
1

CSCI 350
Ch. 7 – Scheduling

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Overview

• Which thread should be selected to run on
the processor(s) to yield good performance?

• Does it even matter?

– Does the common case of low CPU utilization
mean scheduling doesn't matter since the CPU
is free more often that it is needed

– Yes in certain circumstances!
• Scheduling matters at high utilization (bursts of heavy

usage)

• Google and Amazon estimate they lose approximately
5-10% of their customers if their response time
increases by as little as 100 ms (OS:PP 2nd Ed., p. 314)

– When do you care about scheduling at the
grocery store checkout…at 6 a.m. or 5 p.m.

• Many OS scheduling concepts are applicable
in other applications: web servers, network
routing, etc.

“The Case for Energy-Proportional

Computing”, Luiz André Barroso, Urs Hölzle,

IEEE Computer, vol. 40 (2007).

http://research.google.com/pubs/LuizBarroso.html
http://research.google.com/pubs/author79.html

3

Choices

• Under heavy utilization important choices must be
made

– Should you turn away some users so others experience
reasonable response times?

• If so, which users should you turn away?

– How much benefit would additional resources have?
• In most cloud providers, you can dynamically reprovision (i.e. spin

up more servers on the fly)

– Can you predict the degradation if the number of requests
doubles?

• Might it be worth it to switch scheduling strategies on the fly?

– Do insights into the context and kind of requests matter?
• Denial-of-service attack?

4

Terminology

• Task (job): A user request

• Workload: The mix (type) of tasks and their arrival time
– Compute bound: Processor resources impose a bound on performance

– I/O bound: I/O delay imposes a bound on performance

• Response Time (delay): Time from when the user submits the task until
the user experiences its completion

• Throughput: Rate at which tasks are completed

• Predictability: Low variance in response times of repeated requests

• Scheduling overhead: The time to switch from one task to the next

• Fairness: Equality in the number and timeliness of resources allocated to
a task

• Starvation: Lack of progress of a task due to resources given to another
(higher-priority) task

5

Uniprocessors

• Let's start with a simple uniprocessor system
assuming:

– Preemptive multitasking: OS can switch thread at its
discretion

– Work-conserving: If a task is ready, the OS will not leave
the processor idle (in preparation for some future event)

• Possible scheduling algorithms:

– FIFO (FCFS = First come first serve)

– SJF (Shortest Job First)

– Time-sliced Round-robin

6

FIFO

• Under FIFO, the job that arrives first
runs to completion

• Avoids overhead increasing
throughput

– Optimal since least possible overhead of
context switching

• Maintains a simple queue

• Is it fair?

– In one sense, yes.

– But worst-case response times may
result if long running job arrives
before the short ones (grocery
store)

• If jobs are all of equal size, then it
can be optimal

40

5

T0

T1 arrives

T2-5 arrives

T1

T2

5

5

5

T3

T4

T5

Workload 1 (Avg. Resp. time =

(40+45+50+55+60)/5 = 50

5

5

T0

T1-5 arrives

T1

T2

5

5

5

T3

T4

T5

Workload 2 (Avg. Resp. time =

(5 + 10 + 15 + 20 + 25)/5 = 15

7

Shortest Job First (SJF)

• Requires prior knowledge of length of
task

– Impossible?

• Uses some form of priority queue to
determine next job to run (i.e. shortest
duration)

• It is preemptive!
– If a shorter job arrives during execution of

another, SJF will context switch and run it

– Thus, it is actually Shortest Remaining Job First

• Provides optimal average response time

• Provides worst-case variance in response
time

– A shorter job can always come in and "cut" in
front of a waiting task (i.e. starvation)

• Can you game the SJF system if you are a
long task?

40

5

T0

T1 arrives

T2-5 arrives

T1

T2

5

5

5

T3

T4

T5

Workload 1 (Avg. Resp. time =

(5+10+15+20+60)/5 = 22

8

5

T0

T1 arrives

T2-5 arrives

T1

T2

5

5

5

T3

T4

T5

5T6

40

32

T6 arrives

8

Round Robin

• Execute each task for a given time
quantum and then preempt

– No more starvation

• How to choose the time quantum
– To short, overhead goes up due to excessive

context switches (also consider caching effects
when switching often)

– To long, response times suffer (see bottom
graphic)

• FIFO and SJF can be thought of as special
cases of RR

– FIFO (RR with time quantum = inf.)

– SJF (approx. RR with time quantum = epsilon)
• Assume 0 overhead switch, set epsilon to 1 instruc.

• Within a factor of n if n schedulable tasks

• Predictable though higher response
times

– Why?

5

T0

T1 arrives

T2-5 arrives

T1

T2

5

5

5

T3

T4

T5

Time quantum = 5 ms

Avg. Resp. time = (60+10+15+20+25)/5 = 26

5 35

5

T0

T1

T2

5

5

5

T3

T4

T5

Time quantum = 20 ms

Avg. Resp. time = (60+25+30+35+40)/5 = 38

20 20

9

Round-Robin On Equal Size Tasks

• Poor effect on response time but low
variability

– Consider a server streaming multiple videos

10

Mixed Workloads
• All examples thus far have been compute bound (i.e. tasks are able to use the

processor for their entire time quantum)

• Under mixed workloads (some I/O and some compute bound tasks) issues of
fairness arise even in round-robin

• Consider an I/O bound process in the presence of two other compute bound tasks
(compute for full 100 ms of their time quanta)

– I/O process starts a 10 ms disk read, compute briefly (1 ms) and then blocks, yielding its time slice

– Recall, we assume work-conserving so we won't just idle waiting for the disk to finish

11

Max-Min Fairness

• Idea: Give priority to processes that aren't using
their fair share of resources

• Note: max-min is not necessarily on top of round-
robin

• Max-min: Maximize (responsiveness to) the
minimum request

– If any task needs less than its fair share, give the
smallest (minimum) its full (maximum) request (i.e.
schedule)

– Split the remaining time among the N-1 other
requests using the above technique (i.e. recursively)

– If all tasks need more than an equal share, split
evenly and round-robin

• Max-min Approximation: Give priority to task
that has received the least processor time

• Originally used/proposed for network link
utilization (a short download in the face of a long one)

Consider 4 programs:
• P1 wants 10% of processor's time
• P2 wants 20% of processor's time
• P3 and P4 each would want 50% of the

processor's time on their own.

Fair share would be 25% each

1. Since P1 is minimum and wants < 25% we'll
always schedule it (maximize it) when it is
available in the ready list

2. We now have 90% of the processor we can
split 3 ways (i.e. fair share is now 30%)

3. We recurse and give P2 it's 20% (scheduling
it when it's available but P1 isn't).

4. We split the remaining 70% between P3
and P4 (35% each) using round-robin as
needed

Example

12

MLFQ

• Multi-Level Feedback Queue

– Implemented by most modern OSs

• Unix, Linux, Windows (w/ some variation), Mac OSX?

– Like round-robin but with multiple queues of
different priority

• Goals: Reasonable compromise to achieve:

– Response time, Low overhead, No-starvation,
fairness, de-prioritize background tasks

– A compromise to achieve similar results as max-
min fairness

13

MLFQ Rules
• Multiple queues with different priorities

– Higher priority queues => Smaller time quantum

– Lower priority queues => Larger time quantum

• Rules:

– Rule 1: Higher priority always runs, preempting lower
priority tasks

– Rule 2: RR within same priority

– Rule 3: All threads start at highest priority

– Rule 4a: If thread uses up quantum, reduce priority (i.e.
move to lower priority queue)

– Rule 4b: If thread gives up processor, stays at same level
• Alternative: once total quantum is taken up, demote

• Shorter tasks finish quickly; I/O bound tasks get priority

– Rule 5: After some time S, move threads back to highest
priority

• Avoids starvation

• Uses recent past to predict future

Key Idea: We can't predict the
length of a job so assume it is short
and then demote it the longer it
runs.

14

MLFQ Examples

Refer to the source of these images for a nice writeup:

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 1: A long running job

– Starts at high priority and
migrates to lower priority with
longer time slices

• Example 2: A short job arrives
during execution of the long
running job

– Preempts long job and may
complete before it reaches Q0

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

15

MLFQ Examples

Refer to the source of these images for a nice writeup:

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 3: I/O bound job
and compute bound job

– I/O bound job preempts
compute-bound job

– Any issue with this scheme?

• Example 4: Intermittent
priority boosts to avoid
starvation

– Helps if a compute-bound
job transitions to become
interactive (I/O-bound)

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

16

MLFQ Examples

Refer to the source of these images for a nice writeup:

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

• Example 5: Change Rule 4
to avoid gaming the system

– Consider a program that
"sleeps" for 1 ms after
computing for 99 ms

– Rule 4b: If thread gives up
processor, stays at same level

– New Rule 4: Once total
quantum is taken up (over
several context switches),
demote

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

17

MULTIPROCESSOR PERFORMANCE

Effects of caching, false sharing, etc.

18

Cache Coherency
• Most multi-core processors are shared memory systems where

each processor has its own cache

• Problem: Multiple cached copies of same memory block
– Each processor can get their own copy, change it, and perform

calculations on their own different values…INCOHERENT!

• Solution: Snoopy caches…

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 Writes X

if P2 Reads X it

will be using a

“stale” value of X 4b

if P2 Writes X we

now have two

versions. How do we

reconcile them?

Example of incoherence

19

Snoopy or Snoopy

20

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options: When a block is modified
– Go out and update everyone else’s copy

– Invalidate all other sharers and make them come back to you to get a fresh copy

• “Snooping” caches using invalidation policy is most common
– Caches monitor activity on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X,

so it first sends

“invalidation” over

the bus for all sharers

Now P1 can safely

write X 4

if P2 attempts to

read/write x, it will

miss, & request the

block over the bus

Coherency using “snooping” & invalidation

Invalidate

block X if

you have

it

Block X

5

P1

$

P2

$

M

P1 forwards data to

to P2 and memory

at same time

21

SpinLocks
• Consider a spinlock held by a thread on

P3 (not shown) for a "long time" while
thread 1 and 2 (on P1 and P2) try to
acquire the lock

• Continuous invalidation of each other
reduces access to the bus for others
(especially P3 when it tries to release)

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3

P1 wins bus and

performs

atomic_exchange,

writing BUSY (again)

P2 now wins bus and

"invalidates" P1's

version and writes

BUSY

P1 now wins bus,

invalidates P2 and

writes BUSY

again

Invalidate

block

l->val

void acquire(lock* l)
{

int val = BUSY;
while(atomic_swap(val, l->val)

== FREE);
}

Thread1

Thread2

P1

$

P2

$

M

4

P2 now wins bus and

"invalidates" P1's

version and writes

BUSY

Invalidate

block

…

P3

$

I wish I
could get
the bus!

22

False Sharing

• Thread-independent (i.e. non-
shared) variables allocated on the
same cache line

• Can cause a large performance
degradation due to cache
coherence (invalidates, etc.)

int x = 0;

int y = 0;

void t1() {

for(int x=ITERS; x > 0; x--);

y = 1;

}

void t2() {

while(y == 0);

printf(“Y was set to 1\n”);

}

T1

(Wr. X)

$

T2

(Rd. Y)

$

XCache Line Y

E I

T1

(Wr. X)

$

T2

(Rd. Y)

$
S S

YCache Line

XCache Line

int x = 0;

int y __attribute__ ((aligned (64))) = 0;

…

False Sharing Example

One solution: Alignment

23

Is Cache Coherency = Atomicity?

• No, cache coherence only serializes writes and does not
serialize entire read-modify-write sequences
– Coherence simply ensures two processors don’t read two different

values of the same memory location

• Consider our sum example (sum = sum + local_sum;)

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 both read sum P1 Writes new sum

invalidating P2

if P2 Writes X it will get updated line from P1,

but immediately overwrite it (not required to re-

read anything if not using locks, etc.)

24

MULTIPROCESSOR SCHEDULING

25

Typical Multicore Organization

• How do scheduling choices change when we have multiple
processors that can be scheduled at the same time?

L1 $

Main Memory

P

Shared L2

Cache

Interconnect (On-Chip Network)

L1 $

P

L1 $

P

L1 $

P
This can be a shared bus or a

more complex switched network

Chip Multi-

Processor

26

Scheduler Data Structure Issues

• Allow processor affinity (i.e.
which processor a thread is
schedule on) for threads

– Warm caches vs. cold caches

• Single task queue (or MLFQ) or
one for each processor

– Single queue suffers from

• Locking contention

• Cache coherence

P1

$

P2

$

M

If a thread is scheduled on one

core, context switched, and then

scheduled again on another core,

data may need to migrate. This

reduces performance.

P1

$

P2

$

M

MLFQ

Cached copies of the MLFQ data

structure must be kept coherent as

processors modify it.

27

Scheduler Data Structure Solutions

• Each processor can maintain its own
queue, reducing lock contention and
cache coherence performance
penalties
– Threads essentially stay "pinned" to a

certain processor

• Rebalancing across processor
scheduling queues can be done only
when it is "worth" it
– i.e. When the benefit of being able to

schedule a thread on a different processor
outweighs the cost of the locking and
caching penalties (both for the scheduler
queue and thread data)

P1

$

P2

$

M

MLFQ

Separate scheduling queues avoids

costly coherence. Migrate threads

(e.g. T1) only when the overhead is

outweighed by the rebalancing.

T1

28

Oblivious Thread Scheduling

• Consider a single program written to optimize
performance by breaking work into many parallel
threads

• Knowing the structure of a parallel program can be
crucial to scheduling those threads in such a way as
to achieve optimal performance

• If the thread scheduler is oblivious to the nature of
the parallel program, performance can be severely
impaired

– The next slide(s) show a few examples

29

Oblivious Scheduling Pitfalls

• Basic problem: Scheduler may treat all threads
equally (i.e. many threads from many processes)

– By not knowing which threads come from what
processes or that thread's role in the overall
program, performance may suffer

• Various parallel program architectures may
exhibit poor performance if threads from the
program are improperly scheduled

– Bulk Synchronous Parallel (BSP): All threads
compute, wait for others to finish computing,
then exchange data for the next computation
period

• Since threads must wait for all others, delaying a single
thread may force all others to wait

– Staged (Producer/Consumer): Each thread
performs one part of the work on an overall task.

• Delaying one can mean others don't have enough useful
work

Stage

1

Stage

2

Stage

3

Bulk Synchronous Parallel

Staged

(Producer/Consumer)

30

More Pitfalls

• Various parallel program architectures may
exhibit poor performance if improperly
scheduled

– Critical path: Sometimes certain tasks (threads)
are on the critical path of finishing the overall job
while others have more slack on their deadlines

• If the critical path threads don't get scheduled the
overall job performance will suffer

– Preemption of a lock holder

• Lock holder is context-switched thus holding off
other threads from the program T1

T2 T3

Critical Path

Time

31

Gang Scheduling

• Gang Scheduling
attempts to schedule (all
of) the threads from one
program on the
processors at the same
time

Prog. A

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A

T4-A X X

T1-A T2-A T3-A

T4-A X X

Assume 1 Progs (PA) with 4 threads and two

unrelated background threads

Bgrd. D Bgrd. E

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A T4-A

T1-A T2-A T3-A T4-A

T1-A T2-A

T3-A T4-A

Assume a BSP style program. T1-T3 can't run

again until T4 does.

Gang Scheduling may allow more progress in

the same time window.

32

Law of Diminishing Returns

• If a project would take 12 hours
alone, does working in a group of
2 mean it will take 6 hours?

• Likely not. Communication adds
overhead.
– And a team of 4 will almost

certainly take much longer than 3
hours

• Many parallel programs do not
continue to give linear speedup
gains as you add more and more
processors

S
p

e
e

d
u

p
 (

T
im

e
s

 F
a

s
te

r
v
s

.
1

 p
ro

c
.)

Number of processors

Perfectly Parallel

Diminishing

Returns

Limited Parallelism

OS:PP 2nd Ed. Fig 7.12

33

Revisiting Gang Scheduling

• Just because we have 4 processors doesn't
mean we should use 4 threads for a given
program.

• Space sharing indicates multiple programs
share the physical processors by using
different subsets

• This is in contrast to time sharing where all
processors are used for one program and
then is swapped at the next time quantum

• We might achieve better throughput (not
response time) for both Prog. A and Prog. B
by only using 2 threads

– Notice here we don't need to context switch!

Prog. A

Assume 2 Progs (PA-PB) each with 4 threads

Prog. B

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T3-A T4-A

T1-B T2-B T3-B T4-B

T1-A T2-A T3-A T4-A

T1-B T2-B T3-B T4-B

Proc1 Proc2 Proc3 Proc4

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

T1-A T2-A T1-B T2-B

Time Sharing

Space Sharing

34

ENERGY-AWARE SCHEDULING

35

Energy vs. Performance Tradeoffs

• Modern HW systems can trade performance
for power consumption (i.e. energy)

– Increase performance (rate of instruction
execution) by consuming more power

– Heterogeneous cores (some high-performance
high power cores and some low-performance low
power cores)

– Powering on or off cores and I/O devices

36

Energy Policies & Scheduling

• On battery powered devices (laptops and phones)
user's can often select an energy policy

– Lower performance and greater battery life

– Better performance and lower battery life

– Or a blend!

• To achieve this blend the scheduler needs to be
involved

– Should I schedule this thread on the high performance,
high power core?

– Would allowing threads from this program to get all the
resources for a few time slices allow the some I/O device
to be powered down temporarily?

37

Basic Approach

• If the lower performance is below human
perception:

– Then lower performance and save energy

• If the lower performance is above human
perception:

– Then optimize for performance so the user
doesn't notice any difference

• Long-running and background tasks

– Try to achieve balance taking into account the
available energy (i.e. battery level)

38

REAL-TIME SCHEDULING

39

Real-Time Constraints

• Hard and Soft Real-time

– Hard Real-time: Missing a
deadline results in failure (i.e.
no value for the computation)

– Soft Real-time:
Performance/usefulness
degrades if deadlines missed

• Programs often have
deadlines and scheduler must
do its job trying to meet those
deadlines

40

Real-Time Scheduling Strategies

• Over-provisioning
– Ensure the HW is more than needed keep up with the software

workload

– Ensure utilization is never too high

• Scheduling is almost always based on priority
– Highest priority ready thread is chosen

• A more abstract scheduling strategy is Earliest Deadline First
(EDF)
– Choose the next thread to run based on the earlier deadline

• Priority donation
– Solves priority inversion by having higher priority tasks that need a

resource held by a low priority task to donate its high priority

41

Scheduling Review 1

• OS:PP 2nd Ed. Exercise 7.4
Task Length Arrival Time FIFO

Completion
Time

FIFO
Response
Time

SJF
Completion
Time

SJF
Response
Time

RR (10)
Completion
Time

RR (10) FIFO
Response
Time

0 85 0

1 30 10

2 35 15

3 20 80

4 50 85

Average: Average: Average:

42

Scheduling Review 2

• OS:PP 2nd Ed. Exercise 7.13

– Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

– Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms.

– Task C: Identical to B but arrives after B, still at time 0

– Assume 0-time context switch, when will each task finish using:

Completion
Time:

A B C

FIFO

RR (1 ms)

RR (100 ms)

SJF

MLFQ
(highest priority =
1 ms time slice)

43

Scheduling Review 2 Answers

• OS:PP 2nd Ed. Exercise 7.13

– Task A: Arrives first at time 0, and uses the CPU for 100 ms before finishing

– Task B: Arrives shortly after A, still at time 0. Task B loops ten times; for each
iteration of the loop B uses the CPU for 2ms and then it does I/O for 8ms.

– Task C: Identical to B but arrives after B, still at time 0

– Assume 0-time context switch, when will each task finish using:

Completion
Time:

A B C

FIFO 100 200 300

RR (1 ms) 140 121 122

RR (100 ms) 100 200 22

SJF (on compute) 140 100 102

MLFQ
(highest priority =
1 ms time slice)

142 104 106

44

QUEUEING THEORY

45

Motivation

• Queuing theory provides some
mathematical model of a
scheduling system that will
allow us to perform "back of the
envelope" calculations:

– Understand response time as a
function of arrival rate or service
(job execution) time

– Expected queue sizes

– Others

Server

Queuing

of Jobs

Arrivals

46

Definitions
• λ (lambda) for arrival rate (e.g. 500 jobs/second)

• μ (mu) for service rate (e.g. 1000 jobs/second)

• S = 1/μ = service time

• W (Wait time) = Time spent waiting in a queue to be
serviced

• R = Response time = Total time spent in the system
– R = W + S

• U = Utilization = Percent of time the server is busy
– λ/μ = when λ < μ

– 1 = when λ >= μ

– May not always want to maximize utilization

• X = Throughput (jobs processed per unit time)
– Is X = μ or λ?

– X = λ when U < 1

– X = μ when U = 1

• N = Number of tasks in the system
– Q + U = Number of waiters + Number of jobs being serviced

Server

Queuing

of Jobs

Arrivals

λ μN

47

Little's Law

• Stability: When λ < μ

– What if λ >= μ?

• Delay and queue length will grow without bound

• For a stable system (λ < μ)

– Little's Law says: N = X*R

• Number in the System (Waiters) = Throughput * Response Time

• Since over the long-term, throughput (X) = λ

– N = λ*(W+S) = λ*(W+(1/μ)) = λ*W + U

• If we expect 100 jobs/second & service time is 5 ms what utilization will
our server run at?

– U = λ / μ = λ * S = 100 j/s * .005s = 0.5

• If 10,000 jobs arrive per second and experience 100 ms response time,
what is the average number of jobs in the system:

– N = 10,000 * .1 = 1000

– True, regardless of what's inside the system

48

Inter-Arrival Times

• Much of the performance of a system
depends on the distribution of interarrival
times

• Assume λ < μ

– Example:

• λ = 1000 (1 job per 1 ms)

• μ = 2000 (1 job per 0.5 ms)

• Constant inter-arrival times: If jobs arrived
exactly every 1 ms, what would Q (average
occupancy/length of the queue) be?

– Q = 0 !! and R = 0.5 ms

– So do we not need a queue at all?

Response Time & Throughput as a

function of λ for

CONSTANT INTER-ARRIVAL times

49

Bursty Inter-Arrival Times

• Much of the performance of a system
depends on the interarrival times

• Assume λ < μ

– Example:

• λ = 1000 (1 job per 1 ms)

• μ = 2000 (1 job per 0.5 ms)

• Bursty arrival times: But what if all 1000
jobs arrived at the t=0 sec. and then
another 1000 jobs at t = 1 sec.

– Q ≈ 250

– R ≈ 250 ms

• Burstiness always increases response
time

Response Time & Throughput as a

function of λ for

BURSTY INTER-ARRIVAL times

50

Modeling Arrivals

• So how should we model arrivals (i.e. inter-arrival
time)

• Model both inter-arrival and service times using
probabilistic distributions.

• Which distribution?

– Uniform

– Gaussian

– Exponential, p(t=x) = λe-λx because it is
memoryless

• Memoryless: likelihood of an event occurring is
independent of how long we've already waited or
what other events have already happened

• This is just a model and not all workloads exhibit its
characteristics but many do

51

Using Exponential Distributions

• Under exponential inter-arrival
and service times the math says:

– 𝑅 =
𝑆

1−𝑈
=

1

𝜇

𝜇−𝜆

𝜇

=
1

𝜇−𝜆

• Example 1 :
– At 20% utilization:

• R = S/(1-0.2) = 1.25S

– At 25% utilization
• R = S/(1-0.25) = 1.33S

– 5% increase in U => 8% increase in R

• Example 2
– Difference at 90% and 95%

utilization increases R by a factor of
2 (i.e. 100% increase)

52

What Ifs?

• Currently we are using FIFO scheduling; would other policies
work better?
– For exponential service times, FIFO works as well as RR because expected

service time remaining is independent of what's already there, you are better
off finishing current jobs first

– So what about non-exponential distributions for service time?

– Many workloads for serving web pages and tasks in an OS are more bursty
and exhibit so called heavy-tailed distributions

• More long tasks and more shorter tasks thus SJF and RR performs better than FIFO

– SJF is good, except it can greatly increase average response time at high
utilization

• Why?

• Multiple servers: single queue or multiple queues
– If multiple queues, the response time curve depends on arrivals to that queue

– If single queue, response time is always better (likelihood of being queued
behind a large task is much less)

53

OVERLOAD MANAGEMENT

54

Overload Management

• What if burstiness causes a period where λ > μ
– If you use RR what will happen?

• Sometime to give good service to some you must reject
others

• What do we do when overload occurs?
– Drop jobs

– Decrease service (throttle download bandwidth, disable certain
features)

• Algorithms should be designed with overload in mind as many
default applications will actually do MORE work under heavy
loads
– Caches under heavy load (thrashing)

– Naïve network protocols for resending packets when they don't reach
the sender (they might have been dropped for a reason!)

