
1

CSCI 350
Ch. 2 – The Kernel Abstraction &

Protection
Mark Redekopp

2

PROCESSES & PROTECTION

3

Processes

• Process

– (def 1.) Address Space + Threads
• 1 or more threads

– (def 2.) : Running instance of a program that has
limited rights
• Memory is protected: HW + kernel use address translation

(VM) to ensure no access to any other processes' memory

• CPU is protected: Process can be pre-empted (context-
switched)

• I/O is protected: Processes execute in user-mode (not
kernel mode) which generally means direct I/O access is
disallowed instead requiring system calls into the kernel

• Kernel is not considered a "process"
– Has access to all resources and much of its code is

invoked under the execution of a user process thread (i.e.
during a system call)

– Thought it can have its own independent threads

Mem.

0x00000000

0xffff ffff

Address Space

Stack(s)

(1 per

thread)

Kernel

Program/Process

1,2,3,…

Code

Globals

Heap

= Thread

4

The Kernel

• Kernel is trusted and has
access to everything else

– The manager of HW &
processes

• Kernel is in charge of
protection

• Provides access to services
via syscalls

User
Process

OS
Kernel

OS
Library

Kernel
Code

OS code
running as
separate

user
process

File
System

syscall syscall

SchedulerVirtual
Memory

Device
Drivers

5

REVIEW OF USER VS. KERNEL MODE

6

User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (OS)
code

– Certain features/privileges are only allowed to code running in kernel mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what
they can do on their own

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control
register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as
the Current Privilege Level bits [CPL])

– 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
• Levels 1 and 2 may also be used but are not by Linux

• On an exception, the processor will automatically switch to
kernel mode

7

Exceptions

• Any event that causes a break in normal execution

• Asynchronous exceptions
– Hardware Interrupts / Events

• Handling a keyboard press, mouse moving, USB data transfer, etc.

• We already know about these so we won't focus on these again

• Synchronous exceptions
– Error Conditions

• Page fault, Invalid address, Arithmetic/FP overflow/error

– System Calls / Traps
• User applications calling OS code services switches to kernel mode

• General idea: When these occur, automatically call
some subroutine (a.k.a. "handler") in kernel mode to
handle the issue, then resume normal processing

8

Exception Processing

• Where will you be in your program code when an interrupt occurs?

• An exception can be…

– Asynchronous (due to an interrupt or error)

– Synchronous (due to a system call/trap)

• Must save PC of offending instruction, program state, and any information needed
to return afterwards

• Restore upon return

User Program

Kernel Exception
Handler

Return from

exception

9

Exception Processing

• Now that you know what causes exceptions, what does the
hardware do when an exception occurs?

• Save necessary state to be able to restart the process
– Save PC of current/offending instruction

• Change to KERNEL MODE if not already

• Call an appropriate “handler” routine to deal with the error /
interrupt / syscall
– Handler identifies cause of exception and handles it

– May need to save more state

• Restore state (and previous mode) and return to offending
application (or kill it if recovery is impossible)

10

Handler Calling Methods

Kernel

Space

Hardwired

Handler

Address

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180

Exception

Handler

Kernel

Space

Interrupt /

Vector

Table

0x00000000

User

Space

Page Fault

0xffffffff

PF handler

INT 1 Hand.

INT 2 Hand.

x2

x1

x3

addr x1
addr x2
addr x3 Vector

Table
0x80000000

HW INT 1

HW INT 2

11

HAND:

pushad

...

popad

iret

Transition from User to Kernel Mode

• Recall on an interrupt or any exception
– HW changes to kernel mode, saves some registers & pushes them

on kernel stack

– Vector table is used to look up handler and start execution

– Handler saves more state then executes

– Restores registers from kernel stack and returns to user mode

• Question: What's the difference between a mode switch
and a context switch?

Process 1 AS

CPU

Memory

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0xe00010a4eip

cs

tr

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

Handler Code

Kernel Stack

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

12

Interrupts

• Most systems don't allow new
interrupts while currently handling an
interrupt

• Important: Get in and out of an
interrupt handler quickly

• Common interrupt handler
architecture: bottom- and top-half

– Bottom-half: actual interrupt handler
• Do minimal work needed to deal with the

HW issue

• Signal or queue-up work for the top half

– Top-half: Executed in separate thread
from bottom-half
• Can perform work and itself be interrupted

Memory

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400

0xbffffc80

0xbffff800

0x80000000

Bottom Half
Handler Code

Kernel Stack

HAND:

pushad

// minimal work

// notify

// top-half

popad

iret

Top Half
Handler Code

13

Interrupts in Pintos

• sdf

/* The Interrupt Descriptor Table (IDT).
The format is fixed by the CPU. See
[IA32-v3a] sections 5.10 "Interrupt
Descriptor Table (IDT)",
5.11 "IDT Descriptors",
5.12.1.2 "Flag Usage By
Exception- or Interrupt-Handler Procedure". */

static uint64_t idt[INTR_CNT];

/* Initialize IDT. */
for (i = 0; i < INTR_CNT; i++)
idt[i] = make_intr_gate (intr_stubs[i], 0);

/* All the stubs. */
STUB(00, zero) STUB(01, zero) STUB(02, zero) STUB(03, zero)
STUB(04, zero) STUB(05, zero) STUB(06, zero) STUB(07, zero)
...
STUB(f8, zero) STUB(f9, zero) STUB(fa, zero) STUB(fb, zero)
STUB(fc, zero) STUB(fd, zero) STUB(fe, zero) STUB(ff, zero)

intr_entry:
/* Save caller's registers. */
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushal /* Saves %eax,%ecx,%edx,%ebx,%esp,%ebp,%esi,%edi */
...

Pintos: threads/interrupt.c

Pintos: threads/intr-stubs.s

/* Interrupt stack frame. */
struct intr_frame
{
/* Pushed by intr_entry in intr-stubs.S.

These are the interrupted task's saved registers. */
uint32_t edi; /* Saved EDI. */
uint32_t esi; /* Saved ESI. */
uint32_t ebp; /* Saved EBP. */
uint32_t esp_dummy; /* Not used. */
uint32_t ebx; /* Saved EBX. */
uint32_t edx; /* Saved EDX. */
uint32_t ecx; /* Saved ECX. */
uint32_t eax; /* Saved EAX. */
uint16_t gs, :16; /* Saved GS segment register. */
uint16_t fs, :16; /* Saved FS segment register. */
uint16_t es, :16; /* Saved ES segment register. */
uint16_t ds, :16; /* Saved DS segment register. */

/* Pushed by intrNN_stub in intr-stubs.S. */
uint32_t vec_no; /* Interrupt vector number. */

/* Sometimes pushed by the CPU,
otherwise for consistency pushed as 0 by intrNN_stub.
The CPU puts it just under `eip', but we move it here. */

uint32_t error_code; /* Error code. */

/* Pushed by intrNN_stub in intr-stubs.S.
This frame pointer eases interpretation of backtraces. */

void *frame_pointer; /* Saved EBP (frame pointer). */

/* Pushed by the CPU.
These are the interrupted task's saved registers. */

void (*eip) (void); /* Next instruction to execute. */
uint16_t cs, :16; /* Code segment for eip. */
uint32_t eflags; /* Saved CPU flags. */
void *esp; /* Saved stack pointer. */
uint16_t ss, :16; /* Data segment for esp. */

};

Pintos: threads/interrupt.h

14

Register Handlers
void
exception_init (void)
{
/* These exceptions can be raised explicitly by a user program,

e.g. via the INT, INT3, INTO, and BOUND instructions. Thus,
we set DPL==3, meaning that user programs are allowed to
invoke them via these instructions. */

intr_register_int (3, 3, INTR_ON, kill, "#BP Breakpoint Exception");
intr_register_int (4, 3, INTR_ON, kill, "#OF Overflow Exception");
intr_register_int (5, 3, INTR_ON, kill,

"#BR BOUND Range Exceeded Exception");

/* These exceptions have DPL==0, preventing user processes from
invoking them via the INT instruction. They can still be
caused indirectly, e.g. #DE can be caused by dividing by
0. */

intr_register_int (0, 0, INTR_ON, kill, "#DE Divide Error");
intr_register_int (1, 0, INTR_ON, kill, "#DB Debug Exception");
intr_register_int (6, 0, INTR_ON, kill, "#UD Invalid Opcode Exception");
intr_register_int (7, 0, INTR_ON, kill,

"#NM Device Not Available Exception");
intr_register_int (11, 0, INTR_ON, kill, "#NP Segment Not Present");
intr_register_int (12, 0, INTR_ON, kill, "#SS Stack Fault Exception");
intr_register_int (13, 0, INTR_ON, kill, "#GP General Protection Exception");
intr_register_int (16, 0, INTR_ON, kill, "#MF x87 FPU Floating-Point Error");
intr_register_int (19, 0, INTR_ON, kill,

"#XF SIMD Floating-Point Exception");

/* Most exceptions can be handled with interrupts turned on.
We need to disable interrupts for page faults because the
fault address is stored in CR2 and needs to be preserved. */

intr_register_int (14, 0, INTR_OFF, page_fault, "#PF Page-Fault Exception");
}

Pintos: userprog/exception.c

/* Sets up the timer to interrupt TIMER_FREQ times per second,
and registers the corresponding interrupt. */

void
timer_init (void)
{
pit_configure_channel (0, 2, TIMER_FREQ);
intr_register_ext (0x20, timer_interrupt, "8254 Timer");

}

/* Timer interrupt handler. */
static void
timer_interrupt (struct intr_frame *args UNUSED)
{
ticks++;
thread_tick ();

}

Pintos: devices/timer.c

15

SYSCALL INTRO

16

Mode Switches

• What causes user to kernel
mode switch?

– An exception: interrupt, error, or
syscall

• What causes a kernel to user
mode switch?

– Return from exception:
• Interrupt

• Voluntary/Blocking context switch

– Upcalls/signals (more on this later)

User
Process

OS
Kernel

OS
Library

Kernel
Code

OS code
running as
separate

user
process

File
System

syscall syscall

SchedulerVirtual
Memory

Device
Drivers

17

Syscalls
• Provide a controlled method for user

mode applications to call kernel mode
(OS) code
– OS will define all possible system calls

available to user apps.

– Generally defined by number and necessary
arguments

• Syscalls are an exception and thus
switch to kernel mode

• MIPS Syntax: syscall

• x86 Syntax: INT 0x80 (value between
0-255 or 0x00-0xff)

– Service num. placed in EAX or on stack

– Pintos uses INT 0x30 with arguments on
the stack
• 1st argument is the syscall number since INT

0x30 serves ALL syscall requests

• Remaining arguments are specific to desired
syscall

/* System call numbers. */
enum
{
/* Projects 2 and later. */
SYS_HALT, /* 0 = Halt the operating system. */
SYS_EXIT, /* 1 = Terminate this process. */
SYS_EXEC, /* 2 = Start another process. */
SYS_WAIT, /* 3 = Wait for a child process to die. */
SYS_CREATE, /* 4 = Create a file. */
SYS_REMOVE, /* 5 = Delete a file. */
SYS_OPEN, /* 6 = Open a file. */
SYS_FILESIZE, /* 7 = Obtain a file's size. */
SYS_READ, /* 8 = Read from a file. */
SYS_WRITE, /* 9 = Write to a file. */
...
};

Pintos: lib/syscall-nr.h

18

User Stub & Kernel Side

• Performing a system call requires
pushing arguments on stack and
then executing the INT or SYSCALL
instruction

• To abstract some of this, the OS
usually provides a user-level
library of stubs giving a nice API to
the programmer

– The stubs just invokes the syscall

• The syscall is then treated as an
exception and transitions to kernel
code

• The kernel then examines the
stack and calls the desired
operation

/* Invokes syscall NUMBER, passing argument ARG0, and returns the
return value as an `int'. */

#define syscall1(NUMBER, ARG0) \
({ \
int retval; \
asm volatile \
("pushl %[arg0]; pushl %[number]; int $0x30; addl $8, %%esp" \

: "=a" (retval) \
: [number] "i" (NUMBER), \
[arg0] "g" (ARG0) \

: "memory"); \
retval; \

})

/* Nice API for Applications to call */
pid_t
exec (const char *file)
{
/* Really just invokes the INT 0x30 instruction */
return (pid_t) syscall1 (SYS_EXEC, file);

}

int
open (const char *file)
{
return syscall1 (SYS_OPEN, file);

}
...

Pintos: User-side stub in lib/user/syscall.c

User
Process

OS
Kernel

OS Syscall
Stub

Kernel
Syscall Code

syscall
Code in kernel actually

performs the task (e.g. exec

or open) and returns result

back to user process)

19

Syscall Mechanism 1

• Suppose a user process
(thus in user mode)
executing main() in wants
to open a file

• It will first call the user-
level stub for open which
will push the argument
and the syscall number on
the stack

• Then it will execute the
INT 0x30 instruction

HAND30:

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ... */

/* If syscall num == 6 */

call ksyscall_open

/* store retval in %eax */

...

popad

iret

Process 1 AS

CPU

Memory

pushl arg

pushl 6

int 0x30

...

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp
0x7ffff400

0x080a4eip

cs

tr

0xbffffc80

0xbffff800

ksyscall_open()

ebx

ecx

edx

garbageeax

0x80001000

eflags

U

Handler Code

Kernel Stack

main's frame

open (stub)

arg for syscall
syscall num = 6

int ksyscall_open(...)

{

/* extract arguments */

/* perform task */

return value;

}

1

1

1

2

3

3

2

2

2

20

Syscall Mechanism 2
• The HW will enter kernel mode

and along with the first portion
of the handler will save the user-
level registers onto the kernel
stack
– Note the old value of %eax (whatever

garbage it is) will be saved

• The handler must now extract
the syscall number from the
stack.
– How?

– Using the user-level saved %esp

• By looking at the syscall number
we can know to call the real
kernel implementation for open()
(i.e. ksyscall_open)
– Can also extract the argument from

the user stack

• Return value must be
communicated back in %eax so
we place it in the saved stack
version of %eax

HAND30:

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ... */

/* If syscall num == 6 */

call ksyscall_open

/* store retval in %eax */

...

popad

iret

Process 1 AS

CPU

Memory

pushl arg

pushl 6

int 0x30

...

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp
0x7ffff400

0x80001000eip

cs

tr

0xbffffc80

0xbffff800

ksyscall_open()

ebx

ecx

edx

garbageeax

0x80001000

eflags

K

Handler Code

Kernel Stack

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

main's frame

open (stub)

arg for syscall
syscall num = 6

int ksyscall_open(...)

{

/* extract arguments */

/* perform task */

return value;

}

%eax = RETVAL

1

1

1

2

2

2

3

2

3

3

4 4

4

21

Syscall Mechanism 3
• When done, the handler

then restores all the
registers and state
– User mode is restored

• The return val is in %eax

• The user level stub can
now clean up the stack
and return the value back
to main()

HAND30:

pushad

/* Extract syscall num */

/* If syscall num == 0 ...*/

/* ... */

/* If syscall num == 6 */

call ksyscall_open

/* store retval in %eax */

...

popad

iret

Process 1 AS

CPU

Memory

pushl arg

pushl 6

int 0x30

...

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp
0x7ffff400

0x080b0eip

cs

tr

0xbffffc80

0xbffff800

ksyscall_open()

ebx

ecx

edx

RETVALeax

0x80001000

eflags

U

Handler Code

Kernel Stack

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

main's frame

open (stub)

arg for syscall
syscall num = 6

int ksyscall_open(...)

{

/* extract arguments */

/* perform task */

return value;

}

%eax val

1

1

1

2

2

3

3

4

3

22

Notes

• This is the subject of
project 2 in Pintos

• You will implement the
syscall handling

• One note: Any pointers
passed from the user
process on the user stack
are virtual addresses and
must be translated to the
kernel's address space

Memory

pushl arg

pushl 6

int 0x30

...

Code

User Stack

K
e

rn
e

l's
 v

ie
w

0xffffffff

0x0

0x60ffe180

0x3ff5f0a4

ksyscall_open()

0x80001000

Handler Code

Kernel Stack

main's frame

open (stub)

VA: 0x4011f180
syscall num = 6

test.txt

0x10ccf400

Physical Mem

Memory

pushl arg

pushl 6

int 0x30

...

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400

0xbffffc80

0xbffff800

ksyscall_open()

0x80001000
Handler Code

Kernel Stack

main's frame

open (stub)

VA: 0x4011f180
syscall num = 6

2
3

test.txt0x4011f180

Process 1 AS

23

Syscall Protection

• The kernel must protect itself against errant or
malicious user arguments to the syscalls

• Examples:

– Validate pointers: Ensure they point at legal memory for
that user process

– Validate formats: Check that a C-string is null-terminated
or stop before going off valid memory regions

– Copy arguments to kernel space to avoid TOCTOU (Time of
check vs. Time of Use) attacks
• Some other thread, process or device modifying the argument

after it is check but before it is used

24

UPCALLS (SIGNALS)

25

What is an Upcall

• An upcall or signal is like a user-level interrupt (interrupt to a user-process)

– The kernel delivers some kind of event to the user process

– The user process may or may not be executing

– An upcall or signal is NOT a response to a synchronous request by the user
processor

• Examples

– Asynchronous I/O: The process requested some I/O but did not want to wait,
instead asking to be notified upon completion

– Interprocess communication: Another process has sent data or notification to
this process requiring immediate attention
• Example: Debugger restarting a process, Logout/shutdown event to applications telling them to

save data and exit

– User-level exception processing
• Many OS's give applications the chance to respond to an error or other even

• SIGINT = Interrupt = Ctrl+C

• SIGSEGV = Segmentation Violation = The dreaded seg-fault

• SIGFPE = Floating-point exception

26

Supporting Upcalls/Signals

• Signals are handled like kernel
exceptions but at the user level
– Recall the kernel had to save the

current state on its own stack

– It could then execute a kernel handler

• Thus, the user process may have a
separate signal stack
– When a the kernel triggers a signal, the

current process state can be saved on
the signal stack and then the handler
(registered in advance) can be called

– When a signal handler ends it will
restore the state from the signal stack

Just After the signal

Just Before the signal

27

VIRTUAL MACHINES

28

Virtual Machine Definitions

• Definitions

– Host OS: OS running on
the bare HW

– Guest OS: OS running in a
virtual environment

– Hypervisor: Layer that
often interfaces the
Guest and Host OS to
each other

Hypervisor

29

Using Protection

• We can use the protection and
virtualization mechanisms provided by
the hardware in our favor

• When a guest user process performs a
syscall, it will trap into the host OS, which
can then redirect it to the guest OS

• When the guest kernel (which doesn't
know it is running in user mode) executes
a privileged instruction or hardware
access, an exception will be generated to
the host OS which can then perform the
desired guest OS operation and restart it
– Example: When the Guest OS tries to read from

disk it will generate an exception, allowing the
Host OS to read normally from a file that "acts-
like" the disk for the Guest system

Hypervisor

30

PC ARCHITECTURE AND BOOT
PROCESS

Let's have fun by understanding how a modern system even boots to an
OS…

31

Display

Modern PC Architecture

• Moore's Law has allowed
greater integration levels
– Multiple cores and greater

levels of cache
– Memory controller, graphics,

and high-speed I/O are
integrated onto the
processor die

SATA Ports

Processor

System

Bus

ICH
Ethernet

Audio

More PCI

USB ports

PCI Ctrl.

Graphics Cache

Mem Ctrl.

Core Core Core Core

DRAM

32

Intel Boot Process

• On power on, each core races for a lock bit
– First one executes the boot sequence

– Others wait for Start-Up Inter-Processor
Interrupt

• On power on, fetch instruction at
0xFFFFFFF0
– Address corresponds to ROM/Flash

– Jump to initialization code (BIOS) elsewhere

• Bootstrap
– Choose mode: Real, Flat protected, Segmented

protected

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

Addr. Space

dec ECX

jnz done

done:

ret

0xffffffff

0x0

0xfffffff0 Initial Instruc.

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

33

Intel Boot Process

• Determine basic memory map and DRAM configuration (but
DRAM still not functional)

• Enable Interrupt Controllers for Protected Mode operation
– Setup data-structures and base address registers (BARs) needed to

support interrupts (i.e. descriptor tables [IDT, GDT], and Task-State
Segment [TSS])

• Questions
– Where is code right now?

– Can this code be written using functions?

• Configure cache to be used as RAM for stack and place it NEM
(No Eviction Mode)

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

34

Intel Boot Process

• Initialize DRAM
– Write to all memory and ensure ECC flags match data (either via BIOS

or HW mechanism)

• Copy BIOS code into DRAM and take processor out of special
cache mode (and flush cache)

• Initialize other cores (sending them an initial EIP/PC)

• Discover and initialize various I/O devices
– Timers, Cache, PCI bus, SATA (hard drive access)

– Determine address ranges (memory map)

• Load Master Boot Record from first sector of boot device
– Points to where OS is located and how to load code into memory

– Transfer is now transferred to the OS
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

35

Windows Boot Process
• OS Loader

– Loads system drivers and kernel code

– Reads initial system registry info

• OS Initialization

– Kernel Init

• Init kernel data structures & PnP manager

– Session SMSSInit (SMSS = Session Manager)

• Initializes registry, starts other devices/drivers, and start other processes

– Winlogon Init

• User logon screen, service control manager, and policy scripts

– Explorer Init

• DWM (Desktop Window Manager), shell

• Post Boot phase

– Other services are started (tray icons, etc.)

• Other good reference:

– http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

https://social.technet.microsoft.com/wiki/contents/articles/11341.the-windows-7-boot-process-sbsl.aspx

http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

