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RACE CONDITIONS AND ATOMIC 
OPERATIONS
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Race Condition
• A race condition occurs when the behavior of the program 

depends on the interleaving of operations of different threads.

• Example:  Assume x = 2
– T1: x = x + 5

– T2: x = x * 5

• Outcomes
– Case 1: T1 then T2

• After T1: x = 7

• After T2: x = 35

– Case 2: T2 then T1
• After T2: x = 10

• After T1: x = 15

– Case 3: Both read before either writes, T2 Write, T1 Write
• x = 7

– Case 4: Both read before either writes, T1 Write, T2 Write
• x = 10
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Interleavings

• Code must work under all interleavings

• Just because it works once doesn't mean its 
bug-free

– Heisen-"bug" (Heisenberg's uncertainty principle 
& the observer effect)

• A bug that cannot be reproduced reliably or changes 
when debugging instrumentation is added

• Load-bearing print statement

– Bohr-"bug"

• A bug that can be reproduced regardless of debugging 
instrumentation
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Atomic Operations

• An operation that is indivisible (i.e. that cannot be broken into 
suboperations or whose parts cannot be interleaved)

• Computer hardware generally guarantees:
– A single memory read is atomic

– A single memory write is atomic

• Computer hardware does not generally guarantee atomicity 
across multiple instructions:
– A Read-Write or Read-Modify-Write cycle

• To guarantee atomic execution of multiple operations we 
generally need some kind of synchronization variables 
supported by special HW instruction support
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An Example: Got Milk?

• Suppose you and your roommate want to ensure there is 
always milk available

• Synchronization should ensure:
– Safety: Mutual exclusion (i.e. only 1 person buys milk)

– Liveness: Someone makes progress (i.e. there is milk)

Check fridge for milk
If out of milk then
Leave for store
Arrive at store
Buy milk
Return home

Check fridge for milk
If out of milk then
Leave for store
Arrive at store
Buy milk
Return home

Roommate 1

Roommate 2

Time
Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach 

ensures 

liveness but 

not safety
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Got Milk: Option 1

• Suppose you and your roommate want to 
ensure there is always milk available

if(milk == 0){
if(note == 0){

note = 1;
milk++;
note = 0;

} }

if(milk == 0){

if(note == 0){
note = 1;
milk++;
note = 0;

} }

if(milk == 0){
if(note == 0){

note = 1;
milk++;
note = 0;

} }

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach 

still ensures 

liveness but 

not safety
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Got Milk: Option 2

• Post note early:  "I will buy milk if needed"

– Does it ensure safety?

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

noteA = 1;
if(noteB == 0){

if(milk == 0){
milk++;

} }
noteA = 0;

Posting notes ahead of time 

"ensures" safety.  

Important:  Actually this may 

not work on a modern 

processor with instruction 

reordering and certain 

memory consistency models.

noteA milk Outcome

0 0 Only B will buy. A hasn't 
started and won't check since 
noteB must be 1 now. By the 
time A can check, B will be 
done checking/purchasing.

0 >0 A hasn't started.  Already 
milk.  B doesn't buy.

1 0 B won't consider buying.  A is 
checking/buying.

1 >0 B won't consider buying.

?



9

Got Milk: Option 2

• Post note early:  "I will buy milk if needed"

– Does it ensure liveness?

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

noteA = 1;

if(noteB == 0){
} }
noteA = 0;

noteB = 1;
if(noteA == 0){
} }

noteB = 0;

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach 

ensures safety 

but not 

liveness

noteA = 1;
if(noteB == 0){
if(milk == 0){

milk++;
} }
noteA = 0;
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Got Milk: Option 3
• Preferred buyer (i.e. B) if we both arrive at similar times, A will wait until 

no note from B

– Notice this requires asymmetric code.  What if 3 or more threads?

– "Spins" in the while loop wasting CPU time (could deschedule the thread)

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 1;

noteA = 1;

while(noteB == 1) {}

if(milk == 0){
milk++;

} }
noteA = 0;

noteB = 1;

if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 1;

Thread A Thread B

Time
Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

Posting notes 

ahead of time 

ensures safety.  

Thread A now 

waits until B is not 

checking/buying 

and then checks 

itself which 

guarantees 

someone will buy 

milk if needed.

noteA = 1;
while(noteB == 1) {}
if(milk == 0){

milk++;
} }
noteA = 0;

Algorithm
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Locking
• Locking ensures safety (mutual exclusion)

• Provides more succinct code

• This example ensures liveness since threads will wait/block until they can 
acquire the lock and then check the milk
– Waiting thread is descheduled

lock1.acquire();

if(milk == 0){
milk++;

}
lock1.release();

lock1.acquire();

if(milk == 0){
milk++;

}
lock1.release();

Thread A Thread B

Time

Algorithm

lock1.acquire();
if(milk == 0){

milk++;
}
lock1.release();

No interleaving of code 

in the critical section 

with another thread
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Example: Parallel Processing
• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)
for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

sum = sum + local_sum;

• Problem
– Updating a shared variable (e.g. sum)

– Both threads read sum=0, perform sum=sum+local_sum, and 
write their respective values back to sum

– Any read/modify/write of a shared variable is susceptible

• Solution
– Atomic updates accomplished via locking or lock-free

synchronization

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum
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Atomic Operations

• Read/modify/write sequences are usually done 
with separate instructions

• Possible Sequence:
– P1 Reads sum (load/read)

– P1 Modifies sum (add)

– P2 Reads sum (load/read)

– P1 Writes sum (store/write)

– P2 uses old value…

• Partial Solution:  Have a separate flag/"lock" 
variable (0=Lock is free/unlocked, 1 = Locked)

• Lock variable is susceptible to same problem as 
sum (read/modify/write)
– if(lock == 0) lock = 1;

• Hardware has to support some kind of instruction 
to implement atomic operations usually by not 
releasing bus between read and write

P

$

P

$

M

Shared Bus

Thread 1:

Lock L

Update sum

Unlock L

Thread 2:

Lock L

Update sum

Unlock L
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Locking/Atomic Instructions

• TSL (Test and Set Lock)
– tsl reg, addr_of_lock_var

– Atomically stores const. ‘1’ in lock_var
value & returns lock_var in reg

• Atomicity is ensured by HW not releasing 
the bus during the RMW cycle

• CAS (Compare and Swap)
– cas addr_to_var, old_val, new_val

– Atomically performs:
• if (*addr_to_var != old_val ) return false

• else *addr_to_var = new_val; return true;

– x86 Implementation
• old_value always in $eax

• CMPXCH r2, r/m1
– if($eax == *r/m1) ZF=1; *r/m1 = r2;

– else { ZF = 0; $eax = *r/m1; }

ACQ: tsl (lock_addr), %reg

cmp $0,%reg

jnz ACQ

return;

REL: move  $0,(lock_addr)

ACQ: move   $1, %edx

L1:                move   $0, %eax

lock   cmpxchg %edx, (lock_addr)

jnz L1

ret

REL:             move   $0, (lock_addr)



15

Lockless Atomic Updates

• CAS (Compare and Swap) [x86]
– x86 Implementation

• old_value always in $eax

• CMPXCH r2, r/m1
– if($eax == *r/m1) ZF=1; *r/m1 = r2;

– else { ZF = 0; $eax = *r/m1; }

• LL and SC (MIPS & others)
– Lock-free atomic RMW

– LL = Load Linked
• Normal lw operation but tells HW to track any 

external accesses to addr.

– SC = Store Conditional
• Like sw but only stores if no other writes since LL 

& returns 0 in reg. if failed, 1 if successful

// x86 implementation

INC: move   (sum_addr), %edx

move   %edx, %eax

add       (local_sum),%edx

lock   cmpxchg %edx, (sum_addr)

jnz INC

ret

// MIPS implementation

LA       $t1,sum

INC: LL       $5,0($t1)

ADD   $5,$5,local_sum

SC      $5,0($t1)

BEQ   $5,$zero,UPDATE

// High-level implementation

synchronized {

sum += local_sum;

}
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SYNCHRONIZATION VARIABLES
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Lock Properties

• Lock has two states, BUSY and FREE 

– Initially free 

– Acquire waits until free and sets to busy (this step 
is atomic)

• Even if multiple threads call acquire at the same 
instant, one will win and the other(s) will wait 

– Release makes lock free (allowing waiter to 
proceed) 
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Lock Properties

• Locks should ensure:

– Safety (i.e. mutual exclusion)

– Liveness

• A holder should release it at some point

• If the lock is free, caller should acquire it …OR…

• If it the lock is busy a bounded should exist on the 
number of times other threads can acquire it before 
the thread does.
– A stronger condition might be FIFO ordering
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A First Lock: SpinLock

• Uses atomic instructions (e.g. 
test-and-set-lock or compare-
and-swap)

– Here atomic_swap swaps two 
variables atomically

• Spins (loops) until the lock is 
acquired

• Pro:  Great when critical section 
is short (fast lock/unlock)

– Context switch may be longer 
than the time to execute a 
critical section

• Con:  Wastes processor 
resources during spinning

• Any easy way to exploit?

class SpinLock
{

int value;
public:

SpinLock() : value(FREE), holder(NULL) {}
~SpinLock() { /* code */ }
void acquire()
{

while(1){
int curr = BUSY;          
atomic_swap(curr, value);
if(curr == FREE) { 

return;
} 

}  }
void release()
{

value = FREE;
}

};
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A First Lock: SpinLock

• May maintain the holder to 
ensure another thread doesn't 
unlock mistakenly/maliciously

class SpinLock
{

int value;
Thread* holder;

public:
SpinLock() : value(FREE), holder(NULL) {}
~SpinLock() { /* code */ }
void acquire()
{

while(1){
int curr = BUSY;          
atomic_swap(curr, value);
if(curr == FREE) { 

holder = curr_thread(); return;
} 

}  }
void release()
{

if(curr_thread() == holder)
value = FREE;

}
};
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A Queueing (Blocking) Lock

• We can block threads 
when they are unable to 
acquire the lock

• Can you think of a 
liveness issue that exists?

class Lock
{
int value;       Queue waiters;
Thread* holder;  SpinLock mutex;

public:
Lock() : value(FREE), holder(NULL) {}
~Lock() { /* code */ }
void acquire()
{  mutex.acquire();

while(1){
int curr = BUSY;          
atomic_swap(curr, value);
if(curr == FREE) { 

holder = curr_thread(); break;
} else {

waiters.append(self);
/* context switch */

thread_block(curr_thread(), &mutex); 
}  

} mutex.release();  
}
void release()
{  mutex.acquire();

if(holder == curr_thread()) {
if(!waiters.empty()) 

thread_unblock(waiters.pop_front());
value = FREE;

} mutex.release();
} 

};
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• Consider the following interleaving

– Thread B is blocked

– When thread A releases does our lock 
implementation guarantee thread B gets the lock?

lock1.acquire();

/* Critical Section */

lock1.release();

lock1.acquire();
//blocks

Thread A Thread B

lock1.acquire();

Thread C
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A Queueing Lock

• On release we can 
leave the value = 
BUSY and awaken 
one waiter

• No new thread can 
come in and 
"steal" the lock

class Lock
{
int value;       Queue waiters;
Thread* holder;  SpinLock mutex;

public:
Lock() : value(FREE), holder(NULL) {}
~Lock() { /* code */ }
void acquire()
{

mutex.acquire();
int curr = BUSY;          
atomic_swap(curr, value);
if(curr == FREE) { break; }
} else {

waiters.append(self);
/* ctxt switch & release/reacquires mutex */

thread_block(curr_thread(), &mutex); 
}  
holder = curr_thread(); 
mutex.release();  

}
void release()
{  mutex.acquire();

if(holder == curr_thread()) {
if(!waiters.empty()) 

thread_unblock(waiters.pop_front());
else { value = FREE; }

} mutex.release();
} 

};
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Blocking vs. Non-Blocking Locks

• Acquire (Blocking)

– If lock == UNLOCKED then lock = LOCKED and return

– else block/sleep until the holder releases the lock giving it 
to you

• Need some kind of loop to keep checking everytime you are 
awakened

• Only returns once it has acquired the lock

• TryAcquire (Non-blocking)

– If lock == UNLOCKED then lock = LOCKED and return true;

– else return false;
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Linux Mutex

• See code
– http://elixir.free-

electrons.com/linux/latest/source/kernel/locking/mutex.c line 236

• Combination of "spin" and "queueing" lock
– Common case:  lock is free [Fast Path]

• First perform an atomic compare-and-swap and check if you got the lock.  
If so, done!

– Line 139: __mutex_trylock_fast()

– Next most common case:  Locked but no other waiters [Medium Path]

• Spin for a little while so we don't have to context switch
– Line 738: __mutex_lock_common()

– Block and add yourself to queue [Slow Path]

http://elixir.free-electrons.com/linux/latest/source/kernel/locking/mutex.c
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A Sanity Check Question

• What is wrong with this 
attempt to synchronize 
updates to the global 
variable x?

• Should spinlocks be used on 
a uniprocessor system?

int x = 1;

/* Thread 1 */
void t1(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

/* Thread 2 */
void t2(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}
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A Sanity Check Answer

• What is wrong with this attempt 
to synchronize updates to the 
global variable x?

– Different locks (mylock1, mylock2)

– Should only be 1

• Should spinlocks be used on a 
uniprocessor system?

– No, spinning because another 
thread has the lock which to release 
will require you to give up the 
processor (i.e. context 
switch)…spinning is pointless.

int x = 1;
Lock the_lock;

/* Thread 1 */
void t1(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

/* Thread 2 */
void t2(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}
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Shared Objects

• Shared Object (def.): An 
object that will be accessed by 
multiple threads

– Should maintain state/shared 
data variables and the 
synchronization variable(s) 
needed to control access to 
them

• Methods should lock the 
object when updating shared 
state

class ObjA
{

void f1(int newVal);

private:
/* State vars */
int sum;
vector<int> vals;
/* Synchronization var */
Lock the_lock;

}

void ObjA::f1(int newVal)
{

the_lock.acquire();
vals.push_back(newVal);
sum += newVal;
the_lock.release();

}
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Non-Blocking Bounded Queue

• Examine the Buffer (queue) 
class to the right

• Assuming multiple threads will 
be producing and consuming 
values we will have race 
conditions
– Two producers have a race 

condition on 'tail'

– Two consumers have a race 
condition on 'head'

– All threads have a race condition 
on 'count'

• Demo:  Sample output

class Buffer
{
int data[MAXSIZE];
int count;
int head, tail;

public:
Buffer() : count(0), head(0), tail(0) 
{ }

bool try_produce(int item)
{
bool status = false;
if(count != MAXSIZE) {
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
status = true;

}
return status;

}
bool try_consume(int* item)
{
bool status = false;
if(count != 0) {
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
status = true;

}
return status;

}
};
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Non-Blocking Bounded Queue

• By adding a lock we can ensure mutual 
exclusion

• However, consumers may find the 
buffer empty or producers may find 
the buffer full and unable to complete 
their operation

– We simply return in this case

• Demo

• By using condition variables we can 
have the threads block until they will 
be able to perform their desired task 

class Buffer
{

int data[MAXSIZE];
int count;
int head, tail;
pthread_mutex_t mutex;

public:
Buffer() : count(0), head(0), tail(0) 
{ pthread_mutex_init(&mutex, NULL); }
bool try_produce(int item)
{

bool status = false;
pthread_mutex_lock(&mutex);
if(count != MAXSIZE) {

data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
status = true;

}
pthread_mutex_unlock(&mutex);
return status;

}
bool try_consume(int* item)
{

bool status = false;
pthread_mutex_lock(&mutex);
if(count != 0) {

*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
status = true;

}
pthread_mutex_unlock(&mutex);
return status;

}
};

// Consumer code
int val;
while(!buf->try_consume(&val))
{}

// Producer code
while(!buf->try_produce(val)) 

{}
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Condition Variables

• Condition variables are not really "variables"

– They don't store any data/value

• CVs assume you have other shared state that you are looking at to 
determine you can not make progress and allow you to block, waiting for 
an event

• CVs always are paired with a lock which is guaranteeing exclusive access to 
the shared state that you are looking at

• CVs provide the following API

– wait(Lock* mutex):  Puts the thread to sleep until signaled
• The associated lock must be LOCKED on a call to wait, which will unlock it as it puts the thread 

to sleep and reacquire it once awoken

– signal():  Wakes one waiting thread

– broadcast(): Wakes all waiting thread

• CVs are memory-less

– A signal() when no one is waiting is forgotten
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Blocking Bounded Queue

• By using condition variables we can 
have the threads block until they will 
be able to perform their desired task 

• Producers need to

– Wait while buffer is full

– Signal any waiting consumers if the 
buffer was empty but now will have 1 
item

• Consumers need to

– Wait while buffer is empty

– Signal any waiting producers if the 
buffer was full but now has 1 free spot

• Design tip:
– A good design for a shared object is to 

have 1 lock and one or more CVs

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0) 
{ 

pthread_mutex_init(&mutex, NULL); 
pthread_cond_init(&prodcv, NULL); 
pthread_cond_init(&conscv, NULL); 

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};
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Hansen/Mesa CV Semantics

• Why were the calls to "wait" inside a while 
loop in the previous bounded buffer code?

• Hansen/Mesa CV Semantics

– When signal() is called, a waiter is awakened 
but does not necessarily get the processor 
or associated lock immediately

– From our bounded buffer example, say:
• A producer signals a waiting consumer, C1, that 

something is available

• Before C1 is scheduled another consumer thread C2 
runs, gets the lock, and consumes an item making 
the buffer empty again

• When C1 actually gets the lock, buffer is still empty

– Wait should always be in a loop to ensure 
the condition you are checking is valid after 
you awake

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0) 
{ 

pthread_mutex_init(&mutex, NULL); 
pthread_cond_init(&prodcv, NULL); 
pthread_cond_init(&conscv, NULL); 

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};
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Hoare CV Semantics

• Hoare Semantics

– Signaler gives lock and processor to signaled thread 
ensuring no other thread can modify the state

– Now signal() must also take the lock as an arg.

• Can make it harder to create a correct 
implementation
– In produce() find the red highlighted line, what could go 

wrong when the producer signals a consumer in the line 
above?

• tail and count have not been updated but the 
producer has stopped running and lost the lock
– Usually, Hoare semantics indicate that the signaler gets 

the processor and the lock back once the waiter leaves 
its critical section

– Requires greater control over scheduling

• Most OSs use Mesa semantics!

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0) 
{ 

pthread_mutex_init(&mutex, NULL); 
pthread_cond_init(&prodcv, NULL); 
pthread_cond_init(&conscv, NULL); 

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
if(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) 

pthread_cond_signal(&conscv, &mutex);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
if(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv, &mutex);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};
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What-If 1

• In a normal CV, wait atomically:

– Unlocks

– Sleeps

• Do they have to be performed 
atomically (see red highlighted 
lines)?

• Yes

– Could miss a signal if consume() 
runs between unlock and sleep

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0) 
{ 

pthread_mutex_init(&mutex, NULL); 
pthread_cond_init(&prodcv, NULL); 
pthread_cond_init(&conscv, NULL); 

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_mutex_unlock(&mutex);
pthread_cond_wait(&prodcv);

}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};

Examples derived from: 

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf
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What-If 2

• For this question, assume only 
1 consumer and RMW of count 
(just for sake of argument)

• Does the signaler (consumer) 
need to acquire the lock?

• Yes, again if the consumer runs in 
between the producer's check of 
count and wait on count, we might 
miss a signal

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0) 
{ 

pthread_mutex_init(&mutex, NULL); 
pthread_cond_init(&prodcv, NULL); 
pthread_cond_init(&conscv, NULL); 

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
*item = data[head++]; 
if(head == MAXSIZE) head = 0;
pthread_cond_signal(&prodcv);

pthread_mutex_unlock(&mutex);
}

};

Examples derived from: 

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf
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What-If 3

• What if we update state while we 
hold the lock but just call signal() 
after we release the lock.
– Any problem?

• Not if waiters re-check the 
condition (i.e. are in a while loop) as 
they should be

• But realize some difference in 
operation may occur as a waiter for 
the mutex/lock will be added to the 
ready list before the thread waiting 
on the CV

void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

printf("Buffer full...producer waiting\n");
pthread_cond_wait(&prodcv, &mutex);

}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

printf("Buffer empty...consumer waiting\n");
pthread_cond_wait(&conscv, &mutex);

}
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
if(count == MAXSIZE-1) {  

pthread_mutex_unlock(&mutex);
pthread_cond_signal(&prodcv);

}
else { pthread_mutex_unlock(&mutex); }

}

Examples derived from: 

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf
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Semaphores
• Semaphores define an integral value and two operations:

– Down()/P(): Waits until value > 0 then decrements val =>(val is never negative)

– Up()/V(): Increments val and picks a waiting thread (if any) and unblocks it, 
allowing it to complete its P operation

• If initial val is 1, then semaphore acts like a lock

– Down = Acquire

– Up = Release

• If initial val is 0, then semaphore acts like a CV

– Down = Wait

– Up = Signal

• Concern: Semaphore has state (where as CVs were memoryless) so a Up/V 
when no waiters exist will allow the next wait to immediately proceed

– Can make reasoning about the value of a semaphore difficult

– Requires programmer to map shared object state to semaphore count

• Generally prefer locks and CVs over semaphores for shared objects

• However semaphores can be used in specific places (especially in OSs)
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Ensuring Mutual Exclusion

• How do we ensure atomic operation when implementing 
queueing locks, CVs, and semaphores

• Uniprocessor, in-Kernel
– Can disable interrupts (only source of interleaving of memory access)

• Multiprocessor, in-Kernel
– Need some kind of atomic locking instruction (i.e. TSL, Compare-and-

swap) variable since disabling interrupts only applies to that one 
processor

• Often use a spinlock

• Generally use both
– Lock so that no other concurrent thread can update

– Turn off interrupts so we quickly complete our code and don't get 
interrupted or context switched
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Tour Pintos

• Implements queueing locks and CVs in terms 
of semaphores

• Since it is uniprocessor, just disable interrupts
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USER LEVEL THREAD LIBRARIES
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User Level Thread Libraries

• Currently, user threads 
have to syscall/trap to the 
OS/kernel mode to 
perform thread context 
switch and synchronization
– This takes time

• Can write a user-level thread library where 
the user process implements a "scheduler" and 
thread operations
– 1 kernel thread

– Many user threads that the user process code sets up 
and swaps between

– User process uses "signals" (up-calls) to be notified 
when a time quantum has passed and then swaps 
user threads 

– Problem: When kernel thread gets desceduled all 
corresponding user threads get descheduled
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User-Level Mutual Exclusion

• Can user level code disable interrupts to 
ensure mutual exclusion?

– No, that is a privileged operation (only kernel can 
do that)

• Have to use some kind of atomic instruction 
(TSL, CAS, etc.)
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GENERAL GUILDINES FOR WRITING 
SHARED OBJECTS

Best Practices
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Recall Shared Objects

• Shared Object (def.): An 
object that will be accessed by 
multiple threads

– Should maintain state/shared 
data variables and the 
synchronization variable(s) 
needed to control access to 
them

• Methods should lock the 
object when updating shared 
state

class ObjA
{

void f1(int newVal);

private:
/* State vars */
int sum;
vector<int> vals;
/* Synchronization var */
Lock the_lock;

}

void ObjA::f1(int newVal)
{

the_lock.acquire();
vals.push_back(newVal);
sum += newVal;
the_lock.release();

}
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Guidelines For Shared Objects

• Decompose problem into shared objects. For each shared 
object allocate a lock. Lock when you enter, unlock   before 
returning. Find out what conditions to wait for, an assigned a 
condition variable for each separate condition. Always use a 
while loop for the condition variable wait. Safe to always 
broadcast.

• Best practices:
– Follow consistent design patterns, do not try to optimize

– Always synch with locks and condition variables, not semaphores

– Always acquire at the start of a method & release at the end

– Condition variable: hold lock before wait, wait in while loop

– Never use thread_sleep to wait for a condition
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OTHER SYNCHRONIZATION 
PRIMITVIES
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Reader/Write Locks

• Consider a shared data-structure like a 
hashtable (using chaining) supporting insert, 
remove, and find/lookup
– We can't lookup while doing an insert or remove 

since the structures/pointers might be updated

– Following our guidelines, we'd have a single lock 
to ensure mutual exclusion and just acquire the 
lock at the start of each member function (insert, 
remove, find)

– Theoretically, can multiple find() operations run 
in parallel?

• Yes, but if we lock at the start of find() we will 
preclude this and lower performance

– We can safely have many readers, but only 1 
writer at a time

0

1

2

3

4

…

key, value
Array of Linked 

Lists
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Reader Write Locks

• Support many readers but only 1 writer

– Description below "prioritizes" writers

• Operations:

– startRead(): Waits if a current writer is active or another 
writer is already waiting, otherwise proceeds

– doneRead(): If last reader, signals a waiting writer 

– startWrite():  Waits if a current write is active or 1 or more 
readers are active, otherwise proceeds

– doneWrite(): If a waiting writer, signal it; otherwise 
broadcast/signal all waiting readers

• See OS:PP 2nd Ed. Figure 5.10


