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PROCESSES & PROTECTION
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Processes

• Process 

– (def 1.) Address Space + Threads
• 1 or more threads

– (def 2.) : Running instance of a program that has 
limited rights
• Memory is protected: HW + kernel use address translation 

(VM) to ensure no access to any other processes' memory

• CPU is protected: Process can be pre-empted (context-
switched) 

• I/O is protected:  Processes execute in user-mode (not 
kernel mode) which generally means direct I/O access is 
disallowed instead requiring system calls into the kernel

• Kernel is not considered a "process"
– Has access to all resources and much of its code is 

invoked under the execution of a user process thread (i.e. 
during a system call)

– Thought it can have its own independent threads
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The Kernel

• Kernel is trusted and has 
access to everything else

– The manager of HW & 
processes

• Kernel is in charge of 
protection

• Provides access to services  
via syscalls
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REVIEW OF USER VS. KERNEL MODE
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User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (OS) 
code

– Certain features/privileges are only allowed to code running in kernel mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what 
they can do on their own 

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control 
register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as 
the Current Privilege Level bits [CPL])

– 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
• Levels 1 and 2 may also be used but are not by Linux

• On an exception, the processor will automatically switch to 
kernel mode
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Exceptions

• Any event that causes a break in normal execution

• Asynchronous exceptions
– Hardware Interrupts / Events

• Handling a keyboard press, mouse moving, USB data transfer, etc.

• We already know about these so we won't focus on these again

• Synchronous exceptions
– Error Conditions 

• Page fault, Invalid address, Arithmetic/FP overflow/error

– System Calls / Traps  
• User applications calling OS code services switches to kernel mode

• General idea:  When these occur, automatically call 
some subroutine (a.k.a. "handler") in kernel mode to 
handle the issue, then resume normal processing
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Exception Processing

• Where will you be in your program code when an interrupt occurs?

• An exception can be…

– Asynchronous (due to an interrupt or error)

– Synchronous (due to a system call/trap)

• Must save PC of offending instruction, program state, and any information needed 
to return afterwards

• Restore upon return

User Program
---------

---------

---------

---------

---------

---------

---------

---------

Kernel Exception 
Handler

---------

---------

---------

---------

---------

---------

---------

---------

Return from 

exception



9

Exception Processing

• Now that you know what causes exceptions, what does the 
hardware do when an exception occurs?

• Save necessary state to be able to restart the process
– Save PC of current/offending instruction

• Change to KERNEL MODE if not already

• Call an appropriate “handler” routine to deal with the error / 
interrupt / syscall
– Handler identifies cause of exception and handles it

– May need to save more state

• Restore state (and previous mode) and return to offending 
application (or kill it if recovery is impossible)
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Handler Calling Methods
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HAND: 

pushad

...

popad

iret

Transition from User to Kernel Mode

• Recall on an interrupt or any exception
– HW  changes to kernel mode, saves some registers & pushes them 

on kernel stack

– Vector table is used to look up handler and start execution

– Handler saves more state then executes

– Restores registers from kernel stack and returns to user mode

• Question: What's the difference between a mode switch 
and a context switch?
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Interrupts

• Most systems don't allow new 
interrupts while currently handling an 
interrupt

• Important: Get in and out of an 
interrupt handler quickly

• Common interrupt handler 
architecture:  bottom- and top-half

– Bottom-half: actual interrupt handler
• Do minimal work needed to deal with the 

HW issue

• Signal or queue-up work for the top half

– Top-half: Executed in separate thread 
from bottom-half
• Can perform work and itself be interrupted
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Interrupts in Pintos

• sdf

/* The Interrupt Descriptor Table (IDT).  
The format is fixed by the CPU.  See 
[IA32-v3a] sections 5.10 "Interrupt 
Descriptor Table (IDT)", 
5.11 "IDT Descriptors", 
5.12.1.2 "Flag Usage By
Exception- or Interrupt-Handler Procedure". */

static uint64_t idt[INTR_CNT];

/* Initialize IDT. */
for (i = 0; i < INTR_CNT; i++)
idt[i] = make_intr_gate (intr_stubs[i], 0);

/* All the stubs. */
STUB(00, zero) STUB(01, zero) STUB(02, zero) STUB(03, zero)
STUB(04, zero) STUB(05, zero) STUB(06, zero) STUB(07, zero)
...
STUB(f8, zero) STUB(f9, zero) STUB(fa, zero) STUB(fb, zero)
STUB(fc, zero) STUB(fd, zero) STUB(fe, zero) STUB(ff, zero)

intr_entry:
/* Save caller's registers. */
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushal /* Saves %eax,%ecx,%edx,%ebx,%esp,%ebp,%esi,%edi */
...

Pintos:  threads/interrupt.c

Pintos: threads/intr-stubs.s

/* Interrupt stack frame. */
struct intr_frame
{
/* Pushed by intr_entry in intr-stubs.S.

These are the interrupted task's saved registers. */
uint32_t edi;               /* Saved EDI. */
uint32_t esi;               /* Saved ESI. */
uint32_t ebp;               /* Saved EBP. */
uint32_t esp_dummy;         /* Not used. */
uint32_t ebx;               /* Saved EBX. */
uint32_t edx;               /* Saved EDX. */
uint32_t ecx;               /* Saved ECX. */
uint32_t eax;               /* Saved EAX. */
uint16_t gs, :16;           /* Saved GS segment register. */
uint16_t fs, :16;           /* Saved FS segment register. */
uint16_t es, :16;           /* Saved ES segment register. */
uint16_t ds, :16;           /* Saved DS segment register. */

/* Pushed by intrNN_stub in intr-stubs.S. */
uint32_t vec_no;            /* Interrupt vector number. */

/* Sometimes pushed by the CPU,
otherwise for consistency pushed as 0 by intrNN_stub.
The CPU puts it just under `eip', but we move it here. */

uint32_t error_code;        /* Error code. */

/* Pushed by intrNN_stub in intr-stubs.S.
This frame pointer eases interpretation of backtraces. */

void *frame_pointer;        /* Saved EBP (frame pointer). */

/* Pushed by the CPU.
These are the interrupted task's saved registers. */

void (*eip) (void);         /* Next instruction to execute. */
uint16_t cs, :16;           /* Code segment for eip. */
uint32_t eflags;            /* Saved CPU flags. */
void *esp;                  /* Saved stack pointer. */
uint16_t ss, :16;           /* Data segment for esp. */

};

Pintos:  threads/interrupt.h
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Register Handlers
void
exception_init (void) 
{
/* These exceptions can be raised explicitly by a user program,

e.g. via the INT, INT3, INTO, and BOUND instructions.  Thus,
we set DPL==3, meaning that user programs are allowed to
invoke them via these instructions. */

intr_register_int (3, 3, INTR_ON, kill, "#BP Breakpoint Exception");
intr_register_int (4, 3, INTR_ON, kill, "#OF Overflow Exception");
intr_register_int (5, 3, INTR_ON, kill,

"#BR BOUND Range Exceeded Exception");

/* These exceptions have DPL==0, preventing user processes from
invoking them via the INT instruction.  They can still be
caused indirectly, e.g. #DE can be caused by dividing by
0.  */

intr_register_int (0, 0, INTR_ON, kill, "#DE Divide Error");
intr_register_int (1, 0, INTR_ON, kill, "#DB Debug Exception");
intr_register_int (6, 0, INTR_ON, kill, "#UD Invalid Opcode Exception");
intr_register_int (7, 0, INTR_ON, kill,

"#NM Device Not Available Exception");
intr_register_int (11, 0, INTR_ON, kill, "#NP Segment Not Present");
intr_register_int (12, 0, INTR_ON, kill, "#SS Stack Fault Exception");
intr_register_int (13, 0, INTR_ON, kill, "#GP General Protection Exception");
intr_register_int (16, 0, INTR_ON, kill, "#MF x87 FPU Floating-Point Error");
intr_register_int (19, 0, INTR_ON, kill,

"#XF SIMD Floating-Point Exception");

/* Most exceptions can be handled with interrupts turned on.
We need to disable interrupts for page faults because the
fault address is stored in CR2 and needs to be preserved. */

intr_register_int (14, 0, INTR_OFF, page_fault, "#PF Page-Fault Exception");
}

Pintos:  userprog/exception.c

/* Sets up the timer to interrupt TIMER_FREQ times per second,
and registers the corresponding interrupt. */

void
timer_init (void) 
{
pit_configure_channel (0, 2, TIMER_FREQ);
intr_register_ext (0x20, timer_interrupt, "8254 Timer");

}

/* Timer interrupt handler. */
static void
timer_interrupt (struct intr_frame *args UNUSED)
{
ticks++;
thread_tick ();

}

Pintos:  devices/timer.c
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SYSCALL INTRO
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Mode Switches

• What causes user to kernel 
mode switch?

– An exception: interrupt, error, or 
syscall

• What causes a kernel to user 
mode switch?

– Return from exception:
• Interrupt

• Voluntary/Blocking context switch 

– Upcalls/signals (more on this later)
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Syscalls
• Provide a controlled method for user 

mode applications to call kernel mode 
(OS) code
– OS will define all possible system calls 

available to user apps.

– Generally defined by number and necessary 
arguments

• Syscalls are an exception and thus 
switch to kernel mode

• MIPS Syntax:  syscall

• x86 Syntax:  INT 0x80  (value between 
0-255 or 0x00-0xff)

– Service num. placed in EAX or on stack

– Pintos uses INT 0x30 with arguments on 
the stack
• 1st argument is the syscall number since INT 

0x30 serves ALL syscall requests

• Remaining arguments are specific to desired 
syscall

/* System call numbers. */
enum
{
/* Projects 2 and later. */
SYS_HALT,                   /* 0 = Halt the operating system. */
SYS_EXIT,                   /* 1 = Terminate this process. */
SYS_EXEC,                   /* 2 = Start another process. */
SYS_WAIT,                   /* 3 = Wait for a child process to die. */
SYS_CREATE,                 /* 4 = Create a file. */
SYS_REMOVE,                 /* 5 = Delete a file. */
SYS_OPEN,                   /* 6 = Open a file. */
SYS_FILESIZE,               /* 7 = Obtain a file's size. */
SYS_READ,                   /* 8 = Read from a file. */
SYS_WRITE,                  /* 9 = Write to a file. */
...
};

Pintos:  lib/syscall-nr.h
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User Stub & Kernel Side

• Performing a system call requires 
pushing arguments on stack and 
then executing the INT or SYSCALL 
instruction

• To abstract some of this, the OS 
usually provides a user-level 
library of stubs giving a nice API to 
the programmer

– The stubs just invokes the syscall

• The syscall is then treated as an 
exception and transitions to kernel 
code

• The kernel then examines the 
stack and calls the desired 
operation

/* Invokes syscall NUMBER, passing argument ARG0, and returns the
return value as an `int'. */

#define syscall1(NUMBER, ARG0)                                           \
({                                                               \
int retval;                                                    \
asm volatile                                                   \
("pushl %[arg0]; pushl %[number]; int $0x30; addl $8, %%esp" \

: "=a" (retval)                                           \
: [number] "i" (NUMBER),                                  \
[arg0] "g" (ARG0)                                       \

: "memory");                                              \
retval;                                                        \

})

/* Nice API for Applications to call */
pid_t
exec (const char *file)
{
/* Really just invokes the INT 0x30 instruction */
return (pid_t) syscall1 (SYS_EXEC, file);

}

int
open (const char *file)
{
return syscall1 (SYS_OPEN, file);

}
...

Pintos:  User-side stub in lib/user/syscall.c
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syscall
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back to user process)
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Syscall Mechanism 1

• Suppose a user process 
(thus in user mode) 
executing main() in wants 
to open a file

• It will first call the user-
level stub for open which 
will push the argument 
and the syscall number on 
the stack

• Then it will execute the 
INT 0x30 instruction

HAND30: 

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ...                    */

/* If syscall num == 6    */

call ksyscall_open

/* store retval in %eax */

...

popad

iret
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Syscall Mechanism 2
• The HW will enter kernel mode 

and along with the first portion 
of the handler will save the user-
level registers onto the kernel 
stack 
– Note the old value of %eax (whatever 

garbage it is) will be saved

• The handler must now extract 
the syscall number from the 
stack.
– How?

– Using the user-level saved %esp

• By looking at the syscall number 
we can know to call the real 
kernel implementation for open() 
(i.e. ksyscall_open)
– Can also extract the argument from 

the user stack

• Return value must be 
communicated back in %eax so 
we place it in the saved stack 
version of %eax

HAND30: 

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ...                    */

/* If syscall num == 6    */

call ksyscall_open

/* store retval in %eax */

...

popad

iret
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Syscall Mechanism 3
• When done, the handler 

then restores all the 
registers and state
– User mode is restored

• The return val is in %eax

• The user level stub can 
now clean up the stack 
and return the value back 
to main()

HAND30: 

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ...                    */

/* If syscall num == 6    */

call ksyscall_open

/* store retval in %eax */

...

popad

iret
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Notes

• This is the subject of 
project 2 in Pintos

• You will implement the 
syscall handling

• One note:  Any pointers 
passed from the user 
process on the user stack 
are virtual addresses and 
must be translated to the 
kernel's address space
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Syscall Protection

• The kernel must protect itself against errant or 
malicious user arguments to the syscalls

• Examples:

– Validate pointers: Ensure they point at legal memory for 
that user process

– Validate formats: Check that a C-string is null-terminated 
or stop before going off valid memory regions

– Copy arguments to kernel space to avoid TOCTOU (Time of 
check vs. Time of Use) attacks
• Some other thread, process or device modifying the argument 

after it is check but before it is used
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UPCALLS (SIGNALS)
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What is an Upcall

• An upcall or signal is like a user-level interrupt (interrupt to a user-process)

– The kernel delivers some kind of event to the user process

– The user process may or may not be executing

– An upcall or signal is NOT a response to a synchronous request by the user 
processor

• Examples

– Asynchronous I/O:  The process requested some I/O but did not want to wait, 
instead asking to be notified upon completion

– Interprocess communication: Another process has sent data or notification to 
this process requiring immediate attention
• Example: Debugger restarting a process, Logout/shutdown event to applications telling them to 

save data and exit

– User-level exception processing
• Many OS's give applications the chance to respond to an error or other even

• SIGINT = Interrupt = Ctrl+C

• SIGSEGV = Segmentation Violation = The dreaded seg-fault

• SIGFPE = Floating-point exception
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Supporting Upcalls/Signals

• Signals are handled like kernel 
exceptions but at the user level
– Recall the kernel had to save the 

current state on its own stack 

– It could then execute a kernel handler

• Thus, the user process may have a 
separate signal stack
– When a the kernel triggers a signal, the 

current process state can be saved on 
the signal stack and then the handler 
(registered in advance) can be called

– When a signal handler ends it will 
restore the state from the signal stack

Just After the signal

Just Before the signal
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VIRTUAL MACHINES
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Virtual Machine Definitions

• Definitions

– Host OS: OS running on 
the bare HW

– Guest OS: OS running in a 
virtual environment

– Hypervisor:  Layer that 
often interfaces the 
Guest and Host OS to 
each other

Hypervisor
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Using Protection

• We can use the protection and 
virtualization mechanisms provided by 
the hardware in our favor

• When a guest user process performs a 
syscall, it will trap into the host OS, which 
can then redirect it to the guest OS

• When the guest kernel (which doesn't 
know it is running in user mode) executes 
a privileged instruction or hardware 
access, an exception will be generated to 
the host OS which can then perform the 
desired guest OS operation and restart it
– Example: When the Guest OS tries to read from 

disk it will generate an exception, allowing the 
Host OS to read normally from a file that "acts-
like" the disk for the Guest system

Hypervisor
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PC ARCHITECTURE AND BOOT 
PROCESS

Let's have fun by understanding how a modern system even boots to an 
OS…
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Display

Modern PC Architecture

• Moore's Law has allowed 
greater integration levels 
– Multiple cores and greater 

levels of cache
– Memory controller, graphics, 

and high-speed I/O are 
integrated onto the 
processor die
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Intel Boot Process

• On power on, each core races for a lock bit
– First one executes the boot sequence

– Others wait for Start-Up Inter-Processor 
Interrupt

• On power on, fetch instruction at 
0xFFFFFFF0
– Address corresponds to ROM/Flash

– Jump to initialization code (BIOS) elsewhere

• Bootstrap
– Choose mode: Real, Flat protected, Segmented 

protected

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

Addr. Space

dec ECX

jnz done

---

---

done:

ret

0xffffffff

0x0

0xfffffff0 Initial Instruc.

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699
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Intel Boot Process

• Determine basic memory map and DRAM configuration (but 
DRAM still not functional)

• Enable Interrupt Controllers for Protected Mode operation
– Setup data-structures and base address registers (BARs) needed to 

support interrupts (i.e. descriptor tables [IDT, GDT], and Task-State 
Segment [TSS])

• Questions
– Where is code right now?

– Can this code be written using functions?

• Configure cache to be used as RAM for stack and place it NEM 
(No Eviction Mode)

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699
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Intel Boot Process

• Initialize DRAM
– Write to all memory and ensure ECC flags match data (either via BIOS 

or HW mechanism)

• Copy BIOS code into DRAM and take processor out of special 
cache mode (and flush cache)

• Initialize other cores (sending them an initial EIP/PC)

• Discover and initialize various I/O devices 
– Timers, Cache, PCI bus, SATA (hard drive access)

– Determine address ranges (memory map)

• Load Master Boot Record from first sector of boot device
– Points to where OS is located and how to load code into memory

– Transfer is now transferred to the OS
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699
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Windows Boot Process
• OS Loader

– Loads system drivers and kernel code

– Reads initial system registry info

• OS Initialization

– Kernel Init

• Init kernel data structures & PnP manager

– Session SMSSInit (SMSS = Session Manager)

• Initializes registry, starts other devices/drivers, and start other processes

– Winlogon Init

• User logon screen, service control manager, and policy scripts

– Explorer Init

• DWM (Desktop Window Manager), shell

• Post Boot phase

– Other services are started (tray icons, etc.)

• Other good reference:

– http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

https://social.technet.microsoft.com/wiki/contents/articles/11341.the-windows-7-boot-process-sbsl.aspx

http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

