
1

CSCI 350
Ch. 1 Interlude –

Review of Architecture, Threading,
and the C Language

Mark Redekopp

Michael Shindler

2

Recall

• An OS is a piece of software that
manages a computer’s resources

• Resources needing management:

– CPU (threads and processes)

– Memory (Virtual memory,
protection)

– I/O (Abstraction, interrupts,
protection)

• Let's look a bit deeper at some of
the hardware DISK

Processor

Mem.
Management Unit

Network

Graphics

I/O Drivers
& Protocols

File
Systems

Memory
Translation

Processes &
Scheduling

System
Library

System
Library

User App User App

K
e

rn
e

l

M
o

d
e

H
a
rd

w
a

re
U

s
e
r

m
o

d
e

3

PC Architecture (~10 years ago)

• Place component with the
highest data needs closest to
the processor

• Memory controller
– DRAM requires dedicated

controller to interpret system bus
transactions to memory control
signals

– High bandwidth connection via
system bus

• ICH (I/O Controller Hub)
– Implements USB controller, Hard

Drive, CD-ROM and PCI expansion
interfaces along with other I/O
interfaces

– Provides lower bandwidth
capabilities over I/O bus

Graphics

Hard Disk,

CD-ROM

Drives

Mem.

Ctrl.

Processor

System

Bus

DRAM

ICH
PCI-Express

Expansion

Bus

USB ports

I/O Bus

Cache

4

Display

Modern PC Architecture

• Moore's Law has allowed
greater integration levels
– Multiple cores and greater

levels of cache
– Memory controller, graphics,

and high-speed I/O are
integrated onto the
processor die

SATA Ports

Processor

System

Bus

ICH
Ethernet

Audio

More PCI

USB ports

PCI Ctrl.

Graphics Cache

Mem Ctrl.

Core Core Core Core

DRAM

5

CS 201/356 REVIEW

6

Assembly

• High-level code is broken into basic instructions

• Programmer's model of a machine (CPU and
memory) is everything the programmer needs to
know to write and translate software code to 1's and
0's

– Registers

– Program Counter (Instruction Pointer)

– Status/mode flags

– Data sizes

– I/O addressing (memory-mapped I/O)

– Various cache/TLB instructions/settings

7

Intel (IA-32) Architectures

CS
(Code Segment)

DS
(Data Segment)

SS
(Stack Segment)

ES
(Extended Segment)

ESP

(Stack Pointer)

EBP

(Base “Frame” Ptr.)

ESI

(Source Index)

EDI

(Dest. Index)

EIP

(Instruction Pointer)

Segment RegistersPointer/Index Registers

EAX AH AL

AX

16 0831

EBX BH BL

ECX CH CL

EDX DH DL

Data/Offset Registers

+

+

+

+

EFLAGS

Status Register

8

Real Mode Addressing

• How to make 20-bit addr. w/ 16-bit reg’s???
– Use two 16-bit registers
– (Segment register * 16) + Index Reg.

• Format:
– Seg Reg:Index Reg (e.g. CS:IP)

16-bit Segment Reg. 0 0 0 0

16-bit Index Reg.

20-bit Memory Address

+

Examples:

0x1A5C:0x405E
0x1A5C0

+ 0x405E

0x1E61E

0x74AB:0xE892
0x74AB0

+ 0xE892

0x83345

9

Protected Mode Addressing

• Segment Register value selects a segment
(area of memory)

• EA (Effective Address) = Index reg. +
segment start addr.

Segment Reg.

Index Reg.

Memory

Management

Unit

Memory

+
Text

Segment

Segment Start Addr.

EA

Data

Segment

Stack

Segment

10

IA-32 Addressing Modes

Name Example Effective Address

Immediate MOV EAX,5 R[d] = immed.

Direct MOV EAX,[100] R[d] = M[100]

Register MOV EAX,EDX R[d] = R[s]

Register indirect MOV EAX,[EBX] R[d] = M[R[s]]

Base w/ Disp. MOV EAX,[EBP+60] R[d] = M[R[s]+d]

Base w/ Index MOV EAX,[EBP + ESI*4] R[d] =

M[(Reg1)+(Reg2)*S]

Base w/ Index &

Disp.

MOV EAX,[EBP+ESI*4+100] R[d] =

M[(Reg1)+(Reg2)*S + d]

11

IA-32 Instructions

• Stack aware instructions

– ‘call’ / ‘ret’ automatically push/pop return address onto
stack

– ‘push’ / ‘pop’ instructions for performing these operations

• Memory / Register architecture

– One operand can be located in memory
• add eax, [ebp] # adds reg. EAX to value pointed at by EBP

• Specialized Instructions

– xchg src1, src2 # exchanges/swaps operands

– string copy and compare instructions

12

STACK FRAMES & FUNCTION CALLS

13

Stack Frame Organization

Arg. 1

Arg. n

...

Saved regs.

$ebx, $ebp,

$esi, $edi)

Local

variables

Return Address

Padding/Empty

Arg. 1

Arg. n

...

...

Main's Data

Main’s Stack

Frame

Stack Growth

SUB1’s Stack

Frame

• Args. for SUB1 (or any other routine called by

main)

• Space for any local/automatic declared variables in

a routine

• Space for any “non-preserved” registers that need

to be saved when SUB1 calls another routine

• ABI requires specific registers be saved (those

shown to the left). Others are allowed to be

overwritten (i.e. caller needed to save them if

he/she wanted them)

• Empty slot if needed because local data space

must be double-word aligned (multiple of 8)

• Return address pushed by 'call' instruc.

• Args. for any other routine called by SUB1

Other saved regs

Padding/Empty

14

Building a Stack Frame

• Caller routine…
– Save/push caller’s "unpreserved" registers (use 'push' instruction)

– Push arguments onto stack

– Execute 'call' (Saves return address onto stack [i.e. CS:IP])

• Callee routine…
– Save/push "preserved" registers ($ebx, $ebp, $edi, $esi)

– Allocate space for local variables by moving $esp down

– Save/push "non-preserved registers" (e.g. $ecx, if needed)

– Execute Code

– Place return value in $eax

– Restore/pop "non-preserved registers"

– Deallocate local variables by moving $esp up

– Restore/pop "preserved registers"

– Return using 'ret' (Pops the return address off the stack)

• Caller routine…
– Pop arguments

– Restore/pop "non-preserved registers"

15

Accessing Values on the Stack

• Stack pointer ($esp) is usually used to
access only the top value on the stack

• To access arguments and local variables,
we need to access values buried in the
stack

• We can use an offset from $esp

• However if $esp moves (due to additional
push/pops) then we have to use a
different offset to get the same data from
the stack
– This can make readying the code harder

• Possible improvement: Use a pointer that
won't change during function execution
(aka the base/frame pointer, $ebp)

To access parameters

we could try to use

some displacement

[i.e. ($esp,8)]

$esp

+ offset

Args.

Local Vars.

(ans)

Saved Regs.

Local Vars.

(ans)

Args.

Saved Regs.

16

Base/Frame Pointer

• Use a new pointer called
Base/Frame Pointer ($ebp) to point
to the base of the current routines
frame (i.e. the first word of the stack
frame)

• $ebp will not change during the
course of subroutine execution

• Can use constant offsets from $ebp
to access parameters or local
variables
– Key 1: $ebp doesn’t change during

subroutine execution

– Key 2: Number of arguments, local
variables, and saved registers is a known
value

$sp

$fp

- offset

+ offset Args.

Local Vars.

(ans)

Saved Regs.

Local Vars.

(ans)

Args.

Saved Regs.

17

THREAD BASICS

18

What is a Thread?

• Registers + PC + Stack
representing a single execution
sequence

• Independently scheduled unit of
code

CPU

0xbff70c44esp

0x800011c8eip

eflags

eax

Memory

dec ECX

jnz done

done:

ret

Code

T1 Stack

0xffffffff

0x0

0x080a4

0x7ffffc80

0x7ffff400

Kernel

0x80000000

T2 Stack

19

Atomic Operations

• Operation appears to be
indivisible

• Given int x=0; and multiple
threads

• Is x++; atomic?

• No…it translates to:

– load/move

– add

– store/move

Thread 1:

x++;
load x
add 1,x
store x

Thread 2:

x++;
load x
add 1,x
store x

Thread 1:
load x
add 1,x
store x

Thread 2:

load x
add 1,x
store x

Thread 1:
load x

add 1,x
store x

Thread 2:

load x
add 1,x
store x

Code

Ordering

Option 1

Ordering

Option 2

Result 2 Result 1

20

Synchronization Primitives

• What are the key operations for these
primitives?

• Locks

• Condition Variables

• Semaphores

21

Caching & Virtual Memory

• What do you remember about caching and
virtual memory?

22

Memory Hierarchy & Caching

• Lower levels act as a cache for upper levels

Disk / Secondary Storage

~1-10 ms

Main Memory

~ 100 ns

L2 Cache

~ 10ns

L1 Cache

~ 1ns

Registers

L1/L2 is a

“cache” for

main memory

Virtual memory

provides each

process its own

address space in

secondary storage

and uses main

memory as a cache

http://images.google.com/imgres?imgurl=http://content.answers.com/main/content/wp/en/b/bc/DIMMs.jpg&imgrefurl=http://www.answers.com/topic/dimm&h=273&w=439&sz=36&hl=en&start=6&um=1&tbnid=5SVFjWQNFR3QuM:&tbnh=79&tbnw=127&prev=/images?q=dimm&ndsp=18&um=1&hl=en&rlz=1T4ADBR_enUS227US231&sa=N
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q=hard+disk&hl=en&rlz=1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sudhian.com/img/intel/core2/core2.03.jpg&imgrefurl=http://www.sudhian.com/index.php?/articles/show/intel_core_2_duo_e6700_core_2_extreme_x6800_review/&h=386&w=500&sz=100&hl=en&start=7&tbnid=NKGcbV1H1RIhmM:&tbnh=100&tbnw=130&prev=/images?q=core+2+duo&hl=en&rlz=1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sharkyextreme.com/img/2006/07/core2/core2_duo.jpg&imgrefurl=http://www.sharkyextreme.com/hardware/cpu/article.php/3620036&h=369&w=400&sz=25&hl=en&start=5&tbnid=lwGjuvMaRgqAqM:&tbnh=114&tbnw=124&prev=/images?q=core+2+duo&hl=en&rlz=1T4ADBR_enUS227US231

23

Cache Example

• When processor attempts to
access data it will first check
the cache
– If the cache does not have the

data, it must go to the main
memory (RAM) to access it

– If the cache has the desired
data, it can supply it quickly

Proc.

Mem.

Ctrl. RAM

Cache
Cache does

not have

desired

data

Spend full

time to get

from

memory

Proc.

Mem.

Ctrl. RAM

Cache

Get data

quickly

from cache

Access data i

Susequent

Access to

data i

24

Address Spaces

• Physical address spaces
corresponds to the actual system
address bus width and range (i.e.
main memory and I/O)

• Each process/program runs in its
own private “virtual” address
space
– Virtual address space can be larger

(or smaller) than physical memory

– Virtual address spaces are protected
from each other

• Process (def.): Address Space +
Threads

32-bit Physical

Address Space w/

only 1 GB of Mem

0x00000000

0xffff ffff

Mem.

I/O

Not

used

0x3fffffff

Not

used

0x80000000

0xbfffffff

Mem.

0x00000000

0xffff ffff

32-bit Fictitious Virtual

Address Spaces

(> 1GB Mem)

I/O

Mem

Program/Process

1,2,3,…

25

Virtual Address Spaces

• Virtual address spaces are
broken into blocks called
“pages”

• Depending on the
program, much of the
virtual address space will
not be used

• All used pages are
“housed” in secondary
storage (hard drive)

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Used/Unused Blocks in

Virtual Address Space

Mem.

0x0000000

0

0xffff ffff

Fictitious Virtual

Address Spaces

I/O

Mem

Program/Process

1,2,3,…

26

Physical Address Space

• Physical memory is broken
into page-size blocks called
“page frames”

• Multiple programs are run
concurrently and their
pages (code & data) need
to reside in physical
memory

• Physical memory acts as a
cache for pages from the
secondary storage as each
program executes

0x00000000

0x3fffffff
frame

1GB Physical

Memory and

32-bit Address

Space

…

frame

I/O

and

un-

used

area

0xffffffff

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Fictitious Virtual

Address Spaces

27

Physical Memory Usage

• HW & the OS will translate
the virtual addresses used by
the program to the physical
address where that page
resides

• If an attempt is made to
access a page that is not in
physical memory, a “page
fault exception” is declared
and the OS brings in the page
to physical memory (possibly
evicting another page)

0x00000000

0x3fffffff
frame

1

Physical

Memory and

Address Space

0

3

2

0

frame

I/O

and

un-

used

area

0xffffffff

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Fictitious Virtual

Address Spaces

28

Page Size and Address Translation

• Usually pages are several KB in size to amortize the large access time

• Example: 32-bit virtual & physical address, 1 GB physical memory,
4 KB pages

• Virtual page number to physical page frame translation performed by HW
unit = MMU (Mem. Management Unit)

Offset within pageVirtual Address Virtual Page Number

31 12 11 0

Offset within pagePhysical Address Page Frame Number

31 30 12 11 0

00

Copied

12

Translation

Process

29

20

18

29

C REVIEW

30

Main Differences for CS350

• No reference types, only pointers

• No classes, only structs

– And structs in C cannot have member functions

• Different I/O routines

– printf() and scanf() replace cout and cin

• Different memory allocation functions

– malloc() and free() replace new and delete

31

No Reference Types

• Reference types (i.e. int&) do not exist in C,
only pointers (i.e. int*)

int main()

{

int x=5,y=7;

swapit(&x,&y);

cout <<“x,y=“<< x<<“,”<< y;

cout << endl;

}

void swapit(int *x, int *y)

{

int temp;

temp = *x;

*x = *y;

*y = temp;

}

MUST PASS BY POINTERDOES NOT COMPILE IN C

int main()

{

int x=5,y=7;

swapit(x,y);

cout <<“x,y=“<< x<<“,”<< y;

cout << endl;

}

void swapit(int &x, int &y)

{

int temp;

temp = x;

x = y;

y = temp;

}

32

C Structs

• A way to group values that are related,
but have different data types

• Similar to a class in C++

• Capabilities of structs changed
in C++!

– C
• Only data members (no functions)

• Must create an instance by including
keyword 'struct' in front of struct
typename

– C++
• Like a class (data + member functions)

• Default access is public

struct Person{

char name[20];

int age;

};

int main()

{

// C++ decl.

Person p1;

// C decl.

struct Person p1;

struct Person *ptr = &p1;

p1->age = 19;

return 0;

}

33

Mimicking OOP

• So if we can't have member functions for a struct what should
we do?

• Just write globally scoped functions that take in a pointer to a
struct instance as the first argument

class Deck {

public:

Deck(); // Constructor

~Deck(); // Destructor

void shuffle();

void cut();

int get_top_card();

private:

int cards[52];

int top_index;

};

C++ Class - deck.h

struct Deck {

int cards[52];

int top_index;

};

// Prototype global functions

// Each func. takes a ptr. to a Deck

void deck_init(struct Deck* d);

void deck_destroy(struct Deck* d);

void deck_shuffle(struct Deck* d);

int deck_get_top(struct Deck* d);

C Equivalent - deck.h

34

this Pointer
• In essence, this is exactly what C++ is

doing behind the scenes for you with the
'this' pointer

• In C, you just pass it explicitly
#include<iostream>

#include “deck.h”

int main(int argc, char *argv[]) {

Deck d1, d2;

d1.shuffle();

d1.shuffle();

...

}

#include<iostream>

#include “deck.h”

void Deck::shuffle()

{

cut(); // calls cut()

// for this object

for(i=0; i < 52; i++){

int r = rand() % (52-i);

int temp = cards[r];

cards[r] = cards[i];

cards[i] = temp;

}

}

d
e

c
k

.c
p

p
p

o
k
e

r.c
p

p

d
1
 i

s
 i

m
p

li
c
it

ly

p
a
s
s
e
d

 t
o

 s
h

u
ff

le
()

41 27 8 39 25 4 11 17cards[52]

1top_index d1

0x2a0

int main() { Deck d1;

d1.shuffle();

}

void Deck::shuffle(Deck *this)

{

this->cut(); // calls cut()

// for this object

for(i=0; i < 52; i++){

int r = rand() % (52-i);

int temp = this->cards[r];

this->cards[r] = this->cards[i];

this->cards[i] = temp;

}

}

d
e

c
k

.c
p

p

Compiler-generated codeActual code you write

0x2a0

d2
37 21 4 9 16 43 20 39cards[52]

0top_index

0x7e0

this

35

static Keyword
• In the context of C, the keyword 'static' in front of a global

variable or function prototype indicates the variable is only
visible within the current file and should not be visible
(accessed) by other source code files

• Can be used as a sort of 'private' helper function declaration

void thread_init(struct thread*);

void thread_init_helper(

struct thread*);

int f1()

{ // Will compile

thread_count++;

// Will NOT compile

the_thread = NULL;

struct thread t;

// Will compile

thread_init(&t);

// Will NOT compile

thread_init_helper(&t);

}

other.cthread.c

// Globals

int thread_count = 0;

static struct thread* the_thread;

// Functions

void thread_init(struct thread* t);

static void thread_init_helper(

struct thread* t);

36

C Dynamic Memory Allocation

• malloc(int num_bytes) function in stdlib.h

– Allocates the number of bytes requested and
returns a pointer to the block of memory

• free(void * ptr) function
– Given the pointer to the (starting location of the)

block of memory, free returns it to the system for re-
use by subsequent malloc calls

Memory

20bc4

20bc8

20bcc

20bd0

20bc0 00

00

00

00

00

…

…

…

Code

local vars

Globals

0

…

Heap

fffffffc

scores[0]

malloc

allocates:

scores[4]

scores[1]

scores[2]

scores[3]

int main(int argc, char *argv[])

{

int num;

printf("How many students?\n");

scanf("%d", &num);

int *scores = (int*) malloc(num * sizeof(int));

// can now access scores[0] .. scores[num-1];

free(scores); // deallocate

return 0;

}

37

C I/O TECHNIQUES
Printf/Scanf vs. cout/cin

38

printf

• C standard library function to display text to the screen

• printf(format_string, var1, var2, …);

• Format string:
– Just like a normal string (enclosed by double-quotes => " ")

– Includes normal text and place holders starting with '%' where you
want to display a variable’s value ("hi", "x=%d")

– %[num1][.num2][d,u,x,lf,c,s,p]

num1 Minimum chars/field width

.num2 Maximum chars/field width (or, for floating point,
number of characters to print after decimal point

d,x,lf,c,s,p d=Decimal (int), u=unsigned Decimal (int), x=Hex, lf =
Floating Point (double), c = ASCII character, s = string
of characters, p = address/pointer

39

scanf

• C standard library function to get keyboard input from user

• scanf(format_string, &var1, &var2, …);

• Waits for user to enter info and hit ‘Enter’

• Format string:
– Just like a normal string (enclosed by double-quotes => " ")

– Includes place holders starting with '%' indicating what kind of data you
want to get from the user ("%d", "%lf")

– Multiple inputs are fine ("%d%d") and will look for any whitespace as the
separator between the inputs

– %[d,x,lf,c,s,u]

d,u,x,lf,c,s d=signed Decimal (int), u=unsigned Decimal (int),
x=Hex, lf = Floating Point (double),
c = ASCII character, s = string of characters

40

C I/O Examples
#include <stdio.h>

int main(int argc, char *argv[])

{

int x;

char c;

double f = 7.5,g;

printf("Enter an integer followed by a single character then a floating point number:\n");

scanf("%d%c%lf",&x,&c,&g);

printf("x * 2 is %04d and the character after c is %c\n",2*x,c+1)

printf("result of 7.5/%lf = %4.2lf\n",g,f/g);

return 0;

}

Enter an integer followed by a single character then a floating point number: 5 a 2.0

x * 2 is 0010 and the character after a is b

result of 7.5/2.000000 = 3.75

Do an Internet search for "printf scanf format strings" for more information and examples.

41

C FILE I/O

42

FILE * variables
• To access files, C (with the help of the OS) has

a data type called ‘FILE’ which tracks all
information and is used to access a single file
from your program

• You declare a pointer to this FILE type (FILE *)

• You “open” a file for access using fopen()
– Pass it a filename string (char *) and a string

indicating read vs. write, text vs. binary

– Returns an initialized file pointer or NULL if there
was an error opening file

• You “close” a file when finished with fclose()
– Pass the file pointer

• Both of these functions are defined in stdio.h

int main(int argc, char *argv[])

{

char first_char, myline[80];

int x; double y;

FILE *fp;

fp = fopen("stuff.txt","r");

if (fp == NULL){

printf("File doesn’t exist\n");

return 1;

}

// read an int and a double

fscanf(fp, "%d%lf",&x,&y);

// read next raw char. of file

first_char = fgetc(fp);

// read thru first '\n' of file

fgets(myline, 80 ,fp);

fclose(fp);

return 0;

}

Second arg. to fopen()

“r” / “rb” = read mode, text/bin file

“w” / “wb” = write mode, text/bin file

“a” / “ab” = append to end of text/bin file

“r+” / “r+b” = read/write text/bin file

others…

43

File Access

• Many file I/O functions
– Text file access:

• fprintf(), fscanf()

• fputc(), fgetc(), fputs(), fgets()

– Binary file access:

• fread(), fwrite()

• Your file pointer (FILE * var)
implicitly keeps track of where you
are in the file

• EOF constant is returned when
you hit the end of the file or you
can use feof() which will return
true or false.

I t w a s t h e b e s t o f

...

fp

c = fgetc(fp)

a t f e r . T h e E n d ! EOF

fp

I t w a s t h e b e s t o f

fp

...

...

...

while(! feof(fp))

// okay to access next

// byte of file

if((c = fgetc(fp) != EOF)

// process c

44

Text File Input

• fgetc(FILE*)

– Reads a single ASCII character

• fgets(char* buf, int num, FILE* fp)

– Reads up to 'num'-1 characters or until a newline ('\n') or EOF character are
reached (whichever happens first) placing the results into buf (and adding a null
character).

– If a '\n' is encountered it is stored in buf (it is not discarded).

– Stops at EOF…If EOF is first char read then the function returns NULL

– Will append the NULL char at the end of the characters read

• fscanf(FILE* fp, char* format_str, …)

– Reads the values indicated by the format string into the variables pointed to by
the remaining arguments

– Useful to convert ASCII chars to another variable type or parse at whitespace

– Returns number of successful items read or ‘EOF’ if that is the first character read

45

Text File Output

• fputc(int character, FILE* fp,)
– Write a single ASCII character to the file

– Even though character is of type 'int' you would usually pass a 'char'

• fputs(const char* string, FILE* fp)
– Write a null-terminated string to the file (null character is not written

to the file)

• fprintf(FILE* fp, const char* format_string, …)
– Writes the values indicated by the format_string to the file indicated

by fp.

46

Binary File I/O

• fread()
– Pass a pointer to where you want the

data read from the file to be placed in
memory (e.g. &x if x is an int or data if
data is an array)

– Pass the number of ‘elements’ to read
then pass the size of each ‘element’

– # of bytes read = number_of_elements
* size_of_element

– Pass the file pointer

• fwrite
– Same argument scheme as fread()

int main(int argc, char *argv[])

{

int x;

double data[10];

FILE *fp;

fp = fopen(“stuff.txt”,”r”);

if (fp == NULL){

printf(“File doesn’t exist\n”);

exit(1)

}

fread(&x, 1, sizeof(int), fp);

fread(data, 10, sizeof(double),fp);

fclose(fp);

return 0;

}

47

Changing File Pointer Location

• Rather than read/writing
sequentially in a file we often
need to jump around to
particular byte locations

• fseek()
– Go to a particular byte location

– Can be specified relative from
current position or absolute byte
from start or end of file

• ftell()
– Return the current location’s byte-

offset from the beginning of the
file

int main(int argc, char *argv[])

{

int size;

FILE *fp;

fp = fopen(“stuff.txt”,”r”);

if (fp == NULL){

printf(“File doesn’t exist\n”);

exit(1)

}

fseek(fp,0,SEEK_END);

size = ftell(fp);

printf(“File is %d bytes\n”, size);

fclose(fp);

return 0;

}

Third arg. to fseek()

SEEK_SET = pos. from beginning of file

SEEK_CUR = pos. relative to current location

SEEK_END = pos. relative from end of file

(i.e. negative number)

48

PC ARCHITECTURE AND BOOT
PROCESS

Let's have fun by understanding how a modern system even boots to an
OS…

49

Display

Modern PC Architecture

• Moore's Law has allowed
greater integration levels
– Multiple cores and greater

levels of cache
– Memory controller, graphics,

and high-speed I/O are
integrated onto the
processor die

SATA Ports

Processor

System

Bus

ICH
Ethernet

Audio

More PCI

USB ports

PCI Ctrl.

Graphics Cache

Mem Ctrl.

Core Core Core Core

DRAM

50

Intel Boot Process

• On power on, each core races for a lock bit
– First one executes the boot sequence

– Others wait for Start-Up Inter-Processor
Interrupt

• On power on, fetch instruction at
0xFFFFFFF0
– Address corresponds to ROM/Flash

– Jump to initialization code (BIOS) elsewhere

• Bootstrap
– Choose mode: Real, Flat protected, Segmented

protected

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

Addr. Space

dec ECX

jnz done

done:

ret

0xffffffff

0x0

0xfffffff0 Initial Instruc.

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

51

Intel Boot Process

• Determine basic memory map and DRAM configuration (but
DRAM still not functional)

• Enable Interrupt Controllers for Protected Mode operation
– Setup data-structures and base address registers (BARs) needed to

support interrupts (i.e. descriptor tables [IDT, GDT], and Task-State
Segment [TSS])

• Questions
– Where is code right now?

– Can this code be written using functions?

• Configure cache to be used as RAM for stack and place it NEM
(No Eviction Mode)

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

52

Intel Boot Process

• Initialize DRAM
– Write to all memory and ensure ECC flags match data (either via BIOS

or HW mechanism)

• Copy BIOS code into DRAM and take processor out of special
cache mode (and flush cache)

• Initialize other cores (sending them an initial EIP/PC)

• Discover and initialize various I/O devices
– Timers, Cache, PCI bus, SATA (hard drive access)

– Determine address ranges (memory map)

• Load Master Boot Record from first sector of boot device
– Points to where OS is located and how to load code into memory

– Transfer is now transferred to the OS
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf

http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://www.drdobbs.com/parallel/booting-an-intel-architecture-system-par/232300699

53

Windows Boot Process
• OS Loader

– Loads system drivers and kernel code

– Reads initial system registry info

• OS Initialization

– Kernel Init

• Init kernel data structures & PnP manager

– Session SMSSInit (SMSS = Session Manager)

• Initializes registry, starts other devices/drivers, and start other processes

– Winlogon Init

• User logon screen, service control manager, and policy scripts

– Explorer Init

• DWM (Desktop Window Manager), shell

• Post Boot phase

– Other services are started (tray icons, etc.)

• Other good reference:

– http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

https://social.technet.microsoft.com/wiki/contents/articles/11341.the-windows-7-boot-process-sbsl.aspx

http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/windows.pdf

