
1

CSCI 350
Ch. 4 – Threads and Concurrency

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

WHAT IS A THREAD AND WHY USE
THEM

3

What is a Thread?

• Thread (def.): Single execution

sequence representing a separately
schedulable task

– Execution sequence: Registers, PC (IP),
Stack

– Schedulable task: Can be transparently
paused and resumed by the OS
scheduler

CPU

0xbff70c44esp

0x800011c8eip

eflags

eax

Memory

dec ECX

jnz done

done:

ret

Code

T1 Stack

0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400

Kernel

0x80000000

T2 Stack

4

5

Threads vs. Processes

• Process (def.): Address Space +
Threads
– Address space is protected from other

processes

– 1 or more threads
• Pintos, Original Unix: 1 Process = 1 Thread

• Most OSs: 1 Process = n Threads

• Kernel may have many threads and can
access any processes memory

Mem.

0x00000000

0xffff ffff

Address Space

Stack(s)

(1 per

thread)

Kernel

Program/Process

1,2,3,…

Code

Globals

Heap

= Thread

6

Why Use Threads?

• Unit of parallelism

– Take advantage of multiple cores

– Increase utilization of single-core
• In case of long-latency events (namely

I/O) where one thread must wait, let the
processor execute another thread

• Hard (if not impossible) to express
concurrency in a single thread

– See example of e-mail client on next
slide

CPU

State
(Reg.
, PC)

T1 = Blocked

State
(Reg.
, PC)

T2 = Blocked

State
(Reg.
, PC)

T3 = Ready

Waiting on

disk

Waiting on

Network

7

Email Client (Threaded vs. Non-Threaded)

• Left: Natural way of expressing
concurrent tasks as separate entities and
sequences of execution

• Right: Attempt to ensure response times
among the tasks with only 1 thread

/* Thread 1 */

void searchEmail(List* results,

char* target)

{

for(i=0; i < numEmails; i++)

if(contains(emails[i], target))

results->push_back(emails[i]);

}

/* Thread 2 */

void checkIncoming(bool* newMsg)

{

while(1){

fd_set rset;

FD_ZERO(&rset);

FD_SET(sockID, &rset);

uint64_t msTimeOut = 1000; // milli

select(FD_SETSIZE, rfds, ..., msTimeOut);

*newMsg = FD_ISSET(sockID, &rset);

}

}

/* Thread 3 */

void checkAndHandleUserInput()

{

while(1){

if(pressCompose()) { ... }

else if(pressDeleteMsg()) { ... }

else {... }

}

}

void doItAll(/* args */)

{

int si = -1, checkCnt = 100;

while(1){

if(startSearch()) si = 0;

if(si != -1) {

/* Search next email */

if(contains(emails[si], target))

results->push_back(emails[si]);

if(++si == numEmails);

}

/* Check new msgs every 100th itr */

if(--checkCnt == 0){

checkCnt = 100;

uint64_t msTimeOut = 0; // none

select(..., msTimeOut);

*newMsg = FD_ISSET(...);

}

if(pressCompose()) { ... }

else if(pressDeleteMsg()) { ... }

else {... }

}

}

8

Main Idea

• Key idea: Operating system multiplexes these
threads on the available processors by
suspending and resuming threads
transparently

• A thread provides a virtualization of the
processor (i.e. nearly infinite number of
"processors")

– Number of threads >> number of processors

9

10

SCHEDULING AND INTERLEAVING

11

OS Scheduler & Context Switches

• A primary OS component is the scheduler

– Chooses one of the "ready" threads and grants it
use of the processor

– Saves the state (registers + PC) of the previously
executing thread and then restores the state of the
next chosen thread

– Swapping threads (saving & restoring state) is
known as a context switch

– Appears transparent to the actual thread code

• Policies for choosing next thread are examined in
a subsequent chapter (for now assume simple
round-robin / FIFO)

• Threads have memory to store register, PC, and
some metadata (thread ID, thread-local variables,
etc.) in some kind of OS data structure usually
called a thread control block (TCB)

CPU

Saved
State

T1 = Ready

Saved
State

T2 = Blocked

Saved
State

T3 = Ready

OS
Scheduler

Regs

PC

Regs

PC

Regs

PC

Regs

PC

Meta
Data

Meta
Data

Meta
Data

TCB TCB TCB

12

When to Context Switch

• Cooperative Multitasking (Multithreading)

– Current running thread gets to determine
(voluntarily) when it will yield the processor

– Used in some older OSs (e.g. Windows 3.1)

• Preemptive Multitasking (Multithreading)

– OS can unilaterally cause the current running
thread to be context switched

– Generally done based on some regular timer
interval (i.e. time quantum) such as every 10ms

– Used in most OSs

13

Interleavings

• Generally, threads can be interleaved (i.e. swapped)
at arbitrary times by the OS

– Exception 1: certain situations in a real-time OS

– Exception 2: Kernel explicitly disables interrupts
temporarily

• The programmer MUST NOT assume any particular
interleaving or speed of execution

– Ensure correctness in the worst possible case (i.e. context
switch at the most vulnerable time)

– Assume "variable" rate of execution
• No idea when cache miss or page fault will occur

• Even in absence of these, speed of execution of code is not
constant (due to pipelining, branch prediction, etc.)

14

Race Condition
• A race condition occurs when the behavior of the program

depends on the interleaving of operations of different threads.

• Example: Assume x = 2
– T1: x = x + 5

– T2: x = x * 5

• Outcomes
– Case 1: T1 then T2

• After T1: x = 7

• After T2: x = 35

– Case 2: T2 then T1
• After T2: x = 10

• After T1: x = 15

– Case 3: Both read before either writes, T2 Write, T1 Write
• x = 7

– Case 4: Both read before either writes, T1 Write, T2 Write
• x = 10

15

16

Critical Section: First Look

• A critical section is a section of code that should be performed without
the chance of context switching in the middle (i.e. updating certain OS
data structures)

• On a single-processor system one way to ensure no context switch is to
disable interrupts

– Now timer or other interrupt cannot cause the current thread to be context
switched

• General pattern:

old_state = getInterruptStatus();

disableInterrupts();

/* Do critical task */

setInterrupts(old_state);

• Why do we need old_state and not just enableInterrupts() at the end?

17

Thread Scheduling State

• Two kinds of thread state:
– It's current register, PC, stack values

– It's scheduling status

• I'll refer to this as its scheduling state

• Scheduling states
– INIT: Being created

– READY: Able to execute and use the processor

– RUNNING: Currently running on a processor

– BLOCKED/WAITING: Unable to use the processor (waiting for I/O,
sleep timer, thread join, or blocked on a lock/semaphore)

– FINISHED: Completed and waiting to be deleted/deallocated
• We can't delete the TCB and especially the stack in the context of the dying thread

(we need the stack to know where to return)

• Instead, we list it as a finished thread and the scheduler can come and clean it up as
it schedules the next thread

18

19

THREADING API

20

Common Thread API

• thread_create

• thread_yield

• thread_join

• thread_exit

• thread_sleep

Note: On a multicore many
thread libraries allow a thread to

specify an processor affinity
indicating which processor it

prefers to run on.

21

Review Questions

• Why use threads? What benefits do they
provide over traditional serial execution?

• As the programmer, how do you know if your
program has a race condition? Where would
you start to debug a race condition?

22

OS BOOKKEEPING & THREAD
METADATA

23

Thread Control Block

• Per-thread state maintained by the OS

– Scheduling state, priority

– Last Stack Pointer

– Registers/PC can be stored in TCB or on
stack (Pintos places them on the stack)

• TCBs can be stored in some kernel list

– Pintos places TCB at the base of the stack

Memory

dec ECX

jnz done

done:

ret

Code

T1 Stack

0xffffffff

0x0

0x08048000

0xc000e000

T2 Stack

T1 TCB

T2 TCB0xc0007000

24

Pintos TCB
enum thread_status

{

THREAD_RUNNING, /* Running thread. */

THREAD_READY, /* Not running but ready to run. */

THREAD_BLOCKED, /* Waiting for an event to trigger. */

THREAD_DYING /* About to be destroyed. */

};

struct thread

{

/* Owned by thread.c. */

tid_t tid; /* Thread identifier. */

enum thread_status status; /* Thread state. */

char name[16]; /* Name (for debugging purposes). */

uint8_t *stack; /* Saved stack pointer. */

int priority; /* Priority. */

struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */

struct list_elem elem; /* List element. */

#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir; /* Page directory. */

#endif

/* Owned by thread.c. */

unsigned magic; /* Detects stack overflow. */

};

25

Linux
struct task_struct {

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

void *stack;

atomic_t usage;

unsigned int flags; /* per process flags, defined below */

unsigned int ptrace;

#ifdef CONFIG_SMP

struct llist_node wake_entry;

int on_cpu;

struct task_struct *last_wakee;

unsigned long wakee_flips;

unsigned long wakee_flip_decay_ts;

int wake_cpu;

#endif

int on_rq;

int prio, static_prio, normal_prio;

unsigned int rt_priority;

/* And a lot more!!! */

}

Process/Thread Control Block (task_struct):

/usr/src/linux-headers-3.13.0-24-generic/include/linux/sched.h:1042

26

CPU

Where's The Thread

• The OS must keep track of threads

• Can maintain a list of all threads but
each thread may be in a different state

• Generally, thread can be in a "ready list"
that the scheduler will choose from on
a context switch
– Running thread can either be the head of

this list (Linux) or not in this list at all
(Pintos)

• Other threads can be blocked. Blocked
on what?
– Sleep timer

– Lock, Cond. Var., Semaphore

Sched.
T7

T2 Running

T4 T1

Lock 1
T3 T6

Ready

Sleep
T5

Blocked

27

Resources & Examples

• Process Control Block (task_struct):
/usr/src/linux-headers-3.13.0-24-
generic/include/linux/sched.h

– Around line 1042

• Syscalls: http://man7.org/linux/man-
pages/man2/syscalls.2.html

– Defined in <unistd.h>

http://man7.org/linux/man-pages/man2/syscalls.2.html

28

THREAD CONTEXT SWITCH
In-Depth

29

Thread Context Switch Example

• Thread 1 is currently executing (in f1()) while
thread 2 is waiting in the ready list after having
yielded the CPU in f2()

• Thread 1 is about to call thread_yield()

CPU

Memory

f1:

call yield

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbff70c44esp

0x800011c8eip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame

T1 last %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

Thread 2 Code

30

Thread Context Switch Example

• Thread 1 calls thread_yield() pushing the RA (return
address) to f1() on the stack

• thread_yield() disables interrupts, adds the current
thread to the waiting list (in state READY), and chooses
the next thread to schedule (i.e. Thread 2) and sets it to
RUNNING

• thread_yield() then calls thread_switch() which pushes all
T1's registers onto its stack and then saves the %esp to
TCB1

CPU

Memory

f1:

call yield

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

Thread 2 Code

thread_switch:

Note that the SVR4 ABI allows us to

destroy %eax, %ecx, %edx,

pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)...

31

Thread Context Switch Example

• thread_switch() then resets the %esp to T2's
saved version from TCB2

CPU

Memory

f1:

call yield

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffff800esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 saved %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

Thread 2 Code

thread_switch:

Note that the SVR4 ABI allows us to

destroy %eax, %ecx, %edx,

pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.

movl SWITCH_NEXT(%esp), %ecx

movl (%ecx,%edx,1), %esp

Restore caller's register state.

popl %edi

popl %esi

popl %ebp

popl %ebx

ret

32

Thread Context Switch Example

• thread_switch() completes by popping/restoring
the registers from T2's stack

• thread_switch() then returns back in the context
of thread 2 and not thread 1 (which called it)

CPU

Memory

f1:

call yield

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffff800esp

thread_switcheip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 last %esp

Thread 2 Stack

0xbffffc80

0xbffff800

f2()'s frame
RA to f2()

yield()'s frame
RA to yield()

T2 reg's

f2: ---

call yield

Thread 2 Code

thread_switch:

...

Get offsetof (struct thread, stack).

.globl thread_stack_ofs

mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.

movl SWITCH_NEXT(%esp), %ecx

movl (%ecx,%edx,1), %esp

Restore caller's register state.

popl %edi

popl %esi

popl %ebp

popl %ebx

ret

33

Thread Context Switch Example

• thread_yield will then return back to f2() which
resumes execution

CPU

Memory

f1:

call yield

Thread 1 Code

0xffffffff

0x0

0x800011c8

0xbffffc00esp

thread_yieldeip

Thread 1 Stack

0xbff70c44

0xbff70a88

TCB1

0x80000000

eflags

eax

f1()'s frame
RA to f1()

yield()'s frame
RA to yield()

T1 reg's

T1 saved %esp

User mem.

TCB2

T2 last %esp

Thread 2 Stack

0xbffffc80 f2()'s frame
RA to f2()

yield()'s frame

f2: ---

call yield

Thread 2 Code

0xbffffc00

34

THREAD CREATION
In-Depth

35

Idea for Creation Mechanism

• Allocate a TCB and stack

• Setup the stack to look exactly as if the new
thread was already alive and had just called
yield()

– Meaning: Setup the initial stack with dummy
"saved" register values and a return address
already on it that can be popped by
thread_switch()

36

Thread Create Example

• Assume a new thread should be created with
entry point of doit(void* arg)
– OS will provide a stub function that will call the entry

point of the new thread once it is ready

• To create a new thread the kernel will execute
thread_create()

• thread_create() will allocate a new TCB for the
thread (TCB1) and memory for its stack

CPU

Memory

thread_create:

Kernel Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_createeip

Kernel Thread
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

Thread 1 Stack

0xbffffc80

0xbffff800

doit:

Thread 1 Code

stub:

push arg

call 0xc1100180

call thread_exit

ret

0xc1100180

void stub(void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}

37

Thread Create Example

• thread_create() will setup the new thread's state
to exactly resemble that of a descheduled
(waiting) thread

• To do this, it first makes it look like stub() was
the caller when the thread got "descheduled"
– Pushes the "RA" to stub onto the new stack as well as

space representing the "saved" (really dummy) values
of the registers

– Sets the TCB's saved %esp to point
at the top of this stack

• Adds this new thread to the ready
list to be scheduled on a context
switch

CPU

Memory

thread_create:

Kernel Code

0xffffffff

0x0

0x800011c8

0xbff70a88esp

thread_createeip

Kernel Thread
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1 %esp

Thread 1 Stack

0xbffffc80

0xbffffa00

RA to stub()

dummy reg's

doit:

Thread 1 Code

stub:

push arg

call 0xc1100180

call thread_exit

ret

0xc1100180

T1 %eip

38

Thread Create Example

• On a context switch (recall thread_switch()), the
dummy registers will be restored/popped from
the stack and thread_switch will return to
wherever the RA indicates (i.e. stub())

CPU

Memory

thread_create:

Kernel Code

0xffffffff

0x0

0x800011c8

0xbffffa00esp

thread_switcheip

Kernel Thread
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1 %esp

Thread 1 Stack

0xbffffc80

0xbffffa00

RA to stub()

dummy reg's

doit:

Thread 1 Code

stub:

push arg

call 0xc1100180

call thread_exit

ret

0xc1100180

T1 %eip

void stub(void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}

39

Thread Create Example

• stub() will now push the argument to the thread
entry point (i.e. doit(arg)) and call doit()

• The thread is now executing and can be context
switched as needed

• When doit() completes, control will be returned
to stub() which will call thread_exit() meaning
stub() will not return (since there is nothing to
return to)

CPU

Memory

thread_create:

Kernel Code

0xffffffff

0x0

0x800011c8

0xbffffa78esp

doiteip

Kernel Thread
Stack

0xbff70c44

0xbff70a88

TCB

0x80000000

eflags

eax

User mem.

TCB1

T1 last %esp

Thread 1 Stack

0xbffffc80

0xbffffa78

doit:

Thread 1 Code

stub:

push arg

call 0xc1100180

call thread_exit

ret

0xc1100180

T1 %eip

thread-arg

RA to stub()

doit() stack frame

void stub(void (*func)(void*), void* arg)

{

(*func)(arg);

thread_exit(0);

}

40

KERNEL VS. USER THREADS

41

General Relationship of Threads in User
and Kernel Mode

• Each user level thread
may have it's own
kernel stack for use
during interrupts and
system calls

• Due to the overhead of a system call
and switching from user to kernel
mode, some older systems have user-
level threads
– 1 kernel thread

– Many user threads that the user process
code sets up and swaps between

– User process uses "signals" (up-calls) to be
notified when a time quantum has passed
and then swaps user threads

