock held by a thread on
P3 (not shown) for a "long time" while
thread 1 and 2 (on P1 and P2) try to

acquire the lock

Continuous invalidation of each other
reduces access to the bus for others
(especially P3 when it tries to release)

P1 wins bus and

P2 now wins bus and P1 now wins bus,

¢ perforrrr]]s "invalidates" P1's invalidates P2 and
0 W?igrr?écgs)écy ?;gga?h) 9 version and writes writes BUSY
BUSY again
Pl P2 Pl P2 Pl P2
T‘\ 7 T T 7
\| $ [/ $ ~ _ ,' $
) / S o - _ - 1
, Invalidate

/

I
\
\

block

@
[->val

School of Engineering

Threadl

void acquire(lock* 1)
{

int val = BUSY;

while( atomic_swap(val, 1->val)
FREE);

Thread?2

P2 now wins bus and

"invalidates" P1's
e version and writes | wish |
BUSY could get
.. thebus!
P1 P2 || P53
$ $ $
E RN
Invalidate

block
@



i, TS(“Viterbi -«

False Sharing

School of Engineering

int x =0;
 Thread-independent (i.e. non- inty =0;
shared) variables allocated on the vold tO 1
. for(int x=ITERS; x > 0; x--);
same cache line "
* (Can cause a large performance J
. void t2() {
degradation due to cache o
while(y == 0);
coherence (invalidates, etc.) printf(“Y was set to 1\n”);
}
False Sharing Example
int x =0;

inty attribute__ ((aligned (64))) = 0;

cache Line | X|Y

T1 T2 Tl T2
Wr. X) | |(Rd. Y)

(Wr.X)| |(Rd.Y)
ET TI <:> ST Ts cache Line | X

Cache Line Y

One solution: Alignment




i, TS(“Viterbi )

School of Engineering

|s Cache Coherency = Atomicity?

* No, cache coherence only serializes writes and does not
serialize entire read-modify-write sequences

— Coherence simply ensures two processors don’t read two different
values of the same memory location

e Consider our sum example ( sum = sum + local_sum; )

0 P1 & P2 both read sum 9 P1 Writes new sum e if P2 Writes X it will get updated line from P1,
invalidating P2 but immediately overwrite it (not required to re-

read anything if not using locks, etc.)

P1 P2 P1 P2 P1 P2

e T e [ 5| 8 $ | [ 5 |

NN M M




MULTIPROCESSOR SCHEDULING



USCViterbi @

School of Engine

Typical Multicore Organization

How do scheduling choices change when we have multiple
processors that can be scheduled at the same time?

Chip Multi-
Processor

QRORONO

L1$

L1$

L1$

This can be a shared bus or a
more complex switched network

L1$

Interconnect (On-Chip Network)

_________________________________________________________

Main Memory




i, TS(“Viterbi

School of Engineering

Scheduler Data Structure Issues

* Allow processor affinity (i.e.
which processor a thread is
schedule on) for threads

— Warm caches vs. cold caches
e Single task queue (or MLFQ) or
one for each processor

— Single queue suffers from
* Locking contention
* Cache coherence

P1 P2

1/ 5 S v~

~ | | ’

-
—~— -
“i—_’

If athread is scheduled on one
core, context switched, and then
scheduled again on another core,

data may need to migrate. This

reduces performance.

P1 P2
} —— - — | —
1] — | —
e TS |
_th
M ]
I | «
MLFQ

Cached copies of the MLFQ data
structure must be kept coherent as
processors modify it.



i, TS(“Viterbi -«

School of Engineering

Scheduler Data Structure Solutions

Each processor can maintain its own
qgueue, reducing lock contention and
cache coherence performance
penalties

— Threads essentially stay "pinned" to a

certain processor

Rebalancing across processor
scheduling queues can be done only
when it is "worth" it

— i.e. When the benefit of being able to
schedule a thread on a different processor
outweighs the cost of the locking and
caching penalties (both for the scheduler
qgueue and thread data)

MLFO

Separate scheduling queues avoids

costly coherence. Migrate threads

(e.g. T1) only when the overhead is
outweighed by the rebalancing.



i, TS(“Viterbi

School of Engineering

Oblivious Thread Scheduling

e Consider a single program written to optimize
performance by breaking work into many parallel
threads

 Knowing the structure of a parallel program can be
crucial to scheduling those threads in such a way as
to achieve optimal performance

e |f the thread scheduler is oblivious to the nature of
the parallel program, performance can be severely
impaired

— The next slide(s) show a few examples



_USCViterbi
Oblivious Scheduling Pitfalls

* Basic problem: Scheduler may treat all threads
equally (i.e. many threads from many processes)

— By not knowing which threads come from what
processes or that thread's role in the overall
program, performance may suffer

* Various parallel program architectures may
exhibit poor performance if threads from the
program are improperly scheduled

— Bulk Synchronous Parallel (BSP): All threads
compute, wait for others to finish computing,
then exchange data for the next computation
period

* Since threads must wait for all others, delaying a single
thread may force all others to wait

— Staged (Producer/Consumer): Each thread
performs one part of the work on an overall task.

* Delaying one can mean others don't have enough useful
work

Time

School of Engineering

Processor 1 Processor 2 Processor 3 Processor 4

00 o

Local Computation

Barrier
Communication >< >< ><
Barrier

Local Computation

Bulk Synchronous Parallel

S S 5

Stage Stage Stage
1 2 3

Staged

(Producer/Consumer)



i, TS(“Viterbi

School of Engineering

More Pitfalls

Time
. Varl-Ol',IS parallel program a'rc.hltectures may
exhibit poor performance if improperly '}
|
scheduled }

— Critical path: Sometimes certain tasks (threads)

are on the critical path of finishing the overall job
while others have more slack on their deadlines Critical Path

e If the critical path threads don't get scheduled the
overall job performance will suffer

— Preemption of a lock holder

* Lock holder is context-switched thus holding off
other threads from the program T1

A\

/7 \
T2 T3




Gang Scheduling

* Gang Scheduling
attempts to schedule (all
of) the threads from one
program on the
processors at the same
time

Assume 1 Progs (PA) with 4 threads and two

unrelated background threads

. Prog. A Bgrd. D . Bgrd. E

Procd

TI-A  T2-A
oy

TI-A  T2-A
oy

Assume a BSP style program. T1-T3 can't run
again until T4 does.

Procl Proc2 Proc3 Proc4
T1-A T2-A T3-A T4-A

T1-A T2-A T3-A T4-A

Gang Scheduling may allow more progress in
the same time window.




— ()5 Viterbi >
Law of Diminishing Returns

* If a project would take 12 hours
alone, does working in a group of
2 mean it will take 6 hours?

Perfectly Parallel

Diminishing
Returns

* Likely not. Communication adds
overhead.

— And a team of 4 will almost
certainly take much longer than 3

Limited Parallelism

Speedup (Times Faster vs. 1 proc.)

hours
* Many parallel programs do not Number of processors
continue to give linear speedup OS:PP 2" Ed. Fig 7.12

gains as you add more and more
processors



i, TS(“Viterbi 2

School of Engineering

Revisiting Gang Scheduling

Assume 2 Progs (PA-PB) each with 4 threads

. Prog. A . Prog. B

e Just because we have 4 processors doesn't
mean we should use 4 threads for a given
program.

Procl Proc2 Proc3 Procd

* Space sharing indicates multiple programs
share the physical processors by using
different subsets

* Thisis in contrast to time sharing where all
processors are used for one program and Time Sharing
then is swapped at the next time quantum Procli | Proc2 | Proc3 | Proca

* We might achieve better throughput (not
response time) for both Prog. A and Prog. B
by only using 2 threads

— Notice here we don't need to context switch!

Space Sharing



ENERGY-AWARE SCHEDULING



i, TS(“Viterbi (9

School of Engineering

Energy vs. Performance Tradeoffs

* Modern HW systems can trade performance
for power consumption (i.e. energy)

— Increase performance (rate of instruction
execution) by consuming more power

— Heterogeneous cores (some high-performance
high power cores and some low-performance low
power cores)

— Powering on or off cores and 1/O devices



i, TS(“Viterbi

School of Engineering

Energy Policies & Scheduling

* On battery powered devices (laptops and phones)
user's can often select an energy policy
— Lower performance and greater battery life
— Better performance and lower battery life
— Or a blend!

e To achieve this blend the scheduler needs to be
involved
— Should | schedule this thread on the high performance,
high power core?

— Would allowing threads from this program to get all the
resources for a few time slices allow the some 1/0 device
to be powered down temporarily?



Basic Approach

* |f the lower performance is below human
perception:
— Then lower performance and save energy

* |f the lower performance is above human
perception:

— Then optimize for performance so the user
doesn't notice any difference

* Long-running and background tasks

— Try to achieve balance taking into account the
available energy (i.e. battery level)



REAL-TIME SCHEDULING



Real-Time Constraints

 Hard and Soft Real-time

— Hard Real-time: Missing a
deadline results in failure (i.e.
no value for the computation)

— Soft Real-time:
Performance/usefulness
degrades if deadlines missed

User-perceived value

* Programs often have
deadlines and scheduler must
do its job trying to meet those
deadlines

Result Valuable

Result Valueless

Response Time (Log Scale)



i, TS(“Viterbi

School of Engineering

Real-Time Scheduling Strategies

* QOver-provisioning

— Ensure the HW is more than needed keep up with the software
workload

— Ensure utilization is never too high

e Scheduling is almost always based on priority
— Highest priority ready thread is chosen

A more abstract scheduling strategy is Earliest Deadline First
(EDF)

— Choose the next thread to run based on the earlier deadline
* Priority donation

— Solves priority inversion by having higher priority tasks that need a
resource held by a low priority task to donate its high priority



- 00000000 USCViterbi .
Scheduling Review 1

e OS:PP 2M Ed. Exercise 7.4

Task Length Arrival Time  FIFO FIFO SJF SJF RR (10) RR (10) FIFO
Completion Response Completion Response Completion Response
Time Time Time Time Time Time

0 85 0

1 30 10

2 35 15

3 20 80

4 50 85

Average: Average: Average:



i, TS(“Viterbi

School of Engineering

Scheduling Review 2

OS:PP 24 Ed. Exercise 7.13

Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms.

Task C: Identical to B but arrives after B, still at time O
Assume O-time context switch, when will each task finish using:

Completion A B C
Time:

FIFO

RR (1 ms)

RR (100 ms)

SIF

MLFQ
(highest priority =
1 ms time slice)



i, TS(“Viterbi

School of Engineering

Scheduling Review 2 Answers

OS:PP 24 Ed. Exercise 7.13

Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms.

Task C: Identical to B but arrives after B, still at time O
Assume O-time context switch, when will each task finish using:

Completion A B C
Time:

FIFO 100 200 300
RR (1 ms) 140 121 122
RR (100 ms) 100 200 22
SIF (on compute) 140 100 102
MLFQ 142 104 106

(highest priority =
1 ms time slice)



QUEUEING THEORY



Motivation

* Queuing theory provides some
mathematical model of a |
scheduling system that will i e
allow us to perform "back of the Queing
envelope" calculations:

— Understand response time as a
function of arrival rate or service
(job execution) time

— Expected queue sizes
— Others



i, TS(“Viterbi

Definitions

* A (lambda) for arrival rate (e.g. 500 jobs/second)
* W (mu) for service rate (e.g. 1000 jobs/second)
e S=1/u=service time

A N M
* W (Wait time) = Time spent waiting in a queuetobe . ..
serviced — [\ >enver
* R =Response time = Total time spent in the system
Queuing
— R=W+5S of Jobs

e U = Utilization = Percent of time the server is busy
— Mp=whenA<pu
— 1=whenA>=p
— May not always want to maximize utilization
X =Throughput (jobs processed per unit time)
— IsX=porA?
— X=AwhenU<1
— X=puwhenU=1
* N = Number of tasks in the system

— Q+ U= Number of waiters + Number of jobs being serviced



i, TS(“Viterbi

School of Engineering

Little's Law

e Stability: WhenA<
— What if A>=p?
* Delay and queue length will grow without bound
* For a stable system (A < p)
— Little's Law says: N = X*R
* Number in the System (Waiters) = Throughput * Response Time
* Since over the long-term, throughput (X) = A
— N =A¥(WH+S) = A¥(W+(1/p)) =A*W + U
* If we expect 100 jobs/second & service time is 5 ms what utilization will
our server run at?
— U=A/u=A*S=100j/s *.005s=0.5
 [f 10,000 jobs arrive per second and experience 100 ms response time,
what is the average number of jobs in the system:
— N=10,000 *.1=1000
— True, regardless of what's inside the system



i, TS(“Viterbi

School of Engineering

Inter-Arrival Times

Much of the performance of a system
depends on the distribution of interarrival
times

Assume A<
— Example:
e A=1000 (1job per1 ms)
e u=2000 (1job per 0.5 ms)
Constant inter-arrival times: If jobs arrived
exactly every 1 ms, what would Q (average
occupancy/length of the queue) be?
— Q=0!1"andR=0.5ms
— So do we not need a queue at all?

()
=
-
3 A<y A>p
S no queuing growing queues
o R=S R undefined
(o)
x S
M

Arrival Rate (A)
X u
g_ Max Throughput
o
[e)
-
2
Lo
|_

H
Arrival Rate (A)
Response Time & Throughput as a

function of A for
CONSTANT INTER-ARRIVAL times




i, TS(“Viterbi

School of Engineering

Bursty Inter-Arrival Times

* Much of the performance of a system

. . . A<y A>U
depends on the interarrival times i il Nt S
& depends on R undefined
e Assume A< M = burstiness
()
— Example: é’
b ival
« A =1000 (1 job per 1 ms) 2 s
* U= 2000 (1 jOb per 0.5 ms) « S evenly spaced arrivals
* Bursty arrival times: But what if all 1000 v
jobs arrived at the t=0 sec. and then Arrival Rate ()
another 1000 jobs at t = 1 sec.
— Q=250 Response Time & Throughput as a
function of A for
— R=250ms BURSTY INTER-ARRIVAL times

* Burstiness always increases response
time



i, TS(“Viterbi

School of Engineering

Modeling Arrivals

* So how should we model arrivals (i.e. inter-arrival
time)

* Model both inter-arrival and service times using
probabilistic distributions.

* Which distribution?

— Uniform

Exponential Distribution
f(x) = he™

— @Gaussian
— Exponential, p(t=x) = Ae™ because it is
memoryless

* Memoryless: likelihood of an event occurring is
independent of how long we've already waited or
what other events have already happened

Probability of x

e Thisis just a model and not all workloads exhibit its
characteristics but many do



i, TS(“Viterbi -«

School of Engineering

Using Exponential Distributions

 Under exponential inter-arrival
and service times the math says:

1
S " 1
-A
1-U ‘uT 'U'_A 100 S
e Example 1: g
N £
— At 20% utilization: A
« R=5/(1-0.2) = 1.255 5 v R=5/1-U)
— At 25% utilization “°
* R= S/(1-025) =1.33S % 0.2 0.4 0.6 0.8 1.0
— 5% increase in U => 8% increase in R Viilization U

 Example 2

— Difference at 90% and 95%

utilization increases R by a factor of
2 (i.e. 100% increase)



- USCViterbi @
What Ifs?

* Currently we are using FIFO scheduling; would other policies
work better?

— For exponential service times, FIFO works as well as RR because expected
service time remaining is independent of what's already there, you are better
off finishing current jobs first

— So what about non-exponential distributions for service time?

— Many workloads for serving web pages and tasks in an OS are more bursty
and exhibit so called heavy-tailed distributions
More long tasks and more shorter tasks thus SJF and RR performs better than FIFO
— SJFis good, except it can greatly increase average response time at high
utilization
e Why?

 Multiple servers: single queue or multiple queues
— If multiple queues, the response time curve depends on arrivals to that queue

— If single queue, response time is always better (likelihood of being queued
behind a large task is much less)



OVERLOAD MANAGEMENT



Overload Management

 What if burstiness causes a period where A >
— If you use RR what will happen?

 Sometime to give good service to some you must reject
others

* What do we do when overload occurs?
— Drop jobs
— Decrease service (throttle download bandwidth, disable certain
features)

* Algorithms should be designed with overload in mind as many
default applications will actually do MORE work under heavy
loads

— Caches under heavy load (thrashing)

— Naive network protocols for resending packets when they don't reach
the sender (they might have been dropped for a reason!)



