
1

CSCI 350
Ch. 14 – Reliable Storage &

Transactions
Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Introduction

• Seeking reliability and consistency
of file system
– Consistency: If adding multiple

blocks and we need to update the
indirect pointers, a poorly timed
crash could leave the file in an
inconsistent state

– Reliability: Data can get corrupted or
lost due to mechanical/electrical
issues

• Solutions
– Transactions (we will focus on these)

– Redundancy / Error-correction
• RAID, ECC/Parity codes, checksums, etc.

• See earlier units

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP

DP

DP

DP

DP

IP

-1

…

…

…

…

3

Transactions

• A transaction is a set of updates to
the state of one or more objects

• Terminology
– Committed: If a transaction commits

(succeeds) then the new state of the
objects will be seen going forward [i.e. all
updates occur]

– Rollback: If a transaction rolls back (fails)
then the object will remain in its original
state (as if no updates to any part of the
state were made) [i.e. no updates occur]

void threadTask(void* arg)
{

/* Do local computation */

/* checkpoints/saves state */
begin_transaction(val1,val2) {

/* Do some computation/updates */
val1 -= amount;
val2 += amount;
} // end_transaction
abort {

// restore/re-read val1, val2
// restart

}

}

We have seen this before briefly
in the context of multi-object

synchronization. Now we'll focus
on its application to file systems.

4

ACID Properties

• Transactions help achieve the ACID properties

– Atomicity: Update appears as indivisible (all or
nothing); no partial updates are visible

– Consistency: Old state and new, updated state
meet certain necessary invariants

• E.g. No orphaned blocks, etc.

– Isolation: Idea of serializability (transactions T
appears to execute entirely before T' or vice versa)

– Durability: Committed transactions are persistent

5

Logging

• Logging is a common way to achieve
transactions
– Maintains a log of "records" in persistent

storage

• Steps:
– Write intent (i.e. updates) to log

– Write 'commit' to log (if no errors)

• No going back now

– Perform update

• Actually carry out the updates described in
the intent

– Garbage collect (log entries, etc.)

• Once the intentions are carried out
successfully, we can now delete the log
entry and any other temporary data

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

Original

val1 = 50; val2 = 100;

amount=10;

XACT1: COMMIT

Log

Updated

val1 = 40; val2 = 110;

amount=10;

6

Recovery

• If crash occurs before COMMIT is
written, the transaction
effectively is rolled back (original
state is still present) and the log
entry will be reclaimed on restart

• If crash occurs after step 2
completes, then the
intentions/commit in the log will
be replayed upon restart until all
the intentions are carried out

1.Write intent (i.e.
updates) to log

2.Write 'commit' to log
3.Perform update
4.Garbage collect (log

entries, etc.)

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

Original

val1 = 50; val2 = 100;

amount=10;

XACT1: COMMIT

Log

7

Handling Concurrency

• Suppose two transactions
attempt to execute
concurrently

• Only 1 can successfully
commit

• The other will need to roll
back

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

Transaction 1

val1 = 50; val2 = 100;

amount=10;

XACT1: COMMIT

Log

Transaction 2

val1 = 50; val2 = 100;

amount=-30;

Start XACT2 (val1, val2)

XACT2:

val1 = 80; val2 = 70;

XACT2: FAIL

8

Handling Concurrency

• After rollback the second
transaction will need to
restart and thus use the
update values

• It could potentially fail
again based on some new
transaction that commits
before it, in which case it
would replay again

– Some priority can be used to
help "older" transactions
commit before "newer" ones

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

XACT1: COMMIT

Log

Start XACT2 (val1, val2)

XACT2:

val1 = 80; val2 = 70;

XACT2: FAIL

Transaction 1

val1 = 50; val2 = 100;

amount=10;

Transaction 2

val1 = 50; val2 = 100;

amount=-30;

XACT1: COMMIT

Start XACT2 (val1, val2)

XACT2:

val1 = 70; val2 = 80;

Transaction 2

val1 = 40; val2 = 110;

amount=-300;

9

Redo Logging

• The process outlined in the past
several slides are known as "redo
logging"
– On a crash, the committed

transactions will be "redone"

– If another crash before the
transaction can be "redone" it will
simply try again on the next restart
and continue retrying until successful

• Alternative: "Undo Logging"
– Make updates in place but write old

values to the log

– On rollback, replace the new values
with the old ones in the log

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

XACT1: COMMIT

Log

Start XACT2 (val1, val2)

XACT2:

val1 = 80; val2 = 70;

XACT2: FAIL

Transaction 1

val1 = 50; val2 = 100;

amount=10;

Transaction 2

val1 = 50; val2 = 100;

amount=-30;

XACT1: COMMIT

Start XACT2 (val1, val2)

XACT2:

val1 = 70; val2 = 80;

Transaction 2

val1 = 40; val2 = 110;

amount=-300;

Which to use? Each has their advantages. What do we expect more of: successful or failed transactions?

10

Idempotent Operations

• Updates must be idempotent
(i.e. redoing it once compared
to many times leaves the same
result)

• Notice the log store the values
we wanted to write to the
variables
– Writes are idempotent (e.g.

writing 40 to val1 once and then
repeating it will still leave val1
with 40)

• If our log store val1 -= 10 then
each replay would deduct
another 10 from val1

Start XACT1 (val1, val2)

XACT1:

val1 = 40; val2 = 110;

XACT1: COMMIT

Log

Start XACT2 (val1, val2)

XACT2:

val1 = 80; val2 = 70;

XACT2: FAIL

Transaction 1

val1 = 50; val2 = 100;

amount=10;

Transaction 2

val1 = 50; val2 = 100;

amount=-30;

XACT1: COMMIT

Start XACT2 (val1, val2)

XACT2:

val1 = 70; val2 = 80;

Transaction 2

val1 = 40; val2 = 110;

amount=-300;

11

Performance of Redo Logging

• Transactions may seem like a lot of overhead but…

– Writes to the log are sequential
• We've learned how sequential writes are faster than random

writes

– Actual updates (step 3) can be asynchronous
• Updates can be batched together and performed at an

"opportune" time

• Caller can return and proceed as soon as commit is written

• Don't wait too long though as then recovery time is slower due to
"replay" of many updates and log itself takes more space since a
transaction in the log can't be reclaimed until it is completed

• Writes can be scheduled as a batch (rather than FIFO)

12

Logging and File Systems

• Need to ensure
all metadata is
updated
according to
ACID principles

13

Use of Logging In File Systems

• Two variants

– Journaling:
• Use of a logging for updates to metadata (i.e. inodes, free-space

map, etc.)

• But actual data is updated in place (so file data itself can be
inconsistent)

• Used by NTFS, Apple's HFS+, and Linux's XFS
– Linux's ext3 and ext4 FS can be configured for journaling

– Logging
• Use of a log for both metadata and file data

– Linux's ext3 and ext4 can also be configured to do logging

• COW file systems are inherently transactional

– Only when the root node (uberblock) is update does new
data become visible (i.e. transaction commits)

