

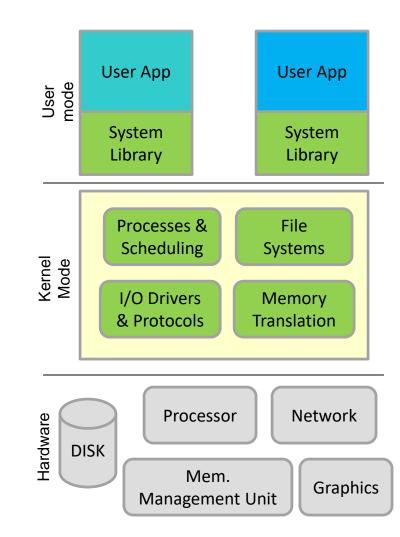
CSCI 350 Ch. 1 – Introduction to OS

Mark Redekopp Ramesh Govindan and Michael Shindler

Syllabus

2

- Website (<u>http://bits.usc.edu/cs350</u>)
- People
- Projects
 - PintOS
 - Policies
- Grading & Exams


WHAT IS AN OPERATING SYSTEM

3

Definition

- A piece of software that manages a computer's resources
- What resources need managing?
 - CPU (threads and processes)
 - Memory (Virtual memory, protection)
 - I/O (Abstraction, interrupts, protection)

HISTORY OF OPERATING SYSTEMS

5

Evolution

School of Engineering

- Single job systems
 - https://www.youtube.com/watch?v=XetHU_pAWOo
- Batch systems: OS little more than a library for I/O
 - Execute the next program while outputting results from the previous
 - Better than before since computer wasn't idle when processing
- Multi-tasking: DMA, direct I/O access, virtual machines
 - Avoided I/O waiting, multiplex CPU and I/O
 - Virtual machines were developed around this time
- Time sharing: Support interactive use of computers
 - Isolation (privileges), the process abstraction, memory hardware, virtual memory
- PCs: bitmapped displays, window management
- Mobile: SSDs, sensors/GPS, touch screen
- Servers: Virtualization, optimize for specific tasks

As a result of Moore's Law, features available on higher end devices find their way into lower end devices over time. Supercomputer -> server -> desktop -> mobile

Kinds of Operating Systems

- General Purpose
 - Laptop, Desktop
- Server
 - User and other access policies
 - Supporting virtualization (hypervisor)
- Mobile
- Embedded
 - Hard and Soft Real-time
 - Hard Real-time: Missing a deadline results in failure
 - Soft Real-time: Performance/usefulness degrades if deadlines missed
 - Scheduling, priority, and deterministic latency

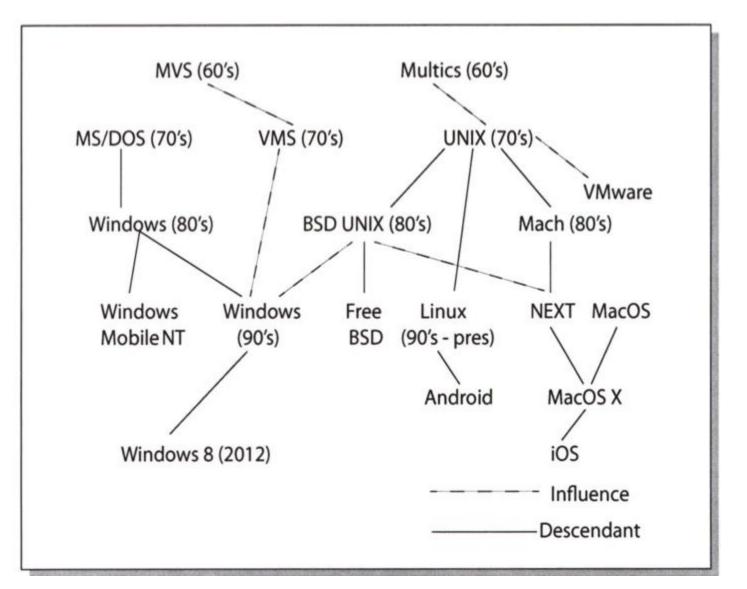


Figure 1.9, OS:PP 2nd Ed.

ISCViterbi

8

Roles

- Textbook regularly revisits 3 roles an OS plays:
- Referee
 - Protection against other applications
 - Enforce fair resource sharing
 - Why doesn't an infinite loop require a reboot?
- Illusionist (Virtualization)
 - Each program thinks it is running separately
 - Each program thinks it has full access to computer's resources (or unlimited resources)
- Glue
 - Common services (such as copy/paste)
 - Files can be read by any application
 - UI routines for look & feel
 - Separate applications from hardware
 - so you don't need to know which keyboard, disk drive, etc

Case Study of Roles

10

- What roles {Referee, Illusionist, Glue} would be relevant and important in the following systems?
- Web browser
- Cloud computing
- Multiuser database
- The Internet

Case Study of Roles

11

- Web browser
 - Referee (execution of scripted code), glue (display and network functionality)
 - Illusionist (handling of network errors)
- Cloud computing
 - Illusionist (no need to know where data is stored) and glue (to provide APIs and access) to data
 - Referee and Illusionist (virtualization, separation)
- Multiuser Database
 - Illusionist (replication and transactions)
 - Referee (access rights)
- Internet
 - Illusionist (DNS translation, IP routing, Reliability)
 - Referee (Quality-of-Service, congestion, denial of service)
 - Glue (Common API, standards, etc.)

OS Design Criteria (Metrics)

- Reliability (availability)
- Security/Privacy
- Performance
- Portability & Adoption

Reliability vs. Availability

13

- Reliable: Outputs are as intended for the given set of inputs
 - If outputs are not as intended we say the system has failed
- Availability: System can do work
- Available does not imply reliable
 - System can be available but not reliable (bugs!)
 - System can be reliable yet not available
 - DoS, Crash after every instruction but saves results

Security

- Security means avoiding compromised states

 Example: Execution of malware/virus
- Privacy implies only authorized users can access certain data
- Security is hard to achieve without sacrificing other important aspects like performance (e.g. encryption, translation, etc.)

Performance

15

- Scheduling and Fairness
 - Predictability
- Throughput vs. response time

Portability

16

- OS can abstract applications from various hardware changes
 - OS should play middle man and provide an API or AMI (Abstact Machine Interface)
- Can OS itself be abstracted from hardware changes (i.e. easily ported to another HW platform)
 - Many OSs use a HAL (hardware abstraction layer) so that the bulk of the code need not change as it is migrated to a new platform
- Adoption: The more devices that can be supported the greater the chance of adoption
 - Network effect: Adoption based on
 - If good apps are available, OS will be adopted. But good apps may not be written unless the OS is widely adopted.