CSCI 350
Ch. 2 - Kernel and User Mode

Mark Redekopp

USER VS. KERNEL MODE

Exceptions

* Any event that causes a break in normal execution
— Error Conditions
* |nvalid address, Arithmetic/FP overflow/error

— Hardware Interrupts / Events
* Handling a keyboard press, mouse moving, USB data transfer, etc.
* We already know about these so we won't focus on these again

— System Calls / Traps
e User applications calling OS code
* General idea: When these occur, automatically call
some subroutine (a.k.a. "handler") to handle the
issue, then resume normal processing

e — 5 Viterbi
Interrupt Exceptions

 Two methods for processor and I/O devices to notify each other of
events
— Polling “busy” loop (responsibility on proc.)
* Processor has responsibility of checking each 1/O device

* Many I/O events happen infrequently (ms) with respect to the processors ability
to execute instructions (ns) causing the loop to execute many times

— Interrupts (responsibility on 1/O device)
* 1/0 device notifies processor only when it needs attention

Polling: We can wait for a key press by continuously With Interrupts: We can ask the Keyboard

reading a status flag bit in the interface register (e.g. controller to "interrupt" the processor when its

KEYCSR = Keyboard Control/Status Register). Keep done so the processor doesn't have to sit
waiting ‘while' KPFlag bit is 0) there polling

while ((KEYCSR & (1 << KPFlag))==0)

I/O Device (Keybd) I/O Device (Keybd)

\ 4
A

KEYCSR

PrOC KEYCSR
KPFlag KPFlag

Proc.

Polling Loop Interrupt

B ()5 C Viterbi >
User vs. Kernel Mode

* Kernel mode is a special mode of the processor for executing trusted (OS)
code

— Certain features/privileges are only allowed to code running in kernel mode
— OS and other system software should run in kernel mode
* User mode is where user applications are designed to run to limit what
they can do on their own
— Provides protection by forcing them to use the OS for many services
* User vs. kernel mode determined by some bit(s) in some processor control
register

— x86 Architecture uses lower 2-bits in the CS segment register (referred to as
the Current Privilege Level bits [CPL])

— 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
* Levels 1 and 2 may also be used but are not by Linux

 On an exception, the processor will automatically switch to
kernel mode

Kernel Mode Privileges

* Privileged instructions

— User apps. shouldn’t be allowed to
disable/enable interrupts, change
memory mappings, etc.

* Privileged Memory or I/O access

— Processor supports special areas of
memory or |/O space that can only be
accessed from kernel mode

e Separate stacks and register sets

— MIPS processors can use “shadow”
register sets (alternate GPR’s when in
kernel mode).

OXffffffff

Kernel
Space

0xcO000000

User
Space

0x00000000

Address
Space

Syscalls

Provide a controlled method for user mode applications to call
kernel mode (OS) code

Syscall’s and traps are very similar to subroutine calls but they
switch into "kernel" mode when called

Provided a structured entry point to the OS
— Really just a subroutine call that also switches into kernel mode

— Often used to allow user apps. to request |/O or other services from
the OS

MIPS Syntax: syscall

— Necessary arguments are defined by the OS and expected to be placed
in certain registers

x86 Syntax: INT Ox80 (value between 0-255 or 0x00-0xff)

— Argument placed in EAX or on stack

Exception Processing

 Now that you know what causes exceptions, what
does the hardware do when an exception occurs?

e Save necessary state to be able to restart the process
— Save PC of current/offending instruction

e Call an appropriate “handler” routine to deal with
the error / interrupt / syscall
— Handler identifies cause of exception and handles it

— May need to save more state

e Restore state and return to offending application (or
kill it if recovery is impossible)

i, TS(“Viterbi -

Exception Processing

Where will you be in your program code when an interrupt occurs?
* An exception can be...
— Asynchronous (due to an interrupt or error)

— Synchronous (due to a system call/trap)

* Must save PC of offending instruction, program state, and any information needed
to return afterwards

e Restore upon return

User Program

System Exception
Handler

/

Return from
exception

i, TS(“Viterbi

School of Engineering

Solution for Calling a Handler

e Since we don’t know when an exception will occur there must
be a preset location where an exception handler should be
defined or some way of telling the processor in advance where
our exception handlers will be located

* Method 1: Single hardwired address for master handler

— Early MIPS architecture defines that the exception handler should be
located at 0x8000_0180. Code there should then examine CAUSE register
and then call appropriate handler routine

 Method 2: Vectored locations (usually for interrupts)

— Each interrupt handler at a different address based on interrupt number
(a.k.a. vector) (INT1 @ 0x80000200, INT2 @ 0x80000300)

e Method 3: Vector tables

— Table in memory holding start address of exception handlers (i.e.
overflow exception handler pointer at 0x0004, FP exception handler
pointer at 0x0008, etc.)

Kernel
Space

Exception
Handler

User
Space

Method 1

OXfffffff

0x80000180
0x80000000

0x00000000

Kernel
Space

INT n Hand.

INT 2 Hand.

INT 1 Hand.

Exception
Handler

User
Space

Method 2

OXfffffff

0x80000???

0x80000300
0x80000200

0x80000180

0x80000000

0x00000000

Kernel
Space

Handler 1

addr x1

User
Space

Method 3

i, TS(“Viterbi Cw

Handler Calling Methods

School of Engineering

OXfrffffff

X3

x1
X2

Vector
0x80000000[Table

0x00000000

Problem of Changed State

* When an exception occurs and we call a
handler what could go wrong?

text _What if an exception occurs at this point
£71 - dec oz in time? We’d want to call an exception
handler but executing that handler would

jnz done overwrite the EFLAGS register.

done: ret

i, TS(“Viterbi -

Problem of Changed State

e Xx86 architecture will save stack pointer, program
counter (EIP), and EFLAGS register on the stack
automatically when an exception occurs

text HAND:

f1l: dec eax Exception
Jnz done ~ dec ecx
o \ or eax, ecx
o ™~ iret

done: ret

Handlers need to save/restore values to stack to avoid overwriting needed
register values

I (/S C Viterbi (U9

Problem of Changed State

School of Engineering

e Other registers must also be pushed onto the stack

.text HAND:
it L ¢ dec eax — | Exception pushad
jnz done ‘\ » c..
o \ or eax, ecx
—— - ~ ... We don't know if the
o popad interrupted app. was

using eax, edx, etc...We
done: ret iret should save them on the

stack first

Handlers need to save/restore values to stack to avoid overwriting needed
register values

i, TS(“Viterbi 9

School of Engineering

Transition from User to Kernel Mode

* The process executing a user process
— Lower 2 bits in CS register store the CPL (current

privilege level) where 0=Most privileged (kernel e é
andler Coae
mode) and 3=Least privileged (user mode) T
] E
Oxbffffc80
eax . - Oxbffff800
ebx esp 0x7ffff400 Kernel Stack
ecx eip | 0x000080a4 0x80000000
edx cs U
0x7ffffc80
eflags OX7Hfff400 £
CPU o
e
2
)

0x080a4

done:

0x0

Process 1 AS

i, TS(“Viterbi

School of Engineering

Transition from User to Kernel Mode

An interrupt occurs
— HW enters kernel mode and disables interrupts

— Temporary copies are made of the stack pointer,

program counter (IP), and flags register

eax
ebx
ecx

edx

CPU

tr
esp
eip
cs

eflags

7

Oxbffffc80

0xbffff800

0xbffff800

Ox7ffff400

0x000080a4

0x000080a4

K

0x80000000

Handler Code

Kernel Stack

Kernel mem.

flags

7ffffc80

— Using the task segment (tr), the hardware looks up
the kernel stack location and points the esp to that

location

Ux7ffff400

0x080a4

0x0

d

Code

ECX

o
N Q
o
=]
(]

Process 1 AS

User mem.

i, TS(“Viterbi -

School of Engineering

Transition from User to Kernel Mode

* HW updates the stack and basic registers
— HW pushes user process' Sesp, Seip, Seflags register

OXFfffffff

onto the stack Memor
Handler Code

— Loads Seip with handler start address by looking it up
in the interrupt vector table

Kernel mem.

Oxbffffc80 esp=0x7ffff400
Oxbffff800 e"’=°§’,ggf 80ad
eax tr Error code
o esp Oxbffff800
/ Kernel Stack
ecx eip 0xe00010a4 0x80000000
edx s K
Ox7ffffc80 User Stack)
eflags 0x7ffff400 =
CPU £
i
o

0x080a4 nz done

0x0

Process 1 AS

i, TS(“Viterbi

School of Engineering

Transition from User to Kernel Mode

HAND:
f pushad

* Handler saves remaining state —

iret

— Pushes other registers (eax, ebx, etc.) onto the stack
— Can now execute kernel mode

eax
ebx
ecx

edx

CPU

tr
esp
eip
cs

eflags

0xbffff800

0xe00010a4

K

Oxbffffc80

0xbffff800

0x80000000

esp=0x7ffff400

eip=0x000080a4

eflags

Error code

Saved Registers

Kernel Stack

Kernel mem.

0x7ffffc80
0x7ffff400

0x080a4

0x0

User mem.

Code

dec ECX

Process 1 AS

i, TS(“Viterbi

School of Engineering

Transition from User to Kernel Mode

When handler is done

— Restores saved registers (eax, ebx, etc.)
— Executes 'iret' which pops off Seflags, Seip, Sesp back

into the registers
— Mode is restored appropriately

eax

ebx

ecx

edx

CPU

tr
esp
eip
cs

eflags

0x7ffff400

0x000080a4

u

Oxbffffc80

0xbffff800

0x80000000

HAND:
pushad
popad
iret

Kernel Stack

Kernel mem.

0x7ffffc80
0x7ffff400

0x080a4

0x0

dec ECX

Process 1 AS

User mem.

Summary

* Understand the purpose of the (at least) 2 modes of operation
— User mode
— Kernel mode

* Occurrence of an exception automatically causes kernel mode
to be entered

* Understand how state is saved when an exception is triggered

— There are usually 2 stacks (user mode and kernel stack)

* Understand how the vector table works and its purpose

— Understand that a handler must be associated in the vector table
before exceptions start occurring

