CSCI 350
Ch. 4 — Threads and Concurrency

Mark Redekopp
Michael Shindler & Ramesh Govindan

WHAT IS A THREAD AND WHY USE
THEM

What is a Thread?

* Thread (def.): Single execution

sequence representing a separately -
schedulable task

— Execution sequence: Registers, PC (IP),
Stack

— Schedulable task: Can be transparently
paused and resumed by the OS
scheduler et

eax

Memory

0x80000000

esp Oxbff70c44

eip | 0x800011c8

0x080a4

cccccc
eflags j

done:

CPU 0%0

i, TS(“Viterbi 9

School of Engineering

Shared Per—Thread Per—Thread
State State State
T == P—Thread Control Thread Control
Heap Block (TCB) Block (TCB)
......... i R
Information Information
Saved Saved
Global Registers Registers
Variables | [e e
Metadata Metadata

i (5 Vierbi >
Threads vs. Processes

Program/Process
* Process (def.): Address Space + 1.2.3,...
———
Th rea d S Oxffff ffff
— Address space is protected from other Kernel
processes
— 1 or more threads Stack(s)
* Pintos, Original Unix: 1 Process = 1 Thread tﬁlregedr)
* Most OSs: 1 Process = n Threads
* Kernel may have many threads and can e
dCCesSs any processes memory —
SC&ieS S:Thread
g o 0x00000000

Address Space

Why Use Threads?

* Unit of parallelism
— Take advantage of multiple cores
— Increase utilization of single-core

* In case of long-latency events (namely
|/0) where one thread must wait, let the
processor execute another thread

* Hard (if not impossible) to express
concurrency in a single thread

— See example of e-mail client on next
slide

CPU

T1l=Blocked T2-= Blocked T3*= Ready

State
(Reg.
, PC)

Waiting on Waiting on
disk Network

i, TS(“Viterbi -

School of Engineering

Email Client (Threaded vs. Non-Threaded)

/* Thread 1 */
void searchEmail (List* results,
char* target)
{
for(i=0; i < numEmails; i++)
if (contains (emails[i], target))
results->push_back (emails[i]) ;

}

/* Thread 2 */
void checkIncoming (bool* newMsg)
{
while (1) {
fd_set rset;
FD_ZERO (&rset) ;
FD_SET (sockID, &rset);
uint64_t msTimeOut = 1000; // milli
select (FD_SETSIZE, rfds, ., msTimeOut) ;
*newMsg = FD_ISSET (sockID, &rset);
}
}

/* Thread 3 */
void checkAndHandleUserInput ()
{
while (1) {
if (pressCompose()) { ... }
else if (pressDeleteMsg()) { ... }
else {... }
}
}

void doItAll(/* args */)

{

int si = -1, checkCnt = 100;
while (1) {

if (startSearch()) si = 0;
if(si '= -1) {
/* Search next email */
if (contains (emails[si], target))
results->push_back (emails[si]);
if (++si == numEmails) ;
}
/* Check new msgs every 100t itr */
if (--checkCnt == 0) {
checkCnt = 100;
uint64_t msTimeOut = 0; // none
select(..., msTimeOut) ;
*newMsg = FD_ISSET(...);
}
if (pressCompose()) { ... }
else if (pressDeleteMsg()) { ... }
else {... }

Left: Natural way of expressing
concurrent tasks as separate entities and
sequences of execution

Right: Attempt to ensure response times
among the tasks with only 1 thread

Main Idea

e Key idea: Operating system multiplexes these
threads on the available processors by
suspending and resuming threads
transparently

* Athread provides a virtualization of the
processor (i.e. nearly infinite number of
"processors")

— Number of threads >> number of processors

Programmer Abstraction
Thieads| § | S 1 S| Sy S

:1:2 3! 4

Processors : W o
1 2

l

|

:;m
3_

Physical Reality

Ready
Threads

Running
Threads

SCHEDULING AND INTERLEAVING

i, TS(“Viterbi Cw

School of Engineering

OS Scheduler & Context Switches

A primary OS component is the scheduler
— Chooses one of the "ready" threads and grants it
use of the processor

— Saves the state (registers + PC) of the previously
executing thread and then restores the state of the

next chosen thread

— Swapping threads (saving & restoring state) is
known as a context switch

— Appears transparent to the actual thread code

* Policies for choosing next thread are examined in
a subsequent chapter (for now assume simple
round-robin / FIFO)

* Threads have memory to store register, PC, and
some metadata (thread ID, thread-local variables,
etc.) in some kind of OS data structure usually
called a thread control block (TCB)

CPU
Regs

PC

0S
SchedLﬂer

Tl=Ready T2=Blocked T3=Ready

S 0% S

Saved
State
Regs

PC

Meta
Data

TCB

When to Context Switch

* Cooperative Multitasking (Multithreading)

— Current running thread gets to determine
(voluntarily) when it will yield the processor

— Used in some older OSs (e.g. Windows 3.1)
* Preemptive Multitasking (Multithreading)

— OS can unilaterally cause the current running
thread to be context switched

— Generally done based on some regular timer
interval (i.e. time quantum) such as every 10ms

— Used in most OSs

i, TS(“Viterbi -

Interleavings

e Generally, threads can be interleaved (i.e. swapped)
at arbitrary times by the OS

— Exception 1: certain situations in a real-time OS
— Exception 2: Kernel explicitly disables interrupts
temporarily
* The programmer MUST NOT assume any particular
interleaving or speed of execution

— Ensure correctness in the worst possible case (i.e. context
switch at the most vulnerable time)

— Assume "variable" rate of execution

* No idea when cache miss or page fault will occur

* Even in absence of these, speed of execution of code is not
constant (due to pipelining, branch prediction, etc.)

i, TS(“Viterbi

School of Engineering

Race Condition

* A race condition occurs when the behavior of the program
depends on the interleaving of operations of different threads.

 Example: Assume x =2
— T1l:x=x+5
— T2:x=x*5

* Qutcomes
— Case 1: T1 then T2

e AfterTl:x=7
e After T2:x=35

— Case 2: T2thenT1
e AfterT2:x=10
e AfterT1l:x=15

— Case 3: Both read before either writes, T2 Write, T1 Write

e x=7

— Case 4: Both read before either writes, T1 Write, T2 Write
e x=10

i, TS(“Viterbi 9

School of Engineering

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X=X+1; XxX=x+1; X=X+ 1 X=X+1
y=Y+X; YVEY+HX e y=Yy+X

Z=X+5y; z=x+5y; threadissuspended ...
other thread(s) run thread is suspended
thread is resumed other thread(s) run
............... thread is resumed

YVEYERX 0 G
Z=X+5y Z=X+ 5y
Thread 1 [Thread 1 []
Thread 2 = Thread 2 |]
Thread 3 1 Thread 3 |]
a) One execution b) Another execution

Thread 1] i gl 1 i
Thread2 ([0o OocCc3

Thread 3 O 0 I

c) Another execution

i, TS(“Viterbi

School of Engineering

Critical Section: First Look

e Acritical section is a section of code that should be performed without
the chance of context switching in the middle (i.e. updating certain OS
data structures)

* On asingle-processor system one way to ensure no context switch is to
disable interrupts

— Now timer or other interrupt cannot cause the current thread to be context
switched

* General pattern:
old_state = getInterruptStatus();
disablelInterrupts();
/* Do critical task */

setInterrupts(old state);
* Why do we need old_state and not just enablelnterrupts() at the end?

i, TS(“Viterbi -

Thread Scheduling State

 Two kinds of thread state:
— It's current register, PC, stack values

— It's scheduling status
e |'ll refer to this as its scheduling state

e Scheduling states
— INIT: Being created
— READY: Able to execute and use the processor

— RUNNING: Currently running on a processor

— BLOCKED/WAITING: Unable to use the processor (waiting for 1/0,
sleep timer, thread join, or blocked on a lock/semaphore)

— FINISHED: Completed and waiting to be deleted/deallocated

* We can't delete the TCB and especially the stack in the context of the dying thread
(we need the stack to know where to return)

* Instead, we list it as a finished thread and the scheduler can come and clean it up as
it schedules the next thread

i, TS(“Viterbi

School of Engineering

/‘ Scheduler
/ Thread Creation Resumes Thread
\\Init 9.0 Ready Runnmg

Event Occurs
.9, other thread

sthread_joini

Thread Exit

Finished

Thread Yields/
Scheduler
Suspends Thread

©.9., sthread yleld()

Thread Waits for Event

®.9.s
sthread_join()

calls

Waiting

State of Thread Location of Thread Control Block (TCB) Location of Registers

INIT
READY
RUNNING
WAITING
FINISHED

Being Created TCB
Ready List TCB

Running List Processor
Synchronization Variable's Waiting List TCB
Finished List then Deleted TCB

THREADING API

- USCVlterb1
Common Thread API

#include <stdio.h>
#include "sthread.h”

¢ t'\reaC_Create static void go(int n);
. #define NTHREADS 10
° tqreac y|e|d static sthread_t threads [NTHREADS];
— int main(int argc, char ssargv)
[] ° {
¢ t’]reac_]OIn int 11,
. for(ii = 0; ii < NTHREADS; ii++){
° tqreac eX|t sthread_create (&(threads[ii]), &go, ii);
—_— }
for(ii = 0; ii < NTHREADS; ii++){
long ret = sthread_join(threads[ii]);
* thread sleep priott (- Thread % returned %dvir, Il , ret):
-)
printf(*"Main thread done.\n");
return 0;
}
Note: On a multicore many {V°‘° gnling 8
thread libraries allow a thread to ptrt:nt':"He::c(J1ér()om thread %d\n", n);
. . . sthread_ex +Nn);
specify an processor affinity Nob Taachod
indicating which processor it }

prefers to run on.

N UsCViterbi D
School of Engineer

Review Questions

ing

* Why use threads? What benefits do they
provide over traditional serial execution?

* As the programmer, how do you know if your
program has a race condition? Where would
you start to debug a race condition?

OS BOOKKEEPING & THREAD
METADATA

Thread Control Block

* Per-thread state maintained by the OS
— Scheduling state, priority
— Last Stack Pointer

— Registers/PC can be stored in TCB or on
stack (Pintos places them on the stack)

e TCBs can be stored in some kernel list
— Pintos places TCB at the base of the stack

Oxffffffff
Memory

0xc000e000 T1TCB

T1 Stack

0xc0007000

0x08048000

0x0

Pintos TCB

enum thread status

{

THREAD RUNNING, /* Running thread. */

THREAD READY, /* Not running but ready to run. */
THREAD BLOCKED, /* Waiting for an event to trigger. */
THREAD DYING /* About to be destroyed. */

¥

struct thread
{
/* Owned by thread.c. */
tid t tid;
enum thread status status;
char name[16];
uint8_t *stack;
int priority;
struct 1ist_e1em allelem;

/*
/*
/*
/*
/*
/*

/* Shared between thread.c and
struct list elem elem; /*

#ifdef USERPROG

/* Owned by userprog/process.c.

uint32_t *pagedir; /*

#endif

/* Owned by thread.c.
unsigned magic;

¥

*/
/*

Thread identifier. */

Thread state. */

Name (for debugging purposes) .
Saved stack pointer. */
Priority. */

List element for all threads list.

*/

synch.c. */
List element.

*/

*/

Page directory.

*/

*/

Detects stack overflow.

*/

i, TS(“Viterbi

School of Engineering

i, TS(“Viterbi -«

School of Engineering

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;

#ifdef CONFIG_SMP
struct 1llist node wake_ entry;
int on_cpu;
struct task_struct *last wakee;
unsigned long wakee flips;
unsigned long wakee flip decay ts;
int wake_ cpu;

#endif
int on_rq;
int prio, static_prio, normal prio;
unsigned int rt priority;
/* And a lot more!!! */

Process/Thread Control Block (task_struct):
/usr/src/linux-headers-3.13.0-24-generic/include/linux/sched.h:1042

School of Engine

Where's The Thread

CPU

The OS must keep track of threads . i

Can maintain a list of all threads but
each thread may be in a different state

Ready

T7
Generally, thread can be in a "ready list" e S K S-’ S
that the scheduler will choose from on
a context switch Lock 1 _.I I
— Running thread can either be the head of Mowe
this list (Linux) or not in this list at all
(Pintos) Sleep -’I
Other threads can be blocked. Blocked
on what?
— Sleep timer

— Lock, Cond. Var., Semaphore

USC Viterbi €

e — ()5 \terbi
Resources & Examples

* Process Control Block (task_struct):
Jusr/src/linux-headers-3.13.0-24-
generic/include/linux/sched.h

— Around line 1042

 Syscalls: http://man7.org/linux/man-
pages/man2/syscalls.2.html
— Defined in <unistd.h>

http://man7.org/linux/man-pages/man2/syscalls.2.html

In-Depth

THREAD CONTEXT SWITCH

i, TS(“Viterbi

School of Engineering

Thread Context Switch Example

i

Memory

 Thread 1 is currently executing (in f1()) while
thread 2 is waiting in the ready list after having
yielded the CPU in f2() oo [—
RA to f2()

* Thread 1 is about to call thread_vyield() e

T2 reg's

T2 saved %esp

T1 last %esp

0xbffff800
Thread 2 Stack

Thread 2 Code

call yield

Oxbff70c44

eax 0xbff70a88

Thread 1 Stack
|

eip | 0x800011c8 ~ Thread 1 Code

fl:
eﬂags 0x800011c s

call yield

esp 0xbff70c44 /

0x80000000

CPU 0x0

User mem.

USC Viterbi

School of Engineering

Thread Context Switch Example

Ox(ffffffff Memo ry

 Thread 1 calls thread_yield() pushing the RA (return

address) to f1() on the stack

* thread_yield() disables interrupts, adds the current

TCB1

T1 saved %esp

- . . Oxbffffc80 f2()'s f
thread to the waiting list (in state READY), and chooses R fo 20
. . yield()'s frame
the next thread to schedule (i.e. Thread 2) and sets it to RA to yield|
RUNNING OXbI800 U2 BES
* thread_yield() then calls thread switch() which pushes all
T1's registers onto its stack and then saves the %esp to ‘
TCR1 Oxbff70c44 f1()'s frame
thread switch: RA to f1()
Note that the SVR4 ABI allows us to yield()'s frame
destroy %eax, %ecx, %edx, RA to yield()
pushl %ebx eax Oxbff70a88 T1reg's
Pohl foes Thread 1 Stack
pushl %esi esp | Oxbff70a88 _— Thread 1 Stack
pushi fedi SO heoo_suinch
Get offsetof (struct thread, stack). oflaas 0x800011¢8 T '
.globl thread stack ofs g el ved
mov thread stack ofs, %edx 0x80000000 |
Save current stack pointer to old thread's stack CPU 00 User mem.

movl SWITCH CUR(%esp), %eax
movl %esp, (%eax,%edx,1)...

i, TS(“Viterbi s

School of Engineering

Thread Context Switch Example

e thread switch() then resets the %esp to T2's

saved version from TCB2

thread switch:
Note that the SVR4 ABI allows us to
destroy %eax, %ecx, %edx,
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack).
.globl thread stack ofs
mov thread stack ofs, %edx

Save current stack pointer to old thread's stack
movl SWITCH CUR(%esp), %eax

movl %$esp, (%eax,%edx,1l)

Restore stack pointer from new thread's stack.
movl SWITCH NEXT (%esp), %ecx

movl (%ecx,%edx,1l), %esp

Restore caller's register state.
popl %edi

popl %$esi

popl %ebp

popl %ebx

ret

eax
esp
eip

eflags

CPU

Oxbffff800

thread_switch

i

Oxbffffc80

0xbffff800

0xbff70c44

0xbff70a88

0x800011c8

Memory

T2 saved %esp

T1 saved %esp

f2()'s frame

RA to f2()

yield()'s frame

RA to yield()

T2 reg's
Thread 2 Stack

Thread 2 Code

228 ===
call yield

f1()'s frame

RA to f1()

yield()'s frame

RA to yield()

T1 reg's

Thread 1 Stack

|
Thread 1 Code

fl:

call yield

0x80000000
0x0

User mem.

i, TS(“Viterbi 2

School of Engineering

Thread Context Switch Example

» thread_switch() completes by popping/restoring
the registers from T2's stack

e thread switch() then returns back in the context
of thread 2 and not thread 1 (which called it)

thread_swi tch:

eip | thread_switch

ret

i

T2 last %esp

T1 saved %esp

f2()'s frame

RA to f2()

Thread 2 Stack

Get offsetof (struct thread, stack). Thread 2 Code
.globl thread stack ofs Tt yiela

mov thread stack _ofs, %edx —

OxbfffOc44 f1()'s frame
Save current stack pointer to old thread's stack RA to f1()
movl SWITCH_CUR (%esp), %eax yield()'s frame
movl %esp, (%eax,%edx,l) | RA to yield()
Restore stack pointer from new thread's stack. eax Oxbff70a88 Tlreg's
movl SWITCH NEXT (%esp), S%ecx Thread 1 Stack
movl (%$ecx,%edx,1l), %esp esp O0xbffff800 SE—

Thread 1 Code

Restore caller's register state. o

popl %ed:!. eflags 0x800011c8 el oAl
popl %esi -

popl %ebp 0x80000000 User mem
popl %ebx CPU 0%0 :

i, TS(“Viterbi 2

School of Engineering

Thread Context Switch Example

i

Memory

e thread_yield will then return back to f2() which T2 st dhesp
resumes execution

T1 saved %esp

Oxbffffc80 f2()'s frame

OxbffffcO0

Thread 2 Stack

Thread 2 Code

£2: ---
call yield
Oxbff70c44 f1()'s frame
RA to f1()
yield()'s frame
RA to yield()
eax / 0xbff70a88 UL e

Thread 1 Stack
esp Oxbffffc00

|
Thread 1 Code

fl:

eip thread_yield

eﬂags 0x800011c8

call yield

0x80000000

CPU 0x0

User mem.

In-Depth

THREAD CREATION

 Allocate a TCB and stack

e Setup the stack to look exactly as if the new
thread was already alive and had just called

vield()

— Meaning: Setup the initial stack with dummy
"saved" register values and a return address
already on it that can be popped by
thread switch()

i, TS(“Viterbi

School of Engineering

Thread Create Example

Ox(ffffffff

Memory

e Assume a new thread should be created with
entry point of doit(void* arg)

— OS will provide a stub function that will call the entry oxoficso
point of the new thread once it is ready

TCB

 To create a new thread the kernel will execute 300
thread_create()

Thread 1 Stack

Thread 1 Code

0xc1100180 | doit:

* thread create() will allocate a new TCB for the

1 0xbff70c44
thread (TCB1) and memory for its stack rofroe
Kernel Thread
Stack
void stub(void (*func) (void*), void* arg) eax Oxbff70288
{ / Kernel Code
(*func) (arg) ; esp 0xbff70a88 ton
thread—eXit(O) ; 1 i:i? giilloolSO
} elp thread_create call thread_exit
ret
eﬂagS OX800011C8 thread create

0x80000000 I
CPU 0x0 '

USC Viterbi

School of Engineering

Thread Create Example

Oxfrtfff Memory
e thread create() will setup the new thread's state
to exactly resemble that of a descheduled -
(waiting) thread oatoso [—

Oxbffffa00 dummy reg's

* To do this, it first makes it look like stub() was
the caller when the thread got "descheduled"

Thread 1 Stack

— Pushes the "RA" to stub onto the new stack as well as
space representing the "saved" (really dummy) values ~ octwooweo | ‘
of the registers Oxbif70ca4

— Sets the TCB's saved %esp to point
at the top of this stack cax /Wbﬁ?oa% —

Kernel Code
e Adds this new thread to the ready o S
. EIPR thread_create Sall thiead emit
list to be scheduled on a context ngs oraooo11cs |———— :
SW i tC h 0x80000000

User mem.

CPU 0x0

USC Viterbi

School of Engineering

Thread Create Example

Ot | Memory

TCB1

* On a context switch (recall thread_switch()), the 1 Yesp

dummy registers will be restored/popped from
the stack and thread_switch will return to

wherever the RA indicates (i.e. stub())

void stub(void (*func) (void*), void* argqg)
{

(*func) (arg) ;

thread exit (0) ;
}

eax
esp
eip

eflags

CPU

T1 %eip

TCB

Oxbffffc80 RA to stub()

dummy reg's

Oxbffffa00

Thread 1 Stack

Thread 1 Code

0xbff70c44

Kernel Thread
Oxbff70a88 Stack

Kernel Code
Oxbffffa00

stub:

ppppppp
llllllllllll
call thread_exit

thread_switch

0x800011c8

thread create:

0x80000000
0x0

User mem.

i, TS(“Viterbi

Thread Create Example

e stub() will now push the argument to the thread

entry point (i.e. doit(arg)) and call doit()

 The thread is now executing and can be context

switched as needed

* When doit() completes, control will be returned

to stub() which will call thread_exit() meaning
stub() will not return (since there is nothing to

return to)

void stub(void (*func) (void*), void* argqg)
{

(*func) (arg) ;

thread exit (0) ;
}

eax
esp
eip

eflags

CPU

Oxbffffa78

doit

Ox(ffffffff

Oxbffffc80

Oxbffffa78

0Kc1100180

0xbff70c44

0xbff70a88

0x800011c8

School of Engineering

Memory

TCB1

T1 last %esp
T1 %eip

TCB

thread-arg
RA to stub()

doit() stack frame

Thread 1 Stack

Thread 1 Code

doit:

Kernel Thread
Stack

Kernel Code

stub:

push arg

call 0xcl1100180
call thread exit

thread create

0x80000000
0x0

User mem.

KERNEL VS. USER THREADS

N (S C Viterbi
General Relationship of Threads in Usef~

and Kernel Mode

Each user level thread

- Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
may have it's own < S S
kernel stack for use Kernel Globals [tce1] [tee2] [tce3s] [71ce1a] [TcB1.8] [TcB2A] | TCB 28|
durlng |nterru ptS and Stack Stack Stack Stack Stack Stack Stack
system calls - = = = e] =

Due to the overhead of a system call
and switching from user to kernel
mode, some older systems have user-
level threads

— 1 kernel thread

— Many user threads that the user process
code sets up and swaps between

— User process uses "signals" (up-calls) to be
notified when a time quantum has passed
and then swaps user threads

User-Level Processes

Process 1
Thread A Thread B

o D

Stack Stack

Process 2
Thread A Thread B

S 9

Stack | Stack

Code

Globals

Heap

Code

Globals

Heap

