
1

CSCI 350
Ch. 5 – Synchronization

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

RACE CONDITIONS AND ATOMIC
OPERATIONS

3

Race Condition
• A race condition occurs when the behavior of the program

depends on the interleaving of operations of different threads.

• Example: Assume x = 2
– T1: x = x + 5

– T2: x = x * 5

• Outcomes
– Case 1: T1 then T2

• After T1: x = 7

• After T2: x = 35

– Case 2: T2 then T1
• After T2: x = 10

• After T1: x = 15

– Case 3: Both read before either writes, T2 Write, T1 Write
• x = 7

– Case 4: Both read before either writes, T1 Write, T2 Write
• x = 10

4

Interleavings

• Code must work under all interleavings

• Just because it works once doesn't mean its
bug-free

– Heisen-"bug" (Heisenberg's uncertainty principle
& the observer effect)

• A bug that cannot be reproduced reliably or changes
when debugging instrumentation is added

• Load-bearing print statement

– Bohr-"bug"

• A bug that can be reproduced regardless of debugging
instrumentation

5

Atomic Operations

• An operation that is indivisible (i.e. that cannot be broken into
suboperations or whose parts cannot be interleaved)

• Computer hardware generally guarantees:
– A single memory read is atomic

– A single memory write is atomic

• Computer hardware does not generally guarantee atomicity
across multiple instructions:
– A Read-Write or Read-Modify-Write cycle

• To guarantee atomic execution of multiple operations we
generally need some kind of synchronization variables
supported by special HW instruction support

6

An Example: Got Milk?

• Suppose you and your roommate want to ensure there is
always milk available

• Synchronization should ensure:
– Safety: Mutual exclusion (i.e. only 1 person buys milk)

– Liveness: Someone makes progress (i.e. there is milk)

Check fridge for milk
If out of milk then
Leave for store
Arrive at store
Buy milk
Return home

Check fridge for milk
If out of milk then
Leave for store
Arrive at store
Buy milk
Return home

Roommate 1

Roommate 2

Time
Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach

ensures

liveness but

not safety

7

Got Milk: Option 1

• Suppose you and your roommate want to
ensure there is always milk available

if(milk == 0){
if(note == 0){

note = 1;
milk++;
note = 0;

} }

if(milk == 0){

if(note == 0){
note = 1;
milk++;
note = 0;

} }

if(milk == 0){
if(note == 0){

note = 1;
milk++;
note = 0;

} }

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach

still ensures

liveness but

not safety

8

Got Milk: Option 2

• Post note early: "I will buy milk if needed"

– Does it ensure safety?

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

noteA = 1;
if(noteB == 0){

if(milk == 0){
milk++;

} }
noteA = 0;

Posting notes ahead of time

"ensures" safety.

Important: Actually this may

not work on a modern

processor with instruction

reordering and certain

memory consistency models.

noteA milk Outcome

0 0 Only B will buy. A hasn't
started and won't check since
noteB must be 1 now. By the
time A can check, B will be
done checking/purchasing.

0 >0 A hasn't started. Already
milk. B doesn't buy.

1 0 B won't consider buying. A is
checking/buying.

1 >0 B won't consider buying.

?

9

Got Milk: Option 2

• Post note early: "I will buy milk if needed"

– Does it ensure liveness?

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 0;

noteA = 1;

if(noteB == 0){
} }
noteA = 0;

noteB = 1;
if(noteA == 0){
} }

noteB = 0;

Thread A Thread B

Time

Algorithm

Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

This approach

ensures safety

but not

liveness

noteA = 1;
if(noteB == 0){
if(milk == 0){

milk++;
} }
noteA = 0;

10

Got Milk: Option 3
• Preferred buyer (i.e. B) if we both arrive at similar times, A will wait until

no note from B

– Notice this requires asymmetric code. What if 3 or more threads?

– "Spins" in the while loop wasting CPU time (could deschedule the thread)

noteB = 1;
if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 1;

noteA = 1;

while(noteB == 1) {}

if(milk == 0){
milk++;

} }
noteA = 0;

noteB = 1;

if(noteA == 0){
if(milk == 0){

milk++;
} }
noteB = 1;

Thread A Thread B

Time
Anderson & Dahlin - OS:PP 2nd Ed. 5.1.3

Posting notes

ahead of time

ensures safety.

Thread A now

waits until B is not

checking/buying

and then checks

itself which

guarantees

someone will buy

milk if needed.

noteA = 1;
while(noteB == 1) {}
if(milk == 0){

milk++;
} }
noteA = 0;

Algorithm

11

Locking
• Locking ensures safety (mutual exclusion)

• Provides more succinct code

• This example ensures liveness since threads will wait/block until they can
acquire the lock and then check the milk
– Waiting thread is descheduled

lock1.acquire();

if(milk == 0){
milk++;

}
lock1.release();

lock1.acquire();

if(milk == 0){
milk++;

}
lock1.release();

Thread A Thread B

Time

Algorithm

lock1.acquire();
if(milk == 0){

milk++;
}
lock1.release();

No interleaving of code

in the critical section

with another thread

12

Example: Parallel Processing
• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)
for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

sum = sum + local_sum;

• Problem
– Updating a shared variable (e.g. sum)

– Both threads read sum=0, perform sum=sum+local_sum, and
write their respective values back to sum

– Any read/modify/write of a shared variable is susceptible

• Solution
– Atomic updates accomplished via locking or lock-free

synchronization

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

13

Atomic Operations

• Read/modify/write sequences are usually done
with separate instructions

• Possible Sequence:
– P1 Reads sum (load/read)

– P1 Modifies sum (add)

– P2 Reads sum (load/read)

– P1 Writes sum (store/write)

– P2 uses old value…

• Partial Solution: Have a separate flag/"lock"
variable (0=Lock is free/unlocked, 1 = Locked)

• Lock variable is susceptible to same problem as
sum (read/modify/write)
– if(lock == 0) lock = 1;

• Hardware has to support some kind of instruction
to implement atomic operations usually by not
releasing bus between read and write

P

$

P

$

M

Shared Bus

Thread 1:

Lock L

Update sum

Unlock L

Thread 2:

Lock L

Update sum

Unlock L

14

Locking/Atomic Instructions

• TSL (Test and Set Lock)
– tsl reg, addr_of_lock_var

– Atomically stores const. ‘1’ in lock_var
value & returns lock_var in reg

• Atomicity is ensured by HW not releasing
the bus during the RMW cycle

• CAS (Compare and Swap)
– cas addr_to_var, old_val, new_val

– Atomically performs:
• if (*addr_to_var != old_val) return false

• else *addr_to_var = new_val; return true;

– x86 Implementation
• old_value always in $eax

• CMPXCH r2, r/m1
– if($eax == *r/m1) ZF=1; *r/m1 = r2;

– else { ZF = 0; $eax = *r/m1; }

ACQ: tsl (lock_addr), %reg

cmp $0,%reg

jnz ACQ

return;

REL: move $0,(lock_addr)

ACQ: move $1, %edx

L1: move $0, %eax

lock cmpxchg %edx, (lock_addr)

jnz L1

ret

REL: move $0, (lock_addr)

15

Lockless Atomic Updates

• CAS (Compare and Swap) [x86]
– x86 Implementation

• old_value always in $eax

• CMPXCH r2, r/m1
– if($eax == *r/m1) ZF=1; *r/m1 = r2;

– else { ZF = 0; $eax = *r/m1; }

• LL and SC (MIPS & others)
– Lock-free atomic RMW

– LL = Load Linked
• Normal lw operation but tells HW to track any

external accesses to addr.

– SC = Store Conditional
• Like sw but only stores if no other writes since LL

& returns 0 in reg. if failed, 1 if successful

// x86 implementation

INC: move (sum_addr), %edx

move %edx, %eax

add (local_sum),%edx

lock cmpxchg %edx, (sum_addr)

jnz INC

ret

// MIPS implementation

LA $t1,sum

INC: LL $5,0($t1)

ADD $5,$5,local_sum

SC $5,0($t1)

BEQ $5,$zero,UPDATE

// High-level implementation

synchronized {

sum += local_sum;

}

16

SYNCHRONIZATION VARIABLES

17

Lock Properties

• Lock has two states, BUSY and FREE

– Initially free

– Acquire waits until free and sets to busy (this step
is atomic)

• Even if multiple threads call acquire at the same
instant, one will win and the other(s) will wait

– Release makes lock free (allowing waiter to
proceed)

18

Lock Properties

• Locks should ensure:

– Safety (i.e. mutual exclusion)

– Liveness

• A holder should release it at some point

• If the lock is free, caller should acquire it …OR…

• If it the lock is busy a bounded should exist on the
number of times other threads can acquire it before
the thread does.
– A stronger condition might be FIFO ordering

19

A First Lock: SpinLock

• Uses atomic instructions (e.g.
test-and-set-lock or compare-
and-swap)

– Here atomic_swap swaps two
variables atomically

• Spins (loops) until the lock is
acquired

• Pro: Great when critical section
is short (fast lock/unlock)

– Context switch may be longer
than the time to execute a
critical section

• Con: Wastes processor
resources during spinning

• Any easy way to exploit?

class SpinLock
{

int value;
public:

SpinLock() : value(FREE), holder(NULL) {}
~SpinLock() { /* code */ }
void acquire()
{

while(1){
int curr = BUSY;
atomic_swap(curr, value);
if(curr == FREE) {

return;
}

} }
void release()
{

value = FREE;
}

};

20

A First Lock: SpinLock

• May maintain the holder to
ensure another thread doesn't
unlock mistakenly/maliciously

class SpinLock
{

int value;
Thread* holder;

public:
SpinLock() : value(FREE), holder(NULL) {}
~SpinLock() { /* code */ }
void acquire()
{

while(1){
int curr = BUSY;
atomic_swap(curr, value);
if(curr == FREE) {

holder = curr_thread(); return;
}

} }
void release()
{

if(curr_thread() == holder)
value = FREE;

}
};

21

A Queueing (Blocking) Lock

• We can block threads
when they are unable to
acquire the lock

• Can you think of a
liveness issue that exists?

class Lock
{
int value; Queue waiters;
Thread* holder; SpinLock mutex;

public:
Lock() : value(FREE), holder(NULL) {}
~Lock() { /* code */ }
void acquire()
{ mutex.acquire();

while(1){
int curr = BUSY;
atomic_swap(curr, value);
if(curr == FREE) {

holder = curr_thread(); break;
} else {

waiters.append(self);
/* context switch */

thread_block(curr_thread(), &mutex);
}

} mutex.release();
}
void release()
{ mutex.acquire();

if(holder == curr_thread()) {
if(!waiters.empty())

thread_unblock(waiters.pop_front());
value = FREE;

} mutex.release();
}

};

22

• Consider the following interleaving

– Thread B is blocked

– When thread A releases does our lock
implementation guarantee thread B gets the lock?

lock1.acquire();

/* Critical Section */

lock1.release();

lock1.acquire();
//blocks

Thread A Thread B

lock1.acquire();

Thread C

23

A Queueing Lock

• On release we can
leave the value =
BUSY and awaken
one waiter

• No new thread can
come in and
"steal" the lock

class Lock
{
int value; Queue waiters;
Thread* holder; SpinLock mutex;

public:
Lock() : value(FREE), holder(NULL) {}
~Lock() { /* code */ }
void acquire()
{

mutex.acquire();
int curr = BUSY;
atomic_swap(curr, value);
if(curr == FREE) { break; }
} else {

waiters.append(self);
/* ctxt switch & release/reacquires mutex */

thread_block(curr_thread(), &mutex);
}
holder = curr_thread();
mutex.release();

}
void release()
{ mutex.acquire();

if(holder == curr_thread()) {
if(!waiters.empty())

thread_unblock(waiters.pop_front());
else { value = FREE; }

} mutex.release();
}

};

24

Blocking vs. Non-Blocking Locks

• Acquire (Blocking)

– If lock == UNLOCKED then lock = LOCKED and return

– else block/sleep until the holder releases the lock giving it
to you

• Need some kind of loop to keep checking everytime you are
awakened

• Only returns once it has acquired the lock

• TryAcquire (Non-blocking)

– If lock == UNLOCKED then lock = LOCKED and return true;

– else return false;

25

Linux Mutex

• See code
– http://elixir.free-

electrons.com/linux/latest/source/kernel/locking/mutex.c line 236

• Combination of "spin" and "queueing" lock
– Common case: lock is free [Fast Path]

• First perform an atomic compare-and-swap and check if you got the lock.
If so, done!

– Line 139: __mutex_trylock_fast()

– Next most common case: Locked but no other waiters [Medium Path]

• Spin for a little while so we don't have to context switch
– Line 738: __mutex_lock_common()

– Block and add yourself to queue [Slow Path]

http://elixir.free-electrons.com/linux/latest/source/kernel/locking/mutex.c

26

A Sanity Check Question

• What is wrong with this
attempt to synchronize
updates to the global
variable x?

• Should spinlocks be used on
a uniprocessor system?

int x = 1;

/* Thread 1 */
void t1(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

/* Thread 2 */
void t2(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

27

A Sanity Check Answer

• What is wrong with this attempt
to synchronize updates to the
global variable x?

– Different locks (mylock1, mylock2)

– Should only be 1

• Should spinlocks be used on a
uniprocessor system?

– No, spinning because another
thread has the lock which to release
will require you to give up the
processor (i.e. context
switch)…spinning is pointless.

int x = 1;
Lock the_lock;

/* Thread 1 */
void t1(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

/* Thread 2 */
void t2(void* arg)
{

Lock the_lock;
the_lock.acquire();
x++;
the_lock.release();

}

28

Shared Objects

• Shared Object (def.): An
object that will be accessed by
multiple threads

– Should maintain state/shared
data variables and the
synchronization variable(s)
needed to control access to
them

• Methods should lock the
object when updating shared
state

class ObjA
{

void f1(int newVal);

private:
/* State vars */
int sum;
vector<int> vals;
/* Synchronization var */
Lock the_lock;

}

void ObjA::f1(int newVal)
{

the_lock.acquire();
vals.push_back(newVal);
sum += newVal;
the_lock.release();

}

29

Non-Blocking Bounded Queue

• Examine the Buffer (queue)
class to the right

• Assuming multiple threads will
be producing and consuming
values we will have race
conditions
– Two producers have a race

condition on 'tail'

– Two consumers have a race
condition on 'head'

– All threads have a race condition
on 'count'

• Demo: Sample output

class Buffer
{
int data[MAXSIZE];
int count;
int head, tail;

public:
Buffer() : count(0), head(0), tail(0)
{ }

bool try_produce(int item)
{
bool status = false;
if(count != MAXSIZE) {
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
status = true;

}
return status;

}
bool try_consume(int* item)
{
bool status = false;
if(count != 0) {
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
status = true;

}
return status;

}
};

30

Non-Blocking Bounded Queue

• By adding a lock we can ensure mutual
exclusion

• However, consumers may find the
buffer empty or producers may find
the buffer full and unable to complete
their operation

– We simply return in this case

• Demo

• By using condition variables we can
have the threads block until they will
be able to perform their desired task

class Buffer
{

int data[MAXSIZE];
int count;
int head, tail;
pthread_mutex_t mutex;

public:
Buffer() : count(0), head(0), tail(0)
{ pthread_mutex_init(&mutex, NULL); }
bool try_produce(int item)
{

bool status = false;
pthread_mutex_lock(&mutex);
if(count != MAXSIZE) {

data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
status = true;

}
pthread_mutex_unlock(&mutex);
return status;

}
bool try_consume(int* item)
{

bool status = false;
pthread_mutex_lock(&mutex);
if(count != 0) {

*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
status = true;

}
pthread_mutex_unlock(&mutex);
return status;

}
};

// Consumer code
int val;
while(!buf->try_consume(&val))
{}

// Producer code
while(!buf->try_produce(val))

{}

31

Condition Variables

• Condition variables are not really "variables"

– They don't store any data/value

• CVs assume you have other shared state that you are looking at to
determine you can not make progress and allow you to block, waiting for
an event

• CVs always are paired with a lock which is guaranteeing exclusive access to
the shared state that you are looking at

• CVs provide the following API

– wait(Lock* mutex): Puts the thread to sleep until signaled
• The associated lock must be LOCKED on a call to wait, which will unlock it as it puts the thread

to sleep and reacquire it once awoken

– signal(): Wakes one waiting thread

– broadcast(): Wakes all waiting thread

• CVs are memory-less

– A signal() when no one is waiting is forgotten

32

Blocking Bounded Queue

• By using condition variables we can
have the threads block until they will
be able to perform their desired task

• Producers need to

– Wait while buffer is full

– Signal any waiting consumers if the
buffer was empty but now will have 1
item

• Consumers need to

– Wait while buffer is empty

– Signal any waiting producers if the
buffer was full but now has 1 free spot

• Design tip:
– A good design for a shared object is to

have 1 lock and one or more CVs

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0)
{

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&prodcv, NULL);
pthread_cond_init(&conscv, NULL);

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};

33

Hansen/Mesa CV Semantics

• Why were the calls to "wait" inside a while
loop in the previous bounded buffer code?

• Hansen/Mesa CV Semantics

– When signal() is called, a waiter is awakened
but does not necessarily get the processor
or associated lock immediately

– From our bounded buffer example, say:
• A producer signals a waiting consumer, C1, that

something is available

• Before C1 is scheduled another consumer thread C2
runs, gets the lock, and consumes an item making
the buffer empty again

• When C1 actually gets the lock, buffer is still empty

– Wait should always be in a loop to ensure
the condition you are checking is valid after
you awake

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0)
{

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&prodcv, NULL);
pthread_cond_init(&conscv, NULL);

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};

34

Hoare CV Semantics

• Hoare Semantics

– Signaler gives lock and processor to signaled thread
ensuring no other thread can modify the state

– Now signal() must also take the lock as an arg.

• Can make it harder to create a correct
implementation
– In produce() find the red highlighted line, what could go

wrong when the producer signals a consumer in the line
above?

• tail and count have not been updated but the
producer has stopped running and lost the lock
– Usually, Hoare semantics indicate that the signaler gets

the processor and the lock back once the waiter leaves
its critical section

– Requires greater control over scheduling

• Most OSs use Mesa semantics!

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0)
{

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&prodcv, NULL);
pthread_cond_init(&conscv, NULL);

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
if(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0)

pthread_cond_signal(&conscv, &mutex);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
if(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv, &mutex);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};

35

What-If 1

• In a normal CV, wait atomically:

– Unlocks

– Sleeps

• Do they have to be performed
atomically (see red highlighted
lines)?

• Yes

– Could miss a signal if consume()
runs between unlock and sleep

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0)
{

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&prodcv, NULL);
pthread_cond_init(&conscv, NULL);

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_mutex_unlock(&mutex);
pthread_cond_wait(&prodcv);

}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

pthread_cond_wait(&conscv, &mutex);
}
if(count == MAXSIZE)

pthread_cond_signal(&prodcv);
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
pthread_mutex_unlock(&mutex);

}
};

Examples derived from:

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf

36

What-If 2

• For this question, assume only
1 consumer and RMW of count
(just for sake of argument)

• Does the signaler (consumer)
need to acquire the lock?

• Yes, again if the consumer runs in
between the producer's check of
count and wait on count, we might
miss a signal

class Buffer
{

int data[10];
int count, head, tail;
pthread_mutex_t mutex;
pthread_cond_t prodcv, conscv;

public:
Buffer() : count(0), head(0), tail(0)
{

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&prodcv, NULL);
pthread_cond_init(&conscv, NULL);

}
void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

pthread_cond_wait(&prodcv, &mutex);
}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
*item = data[head++];
if(head == MAXSIZE) head = 0;
pthread_cond_signal(&prodcv);

pthread_mutex_unlock(&mutex);
}

};

Examples derived from:

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf

37

What-If 3

• What if we update state while we
hold the lock but just call signal()
after we release the lock.
– Any problem?

• Not if waiters re-check the
condition (i.e. are in a while loop) as
they should be

• But realize some difference in
operation may occur as a waiter for
the mutex/lock will be added to the
ready list before the thread waiting
on the CV

void produce(int item)
{

pthread_mutex_lock(&mutex);
while(count == MAXSIZE) {

printf("Buffer full...producer waiting\n");
pthread_cond_wait(&prodcv, &mutex);

}
if(count == 0) pthread_cond_signal(&conscv);
data[tail++] = item; count++;
if(tail == MAXSIZE) tail = 0;
pthread_mutex_unlock(&mutex);

}
void consume(int* item)
{

pthread_mutex_lock(&mutex);
while(count == 0){

printf("Buffer empty...consumer waiting\n");
pthread_cond_wait(&conscv, &mutex);

}
*item = data[head++]; count--;
if(head == MAXSIZE) head = 0;
if(count == MAXSIZE-1) {

pthread_mutex_unlock(&mutex);
pthread_cond_signal(&prodcv);

}
else { pthread_mutex_unlock(&mutex); }

}

Examples derived from:

http://homes.cs.washington.edu/~arvind/cs422/lectureNotes/l8-6.pdf

38

Semaphores
• Semaphores define an integral value and two operations:

– Down()/P(): Waits until value > 0 then decrements val =>(val is never negative)

– Up()/V(): Increments val and picks a waiting thread (if any) and unblocks it,
allowing it to complete its P operation

• If initial val is 1, then semaphore acts like a lock

– Down = Acquire

– Up = Release

• If initial val is 0, then semaphore acts like a CV

– Down = Wait

– Up = Signal

• Concern: Semaphore has state (where as CVs were memoryless) so a Up/V
when no waiters exist will allow the next wait to immediately proceed

– Can make reasoning about the value of a semaphore difficult

– Requires programmer to map shared object state to semaphore count

• Generally prefer locks and CVs over semaphores for shared objects

• However semaphores can be used in specific places (especially in OSs)

39

Ensuring Mutual Exclusion

• How do we ensure atomic operation when implementing
queueing locks, CVs, and semaphores

• Uniprocessor, in-Kernel
– Can disable interrupts (only source of interleaving of memory access)

• Multiprocessor, in-Kernel
– Need some kind of atomic locking instruction (i.e. TSL, Compare-and-

swap) variable since disabling interrupts only applies to that one
processor

• Often use a spinlock

• Generally use both
– Lock so that no other concurrent thread can update

– Turn off interrupts so we quickly complete our code and don't get
interrupted or context switched

40

Tour Pintos

• Implements queueing locks and CVs in terms
of semaphores

• Since it is uniprocessor, just disable interrupts

41

USER LEVEL THREAD LIBRARIES

42

User Level Thread Libraries

• Currently, user threads
have to syscall/trap to the
OS/kernel mode to
perform thread context
switch and synchronization
– This takes time

• Can write a user-level thread library where
the user process implements a "scheduler" and
thread operations
– 1 kernel thread

– Many user threads that the user process code sets up
and swaps between

– User process uses "signals" (up-calls) to be notified
when a time quantum has passed and then swaps
user threads

– Problem: When kernel thread gets desceduled all
corresponding user threads get descheduled

43

User-Level Mutual Exclusion

• Can user level code disable interrupts to
ensure mutual exclusion?

– No, that is a privileged operation (only kernel can
do that)

• Have to use some kind of atomic instruction
(TSL, CAS, etc.)

44

GENERAL GUILDINES FOR WRITING
SHARED OBJECTS

Best Practices

45

Recall Shared Objects

• Shared Object (def.): An
object that will be accessed by
multiple threads

– Should maintain state/shared
data variables and the
synchronization variable(s)
needed to control access to
them

• Methods should lock the
object when updating shared
state

class ObjA
{

void f1(int newVal);

private:
/* State vars */
int sum;
vector<int> vals;
/* Synchronization var */
Lock the_lock;

}

void ObjA::f1(int newVal)
{

the_lock.acquire();
vals.push_back(newVal);
sum += newVal;
the_lock.release();

}

46

Guidelines For Shared Objects

• Decompose problem into shared objects. For each shared
object allocate a lock. Lock when you enter, unlock before
returning. Find out what conditions to wait for, an assigned a
condition variable for each separate condition. Always use a
while loop for the condition variable wait. Safe to always
broadcast.

• Best practices:
– Follow consistent design patterns, do not try to optimize

– Always synch with locks and condition variables, not semaphores

– Always acquire at the start of a method & release at the end

– Condition variable: hold lock before wait, wait in while loop

– Never use thread_sleep to wait for a condition

47

OTHER SYNCHRONIZATION
PRIMITVIES

48

Reader/Write Locks

• Consider a shared data-structure like a
hashtable (using chaining) supporting insert,
remove, and find/lookup
– We can't lookup while doing an insert or remove

since the structures/pointers might be updated

– Following our guidelines, we'd have a single lock
to ensure mutual exclusion and just acquire the
lock at the start of each member function (insert,
remove, find)

– Theoretically, can multiple find() operations run
in parallel?

• Yes, but if we lock at the start of find() we will
preclude this and lower performance

– We can safely have many readers, but only 1
writer at a time

0

1

2

3

4

…

key, value
Array of Linked

Lists

49

Reader Write Locks

• Support many readers but only 1 writer

– Description below "prioritizes" writers

• Operations:

– startRead(): Waits if a current writer is active or another
writer is already waiting, otherwise proceeds

– doneRead(): If last reader, signals a waiting writer

– startWrite(): Waits if a current write is active or 1 or more
readers are active, otherwise proceeds

– doneWrite(): If a waiting writer, signal it; otherwise
broadcast/signal all waiting readers

• See OS:PP 2nd Ed. Figure 5.10

