
1

CSCI 350
Ch. 6 – Multi-Object Synchronization

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Overview

• Synchronizing a single shared object is not TOO hard

• Sometimes shared objects depend on others or require
multiple resources each with their own lock

• When multiple locks become involved, new problems arise
and reasoning about the system becomes more difficult

• In general, we need to be concerned about:
– Safety/correctness: Ensure that atomicity is maintained correctly

– Multiprocessor performance: Efficient performance is crucial for
multiprocessors, especially because of cache effects

– Liveness: Ensure that deadlock, livelock and starvation do NOT
happen
• Deadlock: No thread can run

• Livelock: Threads can run but cannot make progress

• Starvation: Some thread is consistently denied access to needed resources
(deadlock implies starvation but starvation does not imply deadlock)

3

REVIEW OF CACHING &
CONTENTION AND OTHER
BACKGROUND MATERIAL

Effects of caching, false sharing, etc.

4

Cache Coherency
• Most multi-core processors are shared memory systems where

each processor has its own cache

• Problem: Multiple cached copies of same memory block
– Each processor can get their own copy, change it, and perform

calculations on their own different values…INCOHERENT!

• Solution: Snoopy caches…

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 Writes X

if P2 Reads X it

will be using a

“stale” value of X 4b

if P2 Writes X we

now have two

versions. How do we

reconcile them?

Example of incoherence

5

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options: When a block is modified
– Go out and update everyone else’s copy

– Invalidate all other sharers and make them come back to you to get a fresh copy

• “Snooping” caches using invalidation policy is most common
– Caches monitor activity on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X,

so it first sends

“invalidation” over

the bus for all sharers

Now P1 can safely

write X 4

if P2 attempts to

read/write x, it will

miss, & request the

block over the bus

Coherency using “snooping” & invalidation

Invalidate

block X if

you have

it

Block X

5

P1

$

P2

$

M

P1 forwards data to

to P2 and memory

at same time

6

Lock Contention (Spinlocks)
• Consider a spinlock held by a thread on

P3 (not shown) for a "long time" while
thread 1 and 2 (on P1 and P2) try to
acquire the lock

• Continuous invalidation of each other
reduces access to the bus for others
(especially P3 when it tries to release)

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3

P1 wins bus and

performs

atomic_exchange,

writing BUSY (again)

P2 now wins bus and

"invalidates" P1's

version and writes

BUSY

P1 now wins bus,

invalidates P2 and

writes BUSY

again

Invalidate

block

l->val

void acquire(lock* l)
{
int val = BUSY;
while(atomic_swap(

val, l->val)
== FREE);

}

Thread1

Thread2

P1

$

P2

$

M

4

P2 now wins bus and

"invalidates" P1's

version and writes

BUSY

Invalidate

block

…

7

Is Cache Coherency = Atomicity?

• No, cache coherence only serializes writes and does not
serialize entire read-modify-write sequences
– Coherence simply ensures two processors don’t read two different

values of the same memory location

• Consider our sum example (sum = sum + 1;)

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 both read sum P1 Writes new sum

invalidating P2

if P2 Writes X it will get updated line from P1,

but immediately overwrite it (not required to re-

read anything if not using locks, etc.)

8

Amdahl’s Law

• Where should we put our effort when trying to
enhance performance of a program

• Amdahl’s Law => How much performance gain do we
get by improving only a part of the whole

tFactorImprovemen

fectedExecTimeAf
affectedExecTimeUnwExecTimeNe

tFactorImprovemen

Percent
Percent

wExecTimeNe

dExecTimeOl
Speedup

Affected

Unaffected

1

9

Amdahl’s Law

• Holds for both HW and SW

– HW: Which instructions should
we make fast? The most used
(executed) ones

– SW: Which portions of our
program should we work to
optimize

• Holds for parallelization of
algorithms (converting code to
run multiple processors)

Original Sequential

Program

Parallelized Program

10

Parallelization Example

• A programmer parallelizes a function in her program to be run
on 8 cores. The function accounted for 40% of the runtime of
the overall program. What is the overall speedup of this
enhancement?

Speedup

11

FINE-GRAINED LOCKING

12

Locks and Contention

• The more threads compete for a
lock the slower performance will be
– Continuous sequence of invalidate, get

exclusive access for ‘tsl’ or ‘cas’, check
lock, see it is already taken, repeat

• Options
– Use queueing locks

• Go to sleep if lock is not available

– Lock Granularity: Use locks for "pieces"
of a data structure rather than the one
lock for the whole structure

– Others that you can explore as
needed…

Example: Fig. 6.1 OS:PP

2nd Ed.

1 thread, 1 array 51.2

2 threads, 2 arrays 52.5

2 threads, 1 array 197.4

2 threads, 1 array
(even/odd)

127.3

0 0 0 0 0…

0 1 2 3 n-1

13

Hashtable Example
• Consider a shared data-structure like a hashtable

(using chaining) supporting insert, remove, and
find/lookup
– We could protect concurrent access with one master

lock for the whole data structure

– This limits concurrency/performance

– Consider an application where requests spend 20% of
their time looking up data in a hash table. We can add
N processors to serve requests in parallel but all
requests must access the 1 hash table. What speedup
can we achieve? How many processors should we use?
• Even if we get rid of the other 80% of the access time we can at

most achieve a 5x speedup since 20% of the time must be spent
performing sequential work

0

1

2

3

4

…

key, value
Array of Linked

Lists

14

Fine Grained Locking Example

• However, remember keys hash to one chain
where we will perform the
insert/remove/find
– We could consider one lock per chain so that

operations that hash to a different chain can be
performed in parallel

– This is known as fine-grained locking

• But what if we need to resize the table and
rehash all items? What do we have to do?

• One solution:
– A Reader/Writer lock for the whole table and

then fine-grained locks per chain

– To resize, we acquire a writer lock on the
hashtable

0

1

2

3

4

…

key, value
Array of Linked

Lists

15

Other Ideas

• Separate/replicate data structures on each processor
– Web server's cache of webpages

• Object ownership
– Objects are queued for processing and whichever thread dequeues the

object assumes exclusive access

– Queue becomes the point of synchronization, not the object

• Staged Architecture (More general ownership pattern)
– Shared state is private to the stage (and only the worker threads in that

stage contend for it)

– Messages/object passed between stages via queues

Network Parse Render

Ownership Pattern Staged Arch.

Agent
1

Agent
2

Agent
3

16

General Advice

• Premature optimization: Avoid the temptation
of writing the most fine-grained locks to begin
with.

– "It is easier to go from a working system to a
working, fast system than to go from a fast system
to a fast, working system".

– Early versions of Linux used to have one big kernel
lock (BKL), but over the years more and more fine-
grained locking has been introduced.

17

REDUCING LOCK CONTENTION

18

Recall
• Consider a spinlock held by a thread on Px (not

shown) while n other threads spin on the lock,
trying to get exclusive access to the bus, and
invalidating everyone else

• When Px wants to release the lock it is just 1 of
the n threads contending for the bus
– Potentially requires O(n) time to release

Pi

$

Pj

$

M

void acquire(lock* l)
{
int val = BUSY;
while(atomic_swap(

val, l->val)
== FREE);

}

Px

$

I'd like to set the

lock to free, but I

have to get in line

for the bus

P1

$

19

MCS Locks

• Mellor-Crummey and Scott

• Better performance when MANY contenders

– Main idea: Have each thread spin on a "different" piece of
memory (to avoid cache coherency issues)

– Create a new entry in a queue each with a different "flag"
variable to spin on

– When a thread releases the lock it will set the next
thread's flag (i.e. flag in the queue's head item) causing
that thread to "acquire" the lock

• Requires atomic update to tail/next pointer of the
queue

– Using a compare_and_swap atomic instruction

20

Illustration of MCS Locks

See OS:PP 2nd Ed. Fig. 6.3 for code implementation

// atomic compare and swap
bool cas(T* ptr, T oldval, T newval);

void addToSpinList(MCSLock* l)
{
Item* n = new Item;
n->next = NIL;
n->needToWait = true;
// empty list case
if(! cas(&l->tail, NIL, n)) {

// non-empty case
while(! cas(&l->tail->next, NIL, n));

}
else { n->needToWait = false; }

}

21

RCU Locks

• Read-Copy-Update Locks
– An optimized Reader/Writer lock (optimizing the reader case)

– Readers can be concurrent with at most 1 writer

• Important: Can be writing during read

– Writer creates a new "version" (updated copy) of the data, publishing
the new version in an atomic compare_and_swap (usually a pointer
update)

• Concurrent readers will see a coherent version of the data, either old or
new version (but not some mixture)

– Once all readers that were looking at the old version finish, the old
version can be deleted
• Time from when the new data is published until the old version is deleted is known

as the grace period

• Uses information from the thread scheduler to know when readers of the old data
are done (requires integration with the thread scheduler).

• Used in Linux kernel and Java

22

Illustration of RCU Locks

Object

ptr Old
State

New
State

On publish

Old Readers

New Readers

Object

ptr Old
State

New
State

On publish

After last reader

New Readers

• Readers interrupt/check-in upon read

completion or once per grace period

• Grace period ends when all "check-ins"

have been received

• No check-in => still reading

http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf

23

MULTIOBJECT SYNCHRONIZATION

24

Multiobject Synchronization

• RMW cycle involving multiple
objects

– A change in object1 necessitates a
change in object2

• Consider a payment service like
PayPalTM

– Transaction of transfer funds from
account1 to account2

– Several transactions may occur on
an account at the same time
• I could pay someone else at the

same time a friend pays me

Object1

Object2

Acct1

Acct2

Xfer

25

Options

• 1 lock for all accounts

– Linux's BKL

– Limits Parallelism

• Fine-grained locking strategy

– 1 lock per object / owner

– Note: When multiple locks need to
be held, deadlock may be a
concern

– Let's explore this option more

• Lock-free approaches

– See later in the slides

void transact(
Acct* from, Acct* to, int amount)

{
from->lock->acquire();
to->lock->acquire();

from->deduct(amount);
to->credit(amount);

to->lock->release();
from->lock->release();

}

void transact(
Acct* from, Acct* to, int amount)

{
allAccountsLock->acquire();

from->deduct(amount);
to->credit(amount);

allAccountsLock->release();
}

26

Serializability
• (Def.) The result of any program execution

(of concurrent transactions) is equivalent
to an execution in which transactions are
processed one at a time in some order.

• Example
– Assume each person starts with $100

– XACT1: Bob pays Alice $20
• R11(Bob),R12 (Alice),W13(Bob),W14(Alice)

– XACT2: Bob deposits $50
• R21(Bob),W22(Bob)

– Non-serial ordering
• R11,R21,W22,R12,W13,W14 => Bob ends with $80

– Proper locking is meant to ensure
serializability on shared data

Concurrent

transactions

Time

XACT1

XACT2

XACT3

One possible

serialization

Time

XACT1

XACT2

XACT3

Another possible

serialization

Time

XACT1

XACT2

XACT3

https://courses.cs.washington.edu/courses/cse344/11au/lectures/lecture19-transactions.txt

http://www.cburch.com/cs/340/reading/serial/
Non-serial Time

XA

XACT2

XACT3

CT1

https://courses.cs.washington.edu/courses/cse344/11au/lectures/lecture19-transactions.txt
http://www.cburch.com/cs/340/reading/serial/

27

Acquire-All / Release-All

• Acquire all needed locks prior to
updating ANY data

• Ensures serializability

• Pro: All benefits of fine-grained locking
– Good parallelism when non-overlapping

sets (e.g. XACT1 || XACT2)

• Con: May not know what locks are
needed in advance
– In that case we may be waiting for or

holding locks that we don't even need

– Example: If Bob has enough $$, pay Alice.
Else Bob pays all he can, Charlie pays the
balance
• Don't know if we need Charlie's lock until we

look at Bob

void transact(
Acct* from, Acct* to, int amount)

{
from->lock->acquire();
to->lock->acquire();

from->deduct(amount);
to->credit(amount);

to->lock->release();
from->lock->release();

}

Object1

Object2

ObjectA

ObjectB

ObjectC

Xact1

Xact2

Xact3

28

2-Phase Locking

• A slight relaxation on acquire-all/release-all

– Can acquire locks at different times and release
locks at different times

– But once any lock is released, no more lock
acquisitions can be made

• Example: If Bob has enough $$, pay Alice. Else
Bob pays all he can, Charlie pays the balance

– Acquire lock on Charlie's acct. only if needed

– Non-serializable: Lock(Bob), Lock(Alice),
transfer some $$ from Bob->Alice,
Unlock(Bob), Unlock(Alice), Lock(Charlie),
Lock(Alice), etc.

• Still ensures serializability
– Giving up and then reacquiring locks allows non-

serializable transactions

Acquire-All /

Release-All

Growing

Phase

Shrinking

Phase

2-Phase Locking
#

 L
o

c
k

s
 H

e
ld

Time

Time

#
 L

o
c
k

s
 H

e
ld

29

DEADLOCK & ITS MITIGATION

30

Deadlock

• When multiple locks are involved,
deadlock becomes an issue

• Deadlock: No thread is able to make
progress

• Causes
– Mutually Recursive Waiting

– Nested Waiting

– ALL use a HOLD & WAIT strategy

• Examples:
– Busy intersection

– Dining Philosophers

void myTask(void* arg)
{

lock1.acquire();
lock2.acquire();
...

}
void yourTask(void* arg)
{

lock2.acquire();
lock1.acquire();
...

}

Recursive Waiting

31

Dining Philosophers Problem

• Classical "toy" example of deadlock

• n philosophers having dinner together
– Like to talk for a while and then take a bite

of food

• n chopsticks available on the table
– Pick up left chopstick

– Pick up right chopstick

– Eat

– Return chopsticks

• How can deadlock occur?

Dining Philosophers

Problem

http://www.chegg.com/homework-help/questions-and-answers/dining-philosophers-problem-

invented-e-w-dijkstra-concurrency-pioneer-clarify-notions-dead-q9351133

1. think for a while
2. get left chopstick
3. get right chopstick
4. eat for a while
5. return left chopstick
6. return right chopstick
7. return to 1

32

Deadlock vs. Starvation

• Deadlock implies starvation but not vice versa

• Starvation example

– Reader/writer lock (a reader that keeps being held
off)

– But no deadlock

• Deadlock is usually non-deterministic

– May work fine for many "runs" of the program

– Deadlock occurs only if the right-sequence /
interleaving occurs

33

Necessary Conditions

• Four necessary conditions:
– Bounded resources/mutual exclusion: for at least one

resource, there must be mutual exclusion (or a limit
on the number of threads that can concurrently use
the resource)

– Hold and wait: threads can hold a resource and wait
for another

– No preemption: no way to revoke a resource from a
thread

– Circular wait (cyclical wait): a set of waiting threads
such that each thread waits for another

• Are these sufficient conditions?

• No, necessary but not sufficient
– Philosopher's can eat happily for a long time

provided they don't all pick up a chopstick on their
left (or right) at the same time

Dining Philosophers Example
• Bounded Resources: Limited

chopsticks
• Hold and Wait: Philosopher

picked up one and waited for
2nd

• No preemption: Philosopher
won't put down a chopstick
until they eat (get a second
chopstick)

• Cycle in Dependencies: Each
philosopher waits for the
philosopher to their right
(around a circular table).

34

Preventing Deadlock

• Cause of deadlock may occur much earlier
than the actual moment the deadlock occurs

– Indirect, future resource needs that are grabbed
much earlier

• 3 general strategies for prevention:

– Change structure of program

– Predict the future (know necessary resources in
advance)

– Detect and recover (undo / rollback when
deadlock occurs)

35

PREVENTING DEADLOCK 1
Changing Structure of the Program

36

Avoiding Deadlock By Changing Program

• Since we know the necessary
conditions we can simply ensure
that one of them is not met

• 1. Circular wait (cyclical wait): a set of
waiting threads such that each thread
waits for another

– Total ordering of locks

– Linux src: mm/filemap.c

void myTask(void* arg)
{

lock1.acquire();
lock2.acquire();
...

}
void yourTask(void* arg)
{

lock1.acquire();
lock2.acquire();
...

}

void myTask(void* arg)
{

if(&lock1 < &lock2){
lock1.acquire();
lock2.acquire();

}
else {
lock2.acquire();
lock1.acquire();

}
/* Do some computation/updates */

}

Trick: Use lock addresses to order

(OSTEP, Ch. 32 Concurrency Bugs)

Reorder

/*
* Lock ordering:
*
* ->i_mmap_rwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock

Linux src: mm/filemap.c

37

Revisiting Necessary Conditions

• 2. Bounded resources/mutual exclusion: Provide ample
provisioning of resources (enough memory, etc.)

– N+1 chopsticks for the dining philosophers (i.e. 1 spare)

• 3. Hold and wait: threads can hold a resource and wait for
another

– Release resources before waiting

– lock1.acquire(); lock2.tryAcquire()…If fail, release lock1 & start
again

• 4. No preemption: no way to revoke a resource from a
thread

– Take away resources (e.g. pages of memory) from one task and
give to another

38

Livelock

• Livelock

– (Def.) Threads running but not
making progress

• We could modify the dining
philosophers problem to avoid
deadlock

– If can't get both chopsticks put the
other one down

• Explain a scenario where livelock
occurs?

Dining Philosophers

Problem

http://www.chegg.com/homework-help/questions-and-answers/dining-philosophers-problem-

invented-e-w-dijkstra-concurrency-pioneer-clarify-notions-dead-q9351133

1. think for a while
2. get left chopstick
3. try to get right chopstick
4. if successful
5. eat for a while
6. return right chopstick

7. return left chopstick
8. goto to 1

39

PREVENTING DEADLOCK 2
Controlling resource allocation

40

State Space of a System

• Safe: Deadlock cannot occur

– For all possible requests there is at least
one ordering for processing those
requests that will succeed in granting
those and other future requests

• Unsafe: Deadlock is possible but may
not happen

– There is a possible set of requests where
no possible processing order can satisfy
the requests

• Deadlocked: Deadlock has occurred

SAFE

UNSAFE
Deadlocked

41

Safe or Unsafe?

• Suppose we have M resources where Available[k]
(0 <= k <= M-1) represents number of free resources
of type k exist

• N processes exist and declare in advance the max
number of each type of resource they will need (i.e.
MaxNeed[i][j] is the maximum number of type j
resources that process i needs)

• For each of the states on the bottom indicate if they
are safe or unsafe?

Proc R1 R2

A 5 3

B 4 2

C 4 3

Avail R1 R2

8 6

Proc R1 R2

A 2 1

B 2 1

C 1 1

Total Resources Available

Max Resource Requests

Is this state

safe/unsafe/deadlocked?

Proc R1 R2

A 3 1

B 2 2

C 2 1

Is this state

safe/unsafe/deadlocked?

42

Safe or Unsafe?
• Consider the available and max resource request

tables to the right

• For each of the states on the bottom indicate if they
are safe or unsafe?

– A: Safe – Even if a process requests the remainder of
its max resource allocation we can satisfy one of
those processes and then others

– B: Unsafe – If no one returns resources before they
request more we cannot satisfy any processes
request. Could lead to deadlock

Proc R1 R2

A 5 3

B 4 2

C 4 3

Avail R1 R2

8 6

Proc R1 R2

A 2 1

B 2 1

C 1 1

Total Resources Available

Max Resource Requests

SAFE

Proc R1 R2

A 3 1

B 2 2

C 2 1

UNSAFE

Deadlock is not guaranteed for 2nd option until all processes block on requests that are unable to be satisfied.

43

Banker's Algorithm Setup

• What method should we use to determine
whether to grant a resource request?

• We could use an acquire-all/release-all
strategy such that any new process receives
its maximum needed resources or is blocked
until it can
– Remember maximum needed may not be actual

needed

– Could be overly conservative

– Would ensure a safe state (A and B are
guaranteed to finish at some point and return
their resources allowing others to make progress)

• Requires resource needs known in advance!

Proc R1 R2

A 5 3

B 2 2

C 3 1

Avail R1 R2

8 6

Total Resources Available

Max Resource Requests

C will be blocked A or B finishes

44

Banker's Algorithm & Example 1

• Banker's algorithm (proposed by E. Dijsktra)
allows greater concurrency while still
ensuring a safe state is maintained

• Upon a request, ensure there is a sequence
of grants that can be made that will allow
all processes to eventually finish, otherwise
have the request wait (block)

Proc R1 R2

A 5 3

B 4 2

C 4 5

Avail R1 R2

9 6

Proc R1 R2

A 1 0

B 3 1

C 2 3

Total Resources Available

Max Resource Requests

Current state

Req R1 R2

A 3 1

Req R1 R2

C 1 2

Grant / Block

Req R1 R2

A 1 1

Grant / Block Grant / Block

45

Banker's Algorithm & Example 1

• Banker's algorithm (proposed by E. Dijsktra)
allows greater concurrency while still
ensuring a safe state is maintained

• Upon a request ensure there is a sequence
of grants that can be made that will allow
all processes to eventually finish, otherwise
have the request wait (block)

Proc R1 R2

A 5 3

B 4 2

C 4 5

Avail R1 R2

9 6

Proc R1 R2

A 1 0

B 3 1

C 2 3

Total Resources Available

Max Resource Requests

Current state

Req R1 R2

A 3 1

Req R1 R2

C 1 2

Block – No one can finish

if all request more

Req R1 R2

A 1 1

Grant – C can finish later

& then give up resources

Grant – B can still get necessary resources,

finish, and free up enough resources for others

46

Banker's Algorithm & Example 2

• Is it safe to grant the following request?

Proc R1 R2

A 6 2

B 2 1

C 6 2

Avail R1 R2

8 4

Proc R1 R2

A 2 1

B 0 0

C 3 2

Total Resources Available

Max Resource Requests

Current state

Req R1 R2

A 1 0

Grant / Block

47

Banker's Algorithm & Example 2

• Unsafe!
– You might think it is okay to grant the request

since there would be enough resources for B to
request and be granted resources and then
complete

– But even if B completes A and C by themselves
would now be in an unsafe state (each
potentially needing 3 more when only 2 would
be available)

Proc R1 R2

A 6 2

B 2 1

C 6 2

Avail R1 R2

8 4

Proc R1 R2

A 2 1

B 0 0

C 3 2

Total Resources Available

Max Resource Requests

Current state

Req R1 R2

A 1 0

Block

48

PREVENTING DEADLOCK 3
Detect and Recover

49

Detecting Deadlock

• Detect cyclical resource
dependency

– Maintain a graph of threads
and their "hold" and "need"
relationship

• Threads that have not made
progress in a "long" time

R1

R1

T1 T2

T3

R1

50

Recovering From Deadlock

• Rollback or kill/restart some
threads

• Use "transactional system"

– Computation can be "rewound" or
rolled back to a checkpointed state

– If deadlock occurs, pick some
involved thread and roll it back

– Allow other(s) to proceed

– Generally, abort the 'youngest'
thread

void threadTask(void* arg)
{

/* Do local computation */

/* checkpoints/saves state */
begin_transaction(val1,val2) {

lock1.acquire();

/* Do some computation/updates */
read(val1); write(val1);

/* Could deadlock..if so,
abort_transaction */

lock2.acquire();

read(val2);
write(val2); write(val1);

} // end_transaction
abort {
// release lock1
// restore/re-read val1, val2
// restart

}
lock1.release();
lock2.release();

}

51

Selecting Who Rollsback/Retries

• Assume 2 threads are requesting a lock
already held by each other

• Wait-die (non-preemptive)
– If an older thread needs a lock held by a

younger thread, the older can wait

– If a younger thread needs a lock held by an
older, it chooses itself to rollback

• Wound-wait (preemptive)
– If an older thread needs a lock held by a

younger thread, the younger is
preemptively aborted

– If a younger thread needs a lock held by an
older, it can wait (may be prempted later)

void threadTask(void* arg)
{

/* Do local computation */

/* checkpoints/saves state */
begin_transaction(val1,val2) {

lock1.acquire();

/* Do some computation/updates */
read(val1); write(val1);

/* Could deadlock..if so,
abort_transaction */

lock2.acquire();

read(val2);
write(val2); write(val1);

} // end_transaction
abort {

// release lock1
// restore/re-read val1, val2
// restart

}
lock1.release();
lock2.release();

}

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/8-recv+serial/deadlock-compare.html

52

What Do Real OSs Do?

• Not much

– Up to programmer to write code that doesn't
produce deadlock

– Some might do detection

53

LOCK FREE STRUCTURES

54

Locking/Atomic Instructions

• TSL (Test and Set Lock)
– tsl reg, addr_of_lock_var

– Atomically stores const. ‘1’ in lock_var
value & returns lock_var in reg

• Atomicity is ensured by HW not releasing
the bus during the RMW cycle

• CAS (Compare and Swap)
– cas addr_to_var, old_val, new_val

– Atomically performs:
• if (*addr_to_var != old_val) return false

• else *addr_to_var = new_val; return true;

– x86 Implementation
• old_value always in $eax

• CMPXCH r2, r/m1
– if(%eax == *r/m1) ZF=1; *r/m1 = r2;

– else { ZF = 0; %eax = *r/m1; }

ACQ: tsl (lock_addr), %reg
cmp $0,%reg
jnz ACQ
ret

REL: move $0,(lock_addr)

ACQ: move $1, %edx
L1: move $0, %eax

lock cmpxchg %edx, (lock_addr)
jnz L1
ret

REL: move $0, (lock_addr)

55

Lockless Atomic Updates

• Write data structures or code to avoid
separate lock variables but to update
data structures in a "transactional" way
– Read and modify data w/o locks

– Write only if data hasn't been accessed by
another thread

• CAS (Compare and Swap) [x86]

• LL and SC (MIPS & others)
– Lock-free atomic RMW

– LL = Load Linked
• Normal lw operation but tells HW to track any

external accesses to addr.

– SC = Store Conditional
• Like sw but only stores if no other r/w to that addr.

since LL & returns 0 in reg. if failed, 1 if successful

// x86 implementation
INC: move (sum_addr), %edx

move %edx, %eax
add (local_sum),%edx

lock cmpxchg %edx, (sum_addr)
jnz INC
ret

// MIPS implementation
LA $t1,sum

INC: LL $5,0($t1)
ADD $5,$5,local_sum
SC $5,0($t1)
BEQ $5,$zero,UPDATE

// High-level implementation
synchronized {

sum += local_sum;
}

56

TRANSACTIONS

57

Extending Lock-Free Structures with
"Transactional Memory"

• No need to acquire lock

• Just indicate shared data

• HW & OS monitor no other access to
shared data DURING the transaction

• If so, either rollback/retry some or all of
the threads accessing the shared data

• Updates made "locally" during the
transaction and are made visible if the
transaction succeeds or destroyed if the
transaction aborts
– Otherwise, no computation (intermediate

results) will be visible and computation
restarts fresh

void threadTask(void* arg)
{

/* Do local computation */

/* checkpoints/saves state */
begin_transaction(val1,val2) {

/* Do some computation/updates */
val1 -= amount;
val2 += amount;
} // end_transaction
abort {

// restore/re-read val1, val2
// restart

}
lock1.release();
lock2.release();

}

Active research in computer
architecture & systems about

Transactional Memory

58

ANSWERS

59

Parallelization Example

• A programmer parallelizes a function in his program to be run
on 8 coR The function accounted for 40% of the runtime of
the overall program. What is the speedup of the
enhancement?

53.1
65.0

1

8

4.0
6.0

1

Speedup

