
1

CSCI 350
Ch. 3 Programmer's Interface

Mark Redekopp

2

Getting on the Same Page

• What is a thread?

• What is a process?

• What is user mode vs. kernel mode?

3

Getting on the Same Page

• What is a thread?

– Independently scheduled task

– PC + state (i.e. registers, stack, etc.)

• What is a process?

– Instance of an executable program

– Threads + independent address space

• What is user mode vs. kernel mode?

– User mode = non-priviledged execution environment

– Kernel mode = privileged execution environment where
the OS executes

4

PROGRAMMING INTERFACE
Chapter 3 of "Operating Systems…", Anderson and Dahlin

5

Overview

• OS must provide services to a user application

– Process and thread management

– Input/output (file systems, network, etc.)

– Memory management

– Authentication and security

– Graphics and window management

6

Where Services Might Execute

• Many services must be provided
to user level processes by the OS

• Options exist for where to locate
those services

– Directly in the user process by
linking in a user-level OS library

– Separate user level processes

– Part of the kernel executed in the
control flow of the calling process

– Part of the kernel running as a
separate kernel task

User
Process

OS
Kernel

OS
Library

Kernel
Code

OS code
running as
separate

user
process

Kernel
Task

Login

Service

GUI Widgets

Scheduling

Portions of

Device

Drivers

7

Considerations

• Evaluate where services should be
located based on:
– Safety, Flexibility, Performance

• Pros of locating services in a user-level
process
– Safety/Isolation from other kernel structures

(i.e. a bug cannot bring down the rest of the
kernel)

– Flexibility: Easier to update and provide new
versions of functionality (no recompilation of
kernel needed)

• Cons of location services in a user-level process

– Performance: Overhead of moving data and
switching contexts

User
Process

OS
Kernel

OS
Library

Kernel
Code

OS code
running as
separate

user
process

Kernel
Task

8

Common OS Layers/Architecture

• System calls are the "interface"
between user applications and the
kernel

– OS may provide libraries that provide
some services and abstraction above
the system call level

– Changing the interface of system calls
has a major impact on software
• Likely requires recompile/update of

software applications

User Applications

Portable OS Library

OS System Calls

Portable OS Kernel

Hardware Abstraction Layer

Hardware/Target Specific
Code (aka Board Support

Package)
+ Device Drivers

U
s
e
r

m
o
d
e

K
e
rn

e
l
m

o
d
e

9

Meet the syscalls

• Process management
– fork() : new_pid

– exec(char* exec, char** args)

– wait(pid)

– exit()

• I/O
– open(name) : fd

– read(fd, buffer, size) : int

– write(fd, buffer, size) : int

– close(fd)

– pipe(fd[2])

– select(fd_array[], fd_array_size) : fd

– dup2(fromFd, toFd)

Some definitions
• Address space = Protected

(hardware checked) memory ranges
accessible only to a single process
(and possibly the kernel)

• pid = Process ID (unique identifier of
a process)

• fd = File descriptor (identifier to
lookup data structure holding the
state of I/O access to a file, network
socket, "pipe", etc.)
• Often just an integer (index)

into some table of descriptors
in the kernel

10

SYSCALLS FOR PROCESS
MANAGEMENT

fork, exec, wait, exit

11

Process Management

• Most OSs allow one user process to create another through
various system calls
– Rather than the kernel initiating all process creations

• Windows approach
– Perform process creation, environment setup, and program startup

through a single system call

• Single createProcess(…) system call

• Unix approach
– Separate process creation, environment setup, and program startup

with separate system calls

• Create process with fork() system call

• Setup environment with possible calls to open(), close(),
dup2()

• Load program image and start execution with exec(…) system call

12

Unix Process Syscalls

• Suppose a process (pid=1) is running and wants
to start another

User Process
(./prog1)

Process 1 AS

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

task_list_ptr

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Abstract View

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x5fffe180

13

Fork
• A call to fork copies the state (exact replica) of

the current (parent) process to a new child
process

– Returns new pid (e.g. 2) to the parent

– Returns 0 to the child process (it can retrieve its
own pid with another system call if it needs that
info)

User Process
(./prog1)

Process 1 AS

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

Child Process
(PID=2)

task_list_ptr
PCB

(pid=2,
PC=0x080a4,

stack=0x6fffe180,
fds: {…})

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Memory

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Abstract View

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x6fffe180
pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

pid=2 pid=0

Process 2 AS

Memory

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

0xffffffff

0x0

0x080a4

0x7ffffc80

0x5fffe180

Notice the child process is

executing the same code

as the parent but since

'pid' is different it will

execute a separate branch

of the 'if' statement

PCB (pid 1)PCB (pid 1)

PCB (pid 2)PCB (pid 2)

14

Exec 1
• A call to exec now loads a new program (e.g.

./prog2) with its own code, sets up its global
data, stack, heap, etc.
– exec returns only if an error occurs

• Parent can continue execution or block until the
child process finishes by calling wait

User Process
(./prog1)

Process 1 AS

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

Child Process
(PID=2)

task_list_ptr
PCB

(pid=2,
PC=0x080a4,

stack=0x6fffe180,
fds: {…})

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Abstract View

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

pid=2 pid=0

Process 2 AS

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

0xffffffff

0x0

0x080a4

0x7ffffc80

Child process starts to

load and execute a new

program

Parent process can do

other work or block (wait)

until child process is done

PCB (pid 2)PCB (pid 2)

15

Exec, Wait, and Exit
• The effect of a call to exec is a separate

program image is loaded and begins execution

• If the parent calls wait then it will block until
the child process calls exit
– exit is generally called when the program finishes

main()

User Process
(./prog1)

Process 1 AS

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

Child Process
(./prog2)

task_list_ptr
PCB

(pid=2,
PC=0x04010,

stack=0x6fffe180,
fds: {…})

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Abstract View

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

pid=2

Process 2 AS

Memory

PCB (pid 1)

Code

Stack

Heap

0xffffffff

0x0

0x04010

Child process is now

independently executing a

separate program

PCB (pid 2)PCB (pid 2)

int main()

{

printf("Hi\n");

return 0;

}

int main()

{

printf("Hi\n");

return 0;

}

0x5fffe180

16

Exit
• exit deletes the current process and its

resources (i.e. address space, etc.)

• PCB is not deallocated until parent or other
entity specifically release it
– This allows the parent or other task to examine the

child process' exit status, etc.

User Process
(./prog1)

Process 1 AS

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

Child Process
(./prog2)

task_list_ptr
PCB

(pid=2,
PC=0x04010,

stack=0x6fffe180,
fds: {…})

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Abstract View

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

pid=2

Process 2 AS

Memory

PCB (pid 1)

Code

Stack

Heap

0xffffffff

0x0

0x04010

Child exits and its

resources are returned

PCB (pid 2)PCB (pid 2)

int main()

{

printf("Hi\n");

return 0;

} // exit() is called

int main()

{

printf("Hi\n");

return 0;

}

0x5fffe180

PCB remains until

explicitly deallocated by

another entity

17

Virtual Memory (Backup)
• Virtual Memory allows multiple "virtual" address spaces to be mapped

to a single physical address space

Phys. Mem. AS

Memory

PCB (pid 1)

PCB (pid 2)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

Stack

Heap

Code

int main()

{

printf("Hi\n");

return 0;

}

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x6fffe180

Process 1 AS

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap
U

s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

Process 2 AS

Memory

PCB (pid 1)

pid = fork();

if(pid==0)

exec("./prog2");

else

wait(pid);

Code

Stack

Heap

0xffffffff

0x0

0x080a4

0x7ffffc80

PCB (pid 2)PCB (pid 2)

18

Summary

• Fork causes the kernel to
– Create an initialize the PCB entry for a new process

– Create a new address space

– Initialize the new address space with a complete copy of the parent's
address space

– Inherit the execution context of the parent (open files, etc.)

– Inform the scheduler that the new process is ready to run

• Exec causes the kernel to
– Load a new program image into the current address space

– Copy arguments into the address space

– Initialize the hardware context (PC + stack) to the "start" entry point of
the program image

19

SYSCALLS FOR INPUT/OUTPUT
open, close, read, write, select, dup2

20

Problem with I/O

• There are a vast number of input/output devices that may be
connected to a computer and many possible interfaces
– A magnetic disk may want a group of values (think struct) that indicate

the location (sector, cylinder, etc.) and amount of data to read
synchronously

– A keyboard device may asynchronously supply a byte of data at a time

• Is there a single API that can generally fit for all these different
devices?

Speed

Synchronous/

Asynchronous

Byte / Block

oriented

21

Common I/O Syscall Characteristics
• Unix and many other OSs try to interact with all

I/O devices with a common set of syscalls

• Most OSs I/O syscall characteristics

– Accessed via file descriptors
• Files, network sockets, pipes (more in a moment), etc. are all

identified with a file descriptor and a common set of syscalls

• file descriptor is a handle or index (usually just an int) to the
internal bookkeeping information and state of the I/O
connection

– Byte oriented: Whether you need to pass a single
byte, an array of bytes, or a struct the API is just a
pointer to the start byte and total size

– Open/close: Open/close allows kernel to setup
internal bookkeeping (file position, etc.) and access
control to a device before read/writes are allowed
• Open returns a file descriptor

file: /dev/ttyS0
fileOffset: 0

file: /home/user/hi.txt
fileOffset: 4

file: /tmp/myfifo
fileOffset: 8

file: /dev/sda1

0 1 2

struct DiskOp
{

uint8_t flags;
uint8_t padding[3];
uint32_t sector;
uint32_t cylinder;

};

struct DiskOp myop;

sector

flags padding

cylinder

Login

Service

Memory View

// Call OS syscall
write(fd,

&myop,
sizeof(DiskOp));

8

3

22

Common I/O Syscall Characteristics
• Unix and many other OSs try to interact with all

I/O devices with a common set of syscalls

• Most OSs I/O syscall characteristics

– Kernel buffering: Input data is internally
buffered in the kernel before the user process
can read. Output data is buffered in the kernel as
well and then passed to the I/O device from the
kernel

– Provides decoupling of speed (flow control)

Memory

Kernel I/O Buffer

// other work

// now read

read(fd, buf, sz);

Code

Stack

Heap

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x6fffe180

23

Common I/O Syscalls

• open(name) : fd

– Returns a new descriptor to the device with path "name"

– In Unix all devices map to a filename (i.e. a USB serial connection lives at /dev/tty.usbmodemXXX)

• read(fd, buffer, size) : int

– Reads at most size bytes of data into buffer from the device specified by fd, returning the number of
bytes actually read

• write(fd, buffer, size) : int

– Writes size bytes from buffer to the device specified by fd

• close(fd)

• select(fd_array[], fd_array_size) : fd

– Waits for data to be available for reading on any of the fds in fd_array and returns the first fd that can
be read

• dup2(fromFd, toFd)

– Copies the state (position/status) of the file specified by fromFd to the descriptor located at toFd

– Often used to redirect stdin and stdout of a process

• pipe(fd[2])

– Creates a pipe for unidirectional communication between two processes (fd[0] is the read side of the
pipe and fd[1] the write side)

24

Inter-Process Communication (IPC)

• A core service a kernel must
provide is a method of inter-
process communication (IPC)

• If OS services run as separate
processes then we need a way to
communicate between those
processes

• Common models

– Producer-consumer

– Client/server

– Regular files

User
Process

OS
Kernel

OS code
running as
separate

user
process

Kernel
Process

25

Pipes

• A pipe is a unidirectional buffer for
communication between two
processes

– Uses two file descriptors (one for the
write side and one for the read side)

– Acts as a queue/stream

– Can be "named" so processes know who
to connect to
• Mapped to the file system as in /tmp/myfifo

• Sample code

– http://man7.org/linux/man-
pages/man2/pipe.2.html

User
Process

OS
Kernel

OS code
running as
separate

user
process

Pipe

Producer Consumer

26

Client/Server

• 2-way communication:

– Client requests

– Server responds

• Some methods

– Message queues, sockets, shared
memory, etc.

• select() syscall

– Blocks until activity on 1 of N descriptors
– int select(int nfds, fd_set *readfds,

fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

OS Kernel

OS Server

Socket

Producer Consumer

Client Client

Socket

27

Socket, Select() Example

• Select waits for any
event to occur on a
set of descriptors

– Can be file, socket,
pipe, etc.
descriptors

int listener = _srvsocket->getSockDesc();
fd_set read_fds;
FD_ZERO(&read_fds);
FD_SET(listener,&read_fds);
int fdmax = listener;

while(1) {
memcpy(&read_fds, &master, sizeof(master));
if(select(fdmax +1,&read_fds,NULL,NULL,NULL) == -1){

cerr << "Error: select" << endl;
return 1;

}
for(int i = 0; i<=fdmax;i++){

if(FD_ISSET(i,&read_fds)){
#ifdef DEBUG

cerr << "FD " << i << " is set"<< endl;
#endif

// A new connection is being made
if(i == listener){

int new_sock = accept(listener, ...);
fd_max = max(listener, new_sock);
FD_SET(int new_sock,&read_fds);

}
// Current connection, message event
else {

read(i, ...);
}

}
}

}

28

CASE STUDY 1: SHELLS

29

Shells
• The shell/terminal/command line is just a user process that reads

inputs that indicate other programs to run (i.e. command lines)
– $./prog1 hello 5

• The shell then forks a new process and execs the specified program

Shell Process (./bash)

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

Child Process
(./prog)

task_list_ptr
PCB

(pid=2,
PC=0x04010,

stack=0x6fffe180,
fds: {…})

// Figure 3.8 from Operating Systems, Dahlin and Anderson

char *prog, **args;

while(readAndParseCmdLine(&prog, &args)){

int pid = fork();

if(pid==0) {

// child process

exec(prog, args);

}

else

wait(pid); // parent process

}

Abstract View

int main()

{

printf("Hi\n");

return 0;

}

30

stdin and stdout

• Processes generally have two given file
descriptors

– stdin (fd=0): read input from the system (generally
the keyboard)

– stdout (fd=1): write output to the system
(generally the terminal/screen)

• Shells usually allow redirection of stdin and
stdout

31

Process Management Review

• Recall Unix allows the parent process to perform child process setup
before it execs the program

– Separate process creation, environment setup, and program startup with
separate system calls

• Create process with fork() system call

• Setup environment with possible calls to open(), close(), dup2()

• Load program image and start execution with exec(…) system call

• Shells can use this capability to perform I/O redirection and/or piping

– $./prog1 > output.txt
• Redirects stdout to output.txt file

– $./prog1 < input.txt
• Redirects stdin to come from input.txt

– $./prog1 < input.txt > output.txt
• Redirects both input and output

– $./prog1 | ./prog2
• Pipe output (stdout) of prog1 as the input (stdin) of prog2

32

To Wait or Not
• Recall how many shells allow you to continue processing new shell

commands while the exec'd program runs by placing '&' at the end of
the command line
– $./prog1 hello 5 &

• This just causes the shell to skip the call to wait

Shell Process (./bash)

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

task_list_ptr
PCB

(pid=2,
PC=0x04010,

stack=0x6fffe180,
fds: {…})

// Figure 3.8 from Operating Systems, Dahlin and Anderson

char *cmdline, *prog, **args;

while((cmdLine = readCmdLine()) != NULL){

parseCmdLine(cmdline, &prog, &args);

int pid = fork();

if(pid==0){

// child process

exec(prog, args);

}

// only wait if no '&' at end of input

else if(! endsWithAmpersand(cmdline))

wait(pid);

}

33

I/O Redirection
• Redirection can be applied before the child process calls exec by

replacing the stdin and stdout file descriptors with those of the
specified files
– $./prog1 < input.txt > output.txt

Shell Process (./bash)

OS Kernel

PCB
(pid=1,

PC=0x080a4,
stack=0x7ffffc80,

fds:{…})

task_list_ptr
PCB

(pid=2,
PC=0x04010,

stack=0x6fffe180,
fds: {…})

// Figure 3.8 from Operating Systems, Dahlin and Anderson

char *cmdline, *prog, **args, *redirIn, *redirOut;

while((cmdLine = readCmdLine()) != NULL){

parseCmdLine(cmdline, &prog, &args, &redirIn, &redirOut);

int pid = fork();

if(pid==0){

// child process

if(redirIn != NULL) dup2(open(redirIn), stdin);

if(redirOut != NULL) dup2(open(redirOut), stdout);

exec(prog, args);

}

else if(! endsWithAmpersand(cmdline))

wait(pid);

}

34

Piping

• Challenge: Consider how a shell would handle piping

– ./prog1 | ./prog2

• High-level approach (order may vary)

– Create a pipe which returns two fd's (for the read and
write sides of the pipe)

– Fork each process (prog1 and prog2)

– Set the write fd of the pipe as the stdout fd of prog1

– Set the read fd of the pipe as the stdin fd of prog2

– Exec prog1 and wait for it to complete

– Exec prog2 and wait for it to complete

35

KERNEL ORGANIZATION

36

Approaches
• Monolithic Kernel

– Majority of services compiled and execute as
part of the kernel (not as a user service) in the
same address space

– Most commercial operating systems

• Why? What get's optimized: safety, flexibility,
performance?

– Generally allows better performance

• Microkernel
– Majority of services run as user-level processes

(separate address spaces)

– Allows better safety and some flexibility

– Ex. Mach, NeXT

• Syscalls can make the differences
transparent

User
Process

OS
Kernel

OS
Library

Kernel
Code

File
System

syscall

SchedulerVirtual
Memory

Device
Drivers

MicroKernel

Win.
Mgr

Dev.
Drvr

User
Proc

File
Srvr

Monolithic Kernel

37

Monolithic Kernel

• General features to make
them portable & extensible

– Hardware Abstraction Layer

– Dynamically loaded Device
Drivers

User Applications

Portable OS Library

OS System Calls

Portable OS Kernel

Hardware Abstraction Layer

Hardware/Target Specific
Code (aka Board Support

Package)
+ Device Drivers

U
s
e
r

m
o
d
e

K
e
rn

e
l
m

o
d
e

Hardware Abstraction Layer

Hardware/Target Specific
Code (aka Board Support

Package)
+ Device Drivers

x86 Arch.ARM Arch.

38

Hardware Abstraction Layer

• Provide functions and abstract models of devices

– OS is written to use these functions & models

– To support a new HW target just re-implement those
functions

• Examples:

– Interrupt handling

– System call handling (low level)

– Process context switches

– Low-level VM operations like loading a page table etc.

– Timer handling

http://elixir.free-electrons.com/linux/v4.11.3/source

39

Dynamically Loadable Device
Drivers

• 70% of Linux source code is drivers

– In many general purpose systems we won't know all the
attached HW devices

– So we can't provide an OS with everything built in

• Dynamically Loadable Device Drivers

– Not compiled directly into kernel but loaded as a shared
library when needed

– On boot or hot plug, OS discovers devices and then loads
appropriate drivers

– Common interface to allow applications to be written to
interface to various HW devices regardless of actual
implementation

40

Device Driver Issues

• According to OS:PP 2nd Ed. up to 90% of system crashes are
due to device drivers, not kernel
– Bugs in 3rd party device driver code

– OS Updates cause device drivers to not work

• Mitigations
– Code inspection (Linux requires peer evaluation of driver code, and

then driver becomes part of Linux and is actively maintained in each
kernel release)

– Bug Tracking (Reports sent to vendor upon crash)

– User-level device drivers

• Provide flexible syscalls so that device drivers can run in user mode and
thus prevent kernel crashes

– Virtual machine or sandboxed device drivers
• Run device driver in a protected environment

41

Resources & Examples

• Process Control Block (task_struct):
/usr/src/linux-headers-3.13.0-24-
generic/include/linux/sched.h

– Around line 1042

• Syscalls: http://man7.org/linux/man-
pages/man2/syscalls.2.html

– Defined in <unistd.h>

http://man7.org/linux/man-pages/man2/syscalls.2.html

