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WHAT IS A THREAD AND WHY USE 
THEM
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What is a Thread?

• Thread (def.): Single execution 

sequence representing a separately 
schedulable task

– Execution sequence: Registers, PC (IP), 
Stack

– Schedulable task: Can be transparently 
paused and resumed by the OS 
scheduler

CPU

0xbff70c44esp

0x800011c8eip

eflags

eax

Memory

dec ECX

jnz done

---

---

done:

ret

Code

T1 Stack

0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400

Kernel

0x80000000

T2 Stack
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Threads vs. Processes

• Process (def.): Address Space + 
Threads
– Address space is protected from other 

processes

– 1 or more threads
• Pintos, Original Unix:  1 Process = 1 Thread

• Most OSs:  1 Process = n Threads

• Kernel may have many threads and can 
access any processes memory

Mem.

0x00000000

0xffff ffff

Address Space

Stack(s)

(1 per 

thread)

Kernel

Program/Process 

1,2,3,…

Code

Globals

Heap

= Thread
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Why Use Threads?

• Unit of parallelism

– Take advantage of multiple cores

– Increase utilization of single-core
• In case of long-latency events (namely 

I/O) where one thread must wait, let the 
processor execute another thread

• Hard (if not impossible) to express 
concurrency in a single thread

– See example of e-mail client on next 
slide

CPU

State
(Reg.
, PC)

T1 = Blocked

State
(Reg.
, PC)

T2 = Blocked

State
(Reg.
, PC)

T3 = Ready

Waiting on 

disk

Waiting on 

Network
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Email Client (Threaded vs. Non-Threaded)

• Left: Natural way of expressing 
concurrent tasks as separate entities and 
sequences of execution

• Right: Attempt to ensure response times 
among the tasks with only 1 thread

/* Thread 1 */

void searchEmail(List* results,

char* target)

{

for(i=0; i < numEmails; i++)

if(contains(emails[i], target))

results->push_back(emails[i]);

}

/* Thread 2 */

void checkIncoming(bool* newMsg)

{

while(1){

fd_set rset;

FD_ZERO(&rset); 

FD_SET(sockID, &rset);

uint64_t msTimeOut = 1000; // milli

select(FD_SETSIZE, rfds, ..., msTimeOut);

*newMsg = FD_ISSET(sockID, &rset);

}

}

/* Thread 3 */

void checkAndHandleUserInput()

{

while(1){

if(pressCompose()) { ... }

else if(pressDeleteMsg()) { ... }

else {... }

}

}

void doItAll( /* args */ )

{

int si = -1, checkCnt = 100;

while(1){

if(startSearch()) si = 0;

if(si != -1) {     

/* Search next email */

if(contains(emails[si], target))

results->push_back(emails[si]);

if(++si == numEmails);

}

/* Check new msgs every 100th itr */

if(--checkCnt == 0){

checkCnt = 100;

uint64_t msTimeOut = 0; // none

select(..., msTimeOut);

*newMsg = FD_ISSET(...);

}

if(pressCompose()) { ... }

else if(pressDeleteMsg()) { ... }

else {... }   

}

}
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Main Idea

• Key idea: Operating system multiplexes these 
threads on the available processors by 
suspending and resuming threads 
transparently

• A thread provides a virtualization of the 
processor (i.e. nearly infinite number of 
"processors")

– Number of threads >> number of processors
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SCHEDULING AND INTERLEAVING
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OS Scheduler & Context Switches

• A primary OS component is the scheduler

– Chooses one of the "ready" threads and grants it 
use of the processor 

– Saves the state (registers + PC) of the previously
executing thread and then restores the state of the 
next chosen thread

– Swapping threads (saving & restoring state) is 
known as a context switch

– Appears transparent to the actual thread code

• Policies for choosing next thread are examined in 
a subsequent chapter (for now assume simple 
round-robin / FIFO)

• Threads have memory to store register, PC, and 
some metadata (thread ID, thread-local variables, 
etc.) in some kind of OS data structure usually 
called a thread control block (TCB)

CPU

Saved 
State

T1 = Ready

Saved 
State

T2 = Blocked

Saved 
State

T3 = Ready

OS 
Scheduler

Regs

PC

Regs

PC

Regs

PC

Regs

PC

Meta
Data

Meta
Data

Meta
Data

TCB TCB TCB
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When to Context Switch

• Cooperative Multitasking (Multithreading)

– Current running thread gets to determine 
(voluntarily) when it will yield the processor

– Used in some older OSs (e.g. Windows 3.1)

• Preemptive Multitasking (Multithreading)

– OS can unilaterally cause the current running 
thread to be context switched

– Generally done based on some regular timer 
interval (i.e. time quantum) such as every 10ms

– Used in most OSs
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Interleavings

• Generally, threads can be interleaved (i.e. swapped) 
at arbitrary times by the OS 

– Exception 1: certain situations in a real-time OS

– Exception 2: Kernel explicitly disables interrupts 
temporarily

• The programmer MUST NOT assume any particular 
interleaving or speed of execution

– Ensure correctness in the worst possible case (i.e. context 
switch at the most vulnerable time)

– Assume "variable" rate of execution
• No idea when cache miss or page fault will occur

• Even in absence of these, speed of execution of code is not 
constant (due to pipelining, branch prediction, etc.)
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Race Condition
• A race condition occurs when the behavior of the program 

depends on the interleaving of operations of different threads.

• Example:  Assume x = 2
– T1: x = x + 5

– T2: x = x * 5

• Outcomes
– Case 1: T1 then T2

• After T1: x = 7

• After T2: x = 35

– Case 2: T2 then T1
• After T2: x = 10

• After T1: x = 15

– Case 3: Both read before either writes, T2 Write, T1 Write
• x = 7

– Case 4: Both read before either writes, T1 Write, T2 Write
• x = 10
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Critical Section: First Look

• A critical section is a section of code that should be performed without 
the chance of context switching in the middle (i.e. updating certain OS 
data structures)

• On a single-processor system one way to ensure no context switch is to 
disable interrupts

– Now timer or other interrupt cannot cause the current thread to be context 
switched

• General pattern:

old_state = getInterruptStatus();

disableInterrupts();

/* Do critical task */

setInterrupts(old_state);

• Why do we need old_state and not just enableInterrupts() at the end?
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Thread Scheduling State

• Two kinds of thread state:
– It's current register, PC, stack values

– It's scheduling status 

• I'll refer to this as its scheduling state

• Scheduling states
– INIT: Being created

– READY:  Able to execute and use the processor

– RUNNING:  Currently running on a processor

– BLOCKED/WAITING: Unable to use the processor (waiting for I/O, 
sleep timer, thread join, or blocked on a lock/semaphore)

– FINISHED:  Completed and waiting to be deleted/deallocated
• We can't delete the TCB and especially the stack in the context of the dying thread 

(we need the stack to know where to return) 

• Instead, we list it as a finished thread and the scheduler can come and clean it up as 
it schedules the next thread 
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THREADING API
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Common Thread API

• thread_create

• thread_yield

• thread_join

• thread_exit

• thread_sleep

Note: On a multicore many 
thread libraries allow a thread to 

specify an processor affinity
indicating which processor it 

prefers to run on.
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Review Questions

• Why use threads? What benefits do they 
provide over traditional serial execution?

• As the programmer, how do you know if your 
program has a race condition? Where would 
you start to debug a race condition?
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OS BOOKKEEPING & THREAD 
METADATA
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Thread Control Block

• Per-thread state maintained by the OS

– Scheduling state, priority

– Last Stack Pointer

– Registers/PC can be stored in TCB or on 
stack (Pintos places them on the stack)

• TCBs can be stored in some kernel list

– Pintos places TCB at the base of the stack

Memory

dec ECX

jnz done

---

---

done:

ret

Code

T1 Stack

0xffffffff

0x0

0x08048000

0xc000e000

T2 Stack

T1 TCB

T2 TCB0xc0007000
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Pintos TCB
enum thread_status

{

THREAD_RUNNING,     /* Running thread. */

THREAD_READY,       /* Not running but ready to run. */

THREAD_BLOCKED,     /* Waiting for an event to trigger. */

THREAD_DYING        /* About to be destroyed. */

};

struct thread

{

/* Owned by thread.c. */

tid_t tid;                  /* Thread identifier. */

enum thread_status status;  /* Thread state. */

char name[16];              /* Name (for debugging purposes). */

uint8_t *stack;             /* Saved stack pointer. */

int priority;               /* Priority. */

struct list_elem allelem;   /* List element for all threads list. */

/* Shared between thread.c and synch.c. */

struct list_elem elem;      /* List element. */

#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir;          /* Page directory. */

#endif

/* Owned by thread.c. */

unsigned magic;             /* Detects stack overflow. */

};
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Linux
struct task_struct {

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

void *stack;

atomic_t usage;

unsigned int flags; /* per process flags, defined below */

unsigned int ptrace;

#ifdef CONFIG_SMP

struct llist_node wake_entry;

int on_cpu;

struct task_struct *last_wakee;

unsigned long wakee_flips;

unsigned long wakee_flip_decay_ts;

int wake_cpu;

#endif

int on_rq;

int prio, static_prio, normal_prio;

unsigned int rt_priority;

/* And a lot more!!! */

}

Process/Thread Control Block (task_struct): 

/usr/src/linux-headers-3.13.0-24-generic/include/linux/sched.h:1042
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CPU

Where's The Thread

• The OS must keep track of threads

• Can maintain a list of all threads but 
each thread may be in a different state

• Generally, thread can be in a "ready list" 
that the scheduler will choose from on 
a context switch
– Running thread can either be the head of 

this list (Linux) or not in this list at all 
(Pintos)

• Other threads can be blocked. Blocked 
on what?
– Sleep timer

– Lock, Cond. Var., Semaphore

Sched.
T7

T2 Running

T4 T1

Lock 1
T3 T6

Ready

Sleep
T5

Blocked
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Resources & Examples

• Process Control Block (task_struct): 
/usr/src/linux-headers-3.13.0-24-
generic/include/linux/sched.h

– Around line 1042

• Syscalls: http://man7.org/linux/man-
pages/man2/syscalls.2.html

– Defined in <unistd.h>

http://man7.org/linux/man-pages/man2/syscalls.2.html


28

THREAD CONTEXT SWITCH
In-Depth
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Thread Context Switch Example

• Thread 1 is currently executing (in f1()) while 
thread 2 is waiting in the ready list after having 
yielded the CPU in f2()

• Thread 1 is about to call thread_yield()

CPU

Memory

f1:

---

call yield

---

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbff70c44esp

0x800011c8eip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame

T1 last %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

---

Thread 2 Code
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Thread Context Switch Example

• Thread 1 calls thread_yield() pushing the RA (return 
address) to f1() on the stack

• thread_yield()  disables interrupts, adds the current 
thread to the waiting list (in state READY), and chooses 
the next thread to schedule (i.e. Thread 2) and sets it to 
RUNNING

• thread_yield() then calls thread_switch() which pushes all 
T1's registers onto its stack and then saves the %esp to 
TCB1

CPU

Memory

f1:

---

call yield

---

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

---

Thread 2 Code

thread_switch:

# Note that the SVR4 ABI allows us to 

# destroy %eax, %ecx, %edx,

pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

# Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

# Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)...
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Thread Context Switch Example

• thread_switch() then resets the %esp to T2's 
saved version from TCB2

CPU

Memory

f1:

---

call yield

---

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffff800esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

---

Thread 2 Code

thread_switch:

# Note that the SVR4 ABI allows us to 

# destroy %eax, %ecx, %edx,

pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

# Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

# Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)

# Restore stack pointer from new thread's stack.

movl SWITCH_NEXT(%esp), %ecx

movl (%ecx,%edx,1), %esp

# Restore caller's register state.

popl %edi

popl %esi

popl %ebp

popl %ebx

ret
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Thread Context Switch Example

• thread_switch() completes by popping/restoring 
the registers from T2's stack

• thread_switch() then returns back in the context 
of thread 2 and not thread 1 (which called it)

CPU

Memory

f1:

---

call yield

---

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffff800esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 last %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

---

Thread 2 Code

thread_switch:

...

# Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

# Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)

# Restore stack pointer from new thread's stack.

movl SWITCH_NEXT(%esp), %ecx

movl (%ecx,%edx,1), %esp

# Restore caller's register state.

popl %edi

popl %esi

popl %ebp

popl %ebx

ret
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Thread Context Switch Example

• thread_yield will then return back to f2() which 
resumes execution

CPU

Memory

f1:

---

call yield

---

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffffc00esp

thread_yieldeip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 last %esp

Thread 2 Stack

0xbffffc80 f2()'s frame
RA to f2()

yield()'s frame

f2: ---

call yield

---

Thread 2 Code

0xbffffc00
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THREAD CREATION
In-Depth
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Idea for Creation Mechanism

• Allocate a TCB and stack 

• Setup the stack to look exactly as if the new 
thread was already alive and had just called 
yield()

– Meaning:  Setup the initial stack with dummy 
"saved" register values and a return address 
already on it that can be popped by 
thread_switch()
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Thread Create Example

• Assume a new thread should be created with 
entry point of doit(void* arg)
– OS will provide a stub function that will call the entry 

point of the new thread once it is ready

• To create a new thread the kernel will execute 
thread_create()

• thread_create() will allocate a new TCB for the 
thread (TCB1) and memory for its stack

CPU

Memory

thread_create:

---

Kernel Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_createeip

Kernel Thread 
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

Thread 1 Stack

0xbffffc80

0xbffff800

doit:

---

---

Thread 1 Code

stub:

push  arg

call  0xc1100180

call  thread_exit

ret 

0xc1100180

void stub( void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}
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Thread Create Example

• thread_create() will setup the new thread's state 
to exactly resemble that of a descheduled
(waiting) thread

• To do this, it first makes it look like stub() was 
the caller when the thread got "descheduled"
– Pushes the "RA" to stub onto the new stack as well as 

space representing the "saved" (really dummy) values 
of the registers

– Sets the TCB's saved %esp to point
at the top of this stack

• Adds this new thread to the ready 
list to be scheduled on a context
switch

CPU

Memory

thread_create:

---

Kernel Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_createeip

Kernel Thread 
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1  %esp

Thread 1 Stack

0xbffffc80

0xbffffa00

RA to stub()

dummy reg's

doit:

---

---

Thread 1 Code

stub:

push  arg

call  0xc1100180

call  thread_exit

ret 

0xc1100180

T1 %eip
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Thread Create Example

• On a context switch (recall thread_switch()), the 
dummy registers will be restored/popped from 
the stack and thread_switch will return to 
wherever the RA indicates (i.e. stub())

CPU

Memory

thread_create:

---

Kernel Code

0xffffffff

0x0

0x800011c8

0xbffffa00esp

thread_switcheip

Kernel Thread 
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1  %esp

Thread 1 Stack

0xbffffc80

0xbffffa00

RA to stub()

dummy reg's

doit:

---

---

Thread 1 Code

stub:

push  arg

call  0xc1100180

call  thread_exit

ret 

0xc1100180

T1 %eip

void stub( void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}
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Thread Create Example

• stub() will now push the argument to the thread 
entry point (i.e. doit(arg)) and call doit()

• The thread is now executing and can be context 
switched as needed

• When doit() completes, control will be returned 
to stub() which will call thread_exit() meaning 
stub() will not return (since there is nothing to 
return to)

CPU

Memory

thread_create:

---

Kernel Code

0xffffffff

0x0

0x800011c8

0xbffffa78esp

doiteip

Kernel Thread 
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1 last  %esp

Thread 1 Stack

0xbffffc80

0xbffffa78

doit:

---

---

Thread 1 Code

stub:

push  arg

call  0xc1100180

call  thread_exit

ret 

0xc1100180

T1 %eip

thread-arg

RA to stub()

doit() stack frame

void stub( void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}
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KERNEL VS. USER THREADS
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General Relationship of Threads in User 
and Kernel Mode

• Each user level thread 
may have it's own 
kernel stack for use 
during interrupts and 
system calls 

• Due to the overhead of a system call 
and switching from user to kernel 
mode, some older systems have user-
level threads
– 1 kernel thread

– Many user threads that the user process 
code sets up and swaps between

– User process uses "signals" (up-calls) to be 
notified when a time quantum has passed 
and then swaps user threads 


