
1

CSCI 350
Ch. 2 - Kernel and User Mode

Mark Redekopp

2

USER VS. KERNEL MODE

3

Exceptions

• Any event that causes a break in normal execution
– Error Conditions

• Invalid address, Arithmetic/FP overflow/error

– Hardware Interrupts / Events
• Handling a keyboard press, mouse moving, USB data transfer, etc.

• We already know about these so we won't focus on these again

– System Calls / Traps
• User applications calling OS code

• General idea: When these occur, automatically call
some subroutine (a.k.a. "handler") to handle the
issue, then resume normal processing

4

Interrupt Exceptions

• Two methods for processor and I/O devices to notify each other of
events
– Polling “busy” loop (responsibility on proc.)

• Processor has responsibility of checking each I/O device
• Many I/O events happen infrequently (ms) with respect to the processors ability

to execute instructions (ns) causing the loop to execute many times

– Interrupts (responsibility on I/O device)
• I/O device notifies processor only when it needs attention

while((KEYCSR & (1 << KPFlag))==0);

Polling Loop Interrupt

Proc.

I/O Device (Keybd)

KEYCSR Proc.

I/O Device (Keybd)

KEYCSR

Polling: We can wait for a key press by continuously

reading a status flag bit in the interface register (e.g.

KEYCSR = Keyboard Control/Status Register). Keep

waiting 'while' KPFlag bit is 0)

With Interrupts: We can ask the Keyboard

controller to "interrupt" the processor when its

done so the processor doesn't have to sit

there polling

KPFlag KPFlag

5

User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (OS)
code

– Certain features/privileges are only allowed to code running in kernel mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what
they can do on their own

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control
register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as
the Current Privilege Level bits [CPL])

– 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
• Levels 1 and 2 may also be used but are not by Linux

• On an exception, the processor will automatically switch to
kernel mode

6

Kernel Mode Privileges

• Privileged instructions
– User apps. shouldn’t be allowed to

disable/enable interrupts, change
memory mappings, etc.

• Privileged Memory or I/O access
– Processor supports special areas of

memory or I/O space that can only be
accessed from kernel mode

• Separate stacks and register sets
– MIPS processors can use “shadow”

register sets (alternate GPR’s when in
kernel mode).

Kernel

Space

Address

Space

0x00000000

User

Space

0xc0000000

0xffffffff

7

Syscalls

• Provide a controlled method for user mode applications to call
kernel mode (OS) code

• Syscall’s and traps are very similar to subroutine calls but they
switch into "kernel" mode when called

• Provided a structured entry point to the OS
– Really just a subroutine call that also switches into kernel mode

– Often used to allow user apps. to request I/O or other services from
the OS

• MIPS Syntax: syscall
– Necessary arguments are defined by the OS and expected to be placed

in certain registers

• x86 Syntax: INT 0x80 (value between 0-255 or 0x00-0xff)
– Argument placed in EAX or on stack

8

Exception Processing

• Now that you know what causes exceptions, what
does the hardware do when an exception occurs?

• Save necessary state to be able to restart the process

– Save PC of current/offending instruction

• Call an appropriate “handler” routine to deal with
the error / interrupt / syscall

– Handler identifies cause of exception and handles it

– May need to save more state

• Restore state and return to offending application (or
kill it if recovery is impossible)

9

Exception Processing

• Where will you be in your program code when an interrupt occurs?

• An exception can be…

– Asynchronous (due to an interrupt or error)

– Synchronous (due to a system call/trap)

• Must save PC of offending instruction, program state, and any information needed
to return afterwards

• Restore upon return

User Program

System Exception
Handler

Return from

exception

10

Solution for Calling a Handler

• Since we don’t know when an exception will occur there must
be a preset location where an exception handler should be
defined or some way of telling the processor in advance where
our exception handlers will be located

• Method 1: Single hardwired address for master handler
– Early MIPS architecture defines that the exception handler should be

located at 0x8000_0180. Code there should then examine CAUSE register
and then call appropriate handler routine

• Method 2: Vectored locations (usually for interrupts)
– Each interrupt handler at a different address based on interrupt number

(a.k.a. vector) (INT1 @ 0x80000200, INT2 @ 0x80000300)

• Method 3: Vector tables
– Table in memory holding start address of exception handlers (i.e.

overflow exception handler pointer at 0x0004, FP exception handler
pointer at 0x0008, etc.)

11

Handler Calling Methods

Kernel

Space

Method 1

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180

Exception

Handler

Kernel

Space

Method 2

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180
Exception

Handler

INT 1 Hand.

INT 2 Hand.

INT n Hand.

0x80000200

0x80000300

0x80000???

Kernel

Space

Method 3

0x00000000

User

Space

0x80000000

0xffffffff

Handler 1

INT 1 Hand.

INT 2 Hand.

x2

x1

x3

addr x1
addr x2
addr x3 Vector

Table

12

Problem of Changed State

• When an exception occurs and we call a
handler what could go wrong?

.text

f1: dec eax

jnz done

done: ret

What if an exception occurs at this point

in time? We’d want to call an exception

handler but executing that handler would

overwrite the EFLAGs register.

13

Problem of Changed State

• x86 architecture will save stack pointer, program
counter (EIP), and EFLAGS register on the stack
automatically when an exception occurs

.text

f1: dec eax

jnz done

done: ret

HAND:

dec ecx

or eax,ecx

...

iret

Exception

Handlers need to save/restore values to stack to avoid overwriting needed

register values

14

Problem of Changed State

• Other registers must also be pushed onto the stack

.text

f1: dec eax

jnz done

done: ret

HAND:

pushad

...

or eax,ecx

...

popad

iret

Exception

Handlers need to save/restore values to stack to avoid overwriting needed

register values

We don't know if the

interrupted app. was

using eax, edx, etc…We

should save them on the

stack first

15

Transition from User to Kernel Mode

• The process executing a user process
– Lower 2 bits in CS register store the CPL (current

privilege level) where 0=Most privileged (kernel
mode) and 3=Least privileged (user mode)

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

U

16

Transition from User to Kernel Mode

• An interrupt occurs
– HW enters kernel mode and disables interrupts

– Temporary copies are made of the stack pointer,
program counter (IP), and flags register

– Using the task segment (tr), the hardware looks up
the kernel stack location and points the esp to that
location

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

0x7ffff400

0x000080a4

flags

17

Transition from User to Kernel Mode

• HW updates the stack and basic registers
– HW pushes user process' $esp, $eip, $eflags register

onto the stack

– Loads $eip with handler start address by looking it up
in the interrupt vector table

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0xe00010a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

18

Transition from User to Kernel Mode

• Handler saves remaining state
– Pushes other registers (eax, ebx, etc.) onto the stack

– Can now execute kernel mode

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0xe00010a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

HAND:

pushad

...

popad

iret

19

Transition from User to Kernel Mode

• When handler is done
– Restores saved registers (eax, ebx, etc.)

– Executes 'iret' which pops off $eflags, $eip, $esp back
into the registers

– Mode is restored appropriately

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

done:

ret

Code

User Stack

U
s
e
r

m
e

m
.

K
e

rn
e

l
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

U

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

HAND:

pushad

...

popad

iret

20

Summary

• Understand the purpose of the (at least) 2 modes of operation
– User mode

– Kernel mode

• Occurrence of an exception automatically causes kernel mode
to be entered

• Understand how state is saved when an exception is triggered
– There are usually 2 stacks (user mode and kernel stack)

• Understand how the vector table works and its purpose
– Understand that a handler must be associated in the vector table

before exceptions start occurring

