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USER VS. KERNEL MODE
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Exceptions

• Any event that causes a break in normal execution
– Error Conditions 

• Invalid address, Arithmetic/FP overflow/error

– Hardware Interrupts / Events
• Handling a keyboard press, mouse moving, USB data transfer, etc.

• We already know about these so we won't focus on these again

– System Calls / Traps  
• User applications calling OS code

• General idea:  When these occur, automatically call 
some subroutine (a.k.a. "handler") to handle the 
issue, then resume normal processing
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Interrupt Exceptions

• Two methods for processor and I/O devices to notify each other of 
events
– Polling “busy” loop (responsibility on proc.)

• Processor has responsibility of checking each I/O device
• Many I/O events happen infrequently (ms) with respect to the processors ability 

to execute instructions (ns) causing the loop to execute many times

– Interrupts (responsibility on I/O device)
• I/O device notifies processor only when it needs attention

while((KEYCSR & (1 << KPFlag))==0);

Polling Loop Interrupt

Proc.

I/O Device (Keybd)

KEYCSR Proc.

I/O Device (Keybd)

KEYCSR

Polling:  We can wait for a key press by continuously 

reading a status flag bit in the interface register (e.g. 

KEYCSR = Keyboard Control/Status Register). Keep 

waiting 'while' KPFlag bit is 0)

With Interrupts:  We can ask the Keyboard 

controller to "interrupt" the processor when its 

done so the processor doesn't have to sit 

there polling

KPFlag KPFlag
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User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (OS) 
code

– Certain features/privileges are only allowed to code running in kernel mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what 
they can do on their own 

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control 
register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as 
the Current Privilege Level bits [CPL])

– 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
• Levels 1 and 2 may also be used but are not by Linux

• On an exception, the processor will automatically switch to 
kernel mode
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Kernel Mode Privileges

• Privileged instructions
– User apps. shouldn’t be allowed to 

disable/enable interrupts, change 
memory mappings, etc. 

• Privileged Memory or I/O access
– Processor supports special areas of 

memory or I/O space that can only be 
accessed from kernel mode

• Separate stacks and register sets
– MIPS processors can use “shadow” 

register sets (alternate GPR’s when in 
kernel mode).

Kernel 

Space

Address 

Space

0x00000000

User

Space

0xc0000000

0xffffffff
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Syscalls

• Provide a controlled method for user mode applications to call 
kernel mode (OS) code

• Syscall’s and traps are very similar to subroutine calls but they 
switch into "kernel" mode when called

• Provided a structured entry point to the OS
– Really just a subroutine call that also switches into kernel mode

– Often used to allow user apps. to request I/O or other services from 
the OS

• MIPS Syntax:  syscall
– Necessary arguments are defined by the OS and expected to be placed 

in certain registers

• x86 Syntax:  INT 0x80  (value between 0-255 or 0x00-0xff)
– Argument placed in EAX or on stack
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Exception Processing

• Now that you know what causes exceptions, what 
does the hardware do when an exception occurs?

• Save necessary state to be able to restart the process

– Save PC of current/offending instruction

• Call an appropriate “handler” routine to deal with 
the error / interrupt / syscall

– Handler identifies cause of exception and handles it

– May need to save more state

• Restore state and return to offending application (or 
kill it if recovery is impossible)
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Exception Processing

• Where will you be in your program code when an interrupt occurs?

• An exception can be…

– Asynchronous (due to an interrupt or error)

– Synchronous (due to a system call/trap)

• Must save PC of offending instruction, program state, and any information needed 
to return afterwards

• Restore upon return

User Program
---------

---------

---------

---------

---------

---------

---------

---------

System Exception 
Handler

---------

---------

---------

---------

---------

---------

---------

---------

Return from 

exception
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Solution for Calling a Handler

• Since we don’t know when an exception will occur there must 
be a preset location where an exception handler should be 
defined or some way of telling the processor in advance where 
our exception handlers will be located

• Method 1:  Single hardwired address for master handler
– Early MIPS architecture defines that the exception handler should be 

located at 0x8000_0180.  Code there should then examine CAUSE register 
and then call appropriate handler routine 

• Method 2:  Vectored locations (usually for interrupts)
– Each interrupt handler at a different address based on interrupt number 

(a.k.a. vector) (INT1 @ 0x80000200, INT2 @ 0x80000300)

• Method 3:  Vector tables
– Table in memory holding start address of exception handlers (i.e. 

overflow exception handler pointer at 0x0004, FP exception handler 
pointer at 0x0008, etc.)
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Handler Calling Methods

Kernel 

Space

Method 1

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180

Exception 

Handler

Kernel 

Space

Method 2

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180
Exception 

Handler

INT 1 Hand.

INT 2 Hand.

INT n Hand.

0x80000200

0x80000300

0x80000???

Kernel 

Space

Method 3

0x00000000

User

Space

0x80000000

0xffffffff

Handler 1

INT 1 Hand.

INT 2 Hand.

x2

x1

x3

addr x1
addr x2
addr x3 Vector 

Table
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Problem of Changed State

• When an exception occurs and we call a 
handler what could go wrong?

.text

f1: dec eax

jnz done

----

----

----

done: ret

What if an exception occurs at this point 

in time?  We’d want to call an exception 

handler but executing that handler would 

overwrite the EFLAGs register.
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Problem of Changed State

• x86 architecture will save stack pointer, program 
counter (EIP), and EFLAGS register on the stack 
automatically when an exception occurs

.text

f1: dec eax

jnz done

----

----

----

done: ret

HAND: 

dec ecx

or   eax,ecx

...

iret

Exception

Handlers need to save/restore values to stack to avoid overwriting needed 

register values
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Problem of Changed State

• Other registers must also be pushed onto the stack

.text

f1: dec eax

jnz done

----

----

----

done: ret

HAND: 

pushad

...

or   eax,ecx

...

popad

iret

Exception

Handlers need to save/restore values to stack to avoid overwriting needed 

register values

We don't know if the 

interrupted app. was 

using eax, edx, etc…We 

should save them on the 

stack first
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Transition from User to Kernel Mode

• The process executing a user process
– Lower 2 bits in CS register store the CPL (current 

privilege level) where 0=Most privileged (kernel 
mode) and 3=Least privileged (user mode)

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

---

---

done:

ret

Code

User Stack

U
s
e
r 

m
e

m
.

K
e

rn
e

l 
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

U
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Transition from User to Kernel Mode

• An interrupt occurs
– HW enters kernel mode and disables interrupts

– Temporary copies are made of the stack pointer, 
program counter (IP), and flags register

– Using the task segment (tr), the hardware looks up 
the kernel stack location and points the esp to that 
location

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

---

---

done:

ret

Code

User Stack

U
s
e
r 

m
e

m
.

K
e

rn
e

l 
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

0x7ffff400

0x000080a4

flags
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Transition from User to Kernel Mode

• HW updates the stack and basic registers
– HW pushes user process' $esp, $eip, $eflags register 

onto the stack

– Loads $eip with handler start address by looking it up 
in the interrupt vector table

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

---

---

done:

ret

Code

User Stack

U
s
e
r 

m
e

m
.

K
e

rn
e

l 
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0xe00010a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

esp=0x7ffff400
eip=0x000080a4

eflags
Error code
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Transition from User to Kernel Mode

• Handler saves remaining state
– Pushes other registers (eax, ebx, etc.) onto the stack

– Can now execute kernel mode

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

---

---

done:

ret

Code

User Stack

U
s
e
r 

m
e

m
.

K
e

rn
e

l 
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0xbffff800esp

0x7ffff400

0xe00010a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

K

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

HAND: 

pushad

...

popad

iret
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Transition from User to Kernel Mode

• When handler is done
– Restores saved registers (eax, ebx, etc.)

– Executes 'iret' which pops off $eflags, $eip, $esp back 
into the registers

– Mode is restored appropriately

Process 1 AS

CPU

Memory
Handler Code

dec ECX

jnz done

---

---

done:

ret

Code

User Stack

U
s
e
r 

m
e

m
.

K
e

rn
e

l 
m

e
m

.0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400esp

0x7ffff400

0x000080a4eip

cs

tr

Kernel Stack

0xbffffc80

0xbffff800

GDT

ebx

ecx

edx

eax

0x80000000

eflags

U

esp=0x7ffff400
eip=0x000080a4

eflags
Error code

Saved Registers

HAND: 

pushad

...

popad

iret
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Summary

• Understand the purpose of the (at least) 2 modes of operation
– User mode

– Kernel mode

• Occurrence of an exception automatically causes kernel mode 
to be entered

• Understand how state is saved when an exception is triggered
– There are usually 2 stacks (user mode and kernel stack)

• Understand how the vector table works and its purpose
– Understand that a handler must be associated in the vector table 

before exceptions start occurring


