
1

CSCI 350
Ch. 13 – File & Directory

Implementations
Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Introduction

• File systems primarily map filenames to the
disk blocks that contain the file data

• File system can also impact

– Performance (Seek times for poorly placed blocks)

– Flexibility (Various access patterns)

• Sequential, random, many reads/few writes, frequent
writes, etc.

– Consistency/persistence

– Reliability

3

Illusions Provided by File System

Physical Storage Device OS Abstraction

Physical block/sector #'s File names + directory hierarchy

Read/write sectors Read/write bytes

No protection/access rights for sectors File protection / access rights

Possibly inconsistent structure or
corrupted data

Reliable and robust recovery

4

Analogous to VM

• Maintain directories and filenames which map to
physical disk blocks

• Keep track of free resources (disk blocks vs. physical
memory frames)

– Usually some kind of bitmap to track free disk blocks

• Locality heuristics (Look for these in coming slides)

– Keep related files physically close on disk (i.e. files in a
directory)

– Keep blocks of a file close (Defragmenting)

– Use a log structure (sequential writes)

5

DIRECTORIES

6

Directory Representation

• Map filenames to file numbers

– File number: Unique ID that can be used to lookup
physical disk location of a file

• Directory info can be stored in a normal file (i.e.
directories are files that contain mappings of
filenames to file numbers)

– Maintain metadata indicating a file is a directory

– Usually you are not allowed to write these files
but the OS provides special system calls to
make/remove directories
• Only the OS writes the directory files. When would the OS

write to a directory file?

• Each process maintains the "current working directory"

– Root directory has a predefined ("well-known")
file number (e.g. 1)

c
s
3
5
0

f1.txt

1043

doc.txt

817

test.c

1568

h
o

m
e

prg.py

8

cs350

710

cs356

1344

PINTOS Directory-related system calls:
• bool chdir(const char* dir);
• bool mkdir(const char* dir);
• bool readdir(int fd, char* name)

• Returns next filename entry in the
directory file indicated by fd

• bool isdir(int fd);
• Returns true if the file indicated by

fd is a directory

c
s
3
5
6 f2.txt

320

readme

1199

/ home

204
2

7

Directory Read Issues

• Problems
– A: Opening a file can require many

reads to follow the path (e.g.
/home/cs350/f1.txt)

– B: Finding a file in a directory file

• Directory can have 1000's of files

• Linear search may be very slow

• Solutions
– A: Caching of recent directory files

(often locality in subsequent directory
accesses)

– B: Use more efficient data structures to
store the filename to file number
information

c
s
3
5
0

f1.txt

1043

doc.txt

817

test.c

1568

h
o

m
e

prg.py

8

cs350

710

cs356

1344

c
s
3
5
6 f2.txt

320

readme

1199

/ home

204
2

8

Linear Directory File Layout

• Simplest Approach

– Linear List

– Do we really need to store
the next file offset?

k

.

405

k'

..

67

k''

p1.cpp

1032

k'''

notes.md

821

0

todo.doc

695

File Offset:

0 k k' k''

foffset

name

file #

k'''

Record Def:

9

Linear Directory File Layout

• Simplest Approach

– Linear List

– Do we really need to store
the next file offset?

– Yes, we may delete files

– Then, we may create new
ones

• Requires linear, O(n),
search to find an entry in
a directory

k

.

405

k'

..

67

k''

p1.cpp

1032

k'''

notes.md

821

0

todo.doc

695

File Offset:

0 k k' k''

foffset

name

file #

k'''

Record Def:

k

.

405

k'

..

67

k'''

p1.cpp

1032

-1 0

todo.doc

695

File Offset:

0 k k' k'' k'''

k

.

405

k'

..

67

k'''

p1.cpp

1032

0

new.txt

308

k''

todo.doc

695

File Offset:

0 k k' k'' k'''

10

Tree Directory File Layout

• Use a more efficient directory
file structure

• Could use a balanced binary
search tree
– The "pointers" (arrows) in the

diagram would be file offsets to
where the child entry starts

– Jumping to a new offset is likely a
different disk block

– Recall the penalty for non-
sequential reads from disk

– For larger directories walking the
tree would be expensive

• Often a B+ Tree is used

"Interesting" technical look: http://lwn.net/2001/0222/a/dp-ext2.php3

"list.doc" 1043

key value

"f1.txt" 822 "max.doc" 304

"a1.cpp" 1536 "hi.txt" 739 "readme" 621

11

REVIEW OF B-TREES FROM CS104

12

Definition
• B-trees have d to 2d keys and (d+1)

to (2d+1) child pointers

• 2-3 Tree is a B-tree (d=1) where

– Non-leaf nodes have 1 value & 2
children or 2 values and 3 children

– All leaves are at the same level

• Following the line of reasoning…

– All leaves at the same level with
internal nodes having at least 2
children implies a full tree
• FULL

– A full tree with n nodes implies…
• Height that is bounded by log2(n)

2 4

3 5 0 1

a 2 Node

2 4

a 3 Node

a valid 2-3 tree

4

13

2-3 Search Trees
• Similar properties as a BST

• 2-3 Search Tree

– If a 2 Node with value, m
• Left subtree nodes are < node value

• Right subtree nodes are > node value

– If a 3 Node with value, l and r
• Left subtree nodes are < l

• Middle subtree > l and < r

• Right subtree nodes are > r

• 2-3 Trees are almost always used
as search trees, so from now on if
we say 2-3 tree we mean 2-3
search tree

m

a 2 Node

l r

a 3 Node

<

m

>

m

<

l

>

r

> l

&&

< r

m =

"median" or

"middle"

l = left

r = right

14

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 60, 20, 10, 30, 25, 50, 80

60

20

10 60

20

10 30 60

Empty Add 60 Add 20

20 60

Add 10

20 6010

Add 30

Key: Any time a node accumulates 3 values,
split it into single valued nodes (i.e. 2-nodes)

and promote the median

15

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 60, 20, 10, 30, 25, 50, 80

20

10 30 60

Add 25

25 10

20 30

25 60 10

20 30

25 50 60

Add 50

Key: Any time a node accumulates 3 values,
split it into single valued nodes (i.e. 2-nodes)

and promote the median

16

BACK TO DIRECTORIES

17

Tree Directory File Layout
• Use a more efficient directory file

structure

• Often a B+ Tree is used

– Each node holds an array whose size
would likely be matched to the disk block
size

– Filename (string) is hashed to an integer

– Integer is used as a key to the B+ Tree

– All keys live in the leaf nodes (keys are
repeated in root/child nodes for
indexing)

– Leaf nodes of B+ tree store the file offset
of where in the directory file that
particular file's info/entry is located

"Interesting" technical look: http://lwn.net/2001/0222/a/dp-ext2.php3

18

FILE IMPLEMENTATION
Allowing for growth

19

Overview

FAT FFS NTFS ZFS

Index structure Linked List Fixed,
asymmetric
tree

Dynamic tree Dynamic, COW
tree

Index structure
granularity

Block Block Extent Block

Free space
management

FAT array Bitmap Bitmap in file Space map
(log-
structured)

Locality
heuristics

Defragmentation Block groups
(reserve space)

Best-fit /
defragmentati
on

Write
anywhere
(block groups)

20

MICROSOFT FAT (FAT-32) FILE
SYSTEM

21

FAT-32

• An array of entries (1 per available block
on the volume)
– Stored in some well-known area/sectors on the

disk

• Array entries specify both file structure
and free-map
– If FAT[i] is NULL (0), then block i on the disk is

available

– If FAT[i] is non-NULL and for all j, FAT[j] != i,
then block i is the starting point of a file and
FAT[i] is the next block in the file

– A special value (usually all 1's = -1 = 0x?fffffff)
will be used to indicate the of the chain (last
block of a file)

f1.txt f1.txt f2.txt

f1.txt f2.txt f1.txt

f2.txt

0

4

8

12

16

0

-1

11

14

5

7

0

8

0

0

4

5

6

7

8

9

10

11

12

13

-1

0

14

15

Sectors

FAT

22

FAT-32

• How do you grow a file?

– Use simple approaches like next fit (next
free block starting from the last block of the
file)
• If we add to f1.txt block 10 would be selected

– Recall sequential access is fastest for disks.
What performance issues are likely to arise?
How can they be mitigated?

• How do you know where a file starts?

– Recall that is what directories are for though
the previous slide provides the method

f1.txt f1.txt f2.txt

f1.txt f2.txt f1.txt

f2.txt

0

4

8

12

16

0

-1

11

14

5

7

0

8

0

0

4

5

6

7

8

9

10

11

12

13

-1

0

14

15

Sectors

FAT

Next fit

23

FAT-32

• Other FAT-32 issues
– Limited metadata and access control

– No support for hard links

– File size (stored in metadata) is limited to 32-bits
limiting file size to ____?

– Each FAT-32 entry uses 28-bits for the next block
pointer, limiting the FAT to ___ entries

– If each disk block corresponds to 4KB then the max
volume size is ____?

– Note: Block size can be chosen. Is bigger better?

• Still used in many simple devices
– Flash-based USB drive, camera storage devices, etc.

– FAT approach is mimicked in some file formats (.doc)
• 1 document is made of many objects and the objects are

tracked using a FAT like system

f1.txt f1.txt f2.txt

f1.txt f2.txt f1.txt

f2.txt

0

4

8

12

16

0

-1

11

14

5

7

0

8

0

0

4

5

6

7

8

9

10

11

12

13

-1

0

14

15

Sectors

FAT

24

UNIX FFS (FAST FILE SYSTEM)

25

inodes

• Inode = (index node?)

• 1 inode = 1 file
– inode contains file metadata and location

of the files data blocks

– Number of inodes often set when drive is
formatted

• Inodes may be stored in an array at
some well-known location on the disk

• Directories map filenames to file
numbers which is simply the inode
number (index in the inode array)
– If "f1.txt" has file number 2 then f1.txt's

inode is at index 2 in the inode array

prg.py

data

home,9

prg.py,8

cs350,15

0

4

8

12

16

0

4

8

12

f1.txt inode

0

1

2

3

4

5

6

7

8

…

N-2

N-1

inode

26

inode's File to Block Mapping

• Rather than using a linked list like FAT-32, FFS
uses a multilevel index

– Really a fixed-depth, asymmetric tree

– The leaves of the tree are the data blocks of the
file

– The root is the inode

– Internal nodes provide indirection to support
ever-larger file sizes

• Internal nodes are usually whole sectors or blocks that
store many pointers

27

Inode

Inode Multi-level Tree Index

Ind.

Block

f1.txt

data

block

f1.txt

data

block
f1.txt

data

block

0

4

8

12

16

0

4

8

12

0

0

(f1.txt)

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

…

0

0

N-2

N-1

Inode array

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

Trip. Ind. Ptr

DP

DP

DP

DP

DP

DP

IP

IP

DP

DP

DP

DP

IP

IP

DP

DP

DP

DP

IP

IP

DIP

DIP

…

…

…

…

…

…

DP

DP

DP

Inode array

f1.txt's inode

28

Pintos Base Filesys Implementation

• Uses an "extent" based approach where
a file's size is fixed at creation time and
must occupy a contiguous range of disk
blocks

• Inode is used but simply stores the file's
size and has one "direct" pointer to the
starting block of the file

• Inode occupies an entire sector, thus that
sector's number becomes the
"inode"/file number
– In the illustration, the root-dir would have

entries {f1.txt,2} and {f2.txt,12}

– f1.txt's inode at sector 2 would indicate the
file's size and "point to" sector 5

Free-

map

Root-

dir

f1's

inode

f1.txt f1.txt f1.txt

f1.txt

f2's

inode
f2.txt f2.txt

0

4

8

12

16

Pintos inodes

occupy an entire

sector

29

Pintos Base Implementation

• You will add code to enable
extensible files using an
asymmetric tree that
provides at least doubly-
indirect blocks

• You may continue to use an
entire sector per inode thus
allowing the sector number
to be the file number and
easily access the inode

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP

DP

DP

DP

DP

IP

IP

…

…

…

…

30

Locality Heuristics

• Disk is broken into groups of
contiguous tracks called a block
group

• Block group has a partition of the
inode array and bitmap

• Attempt to place files of a
directory in the block group
where the directory's inode is
located

• Subdirectories can be located in
different block groups to avoid
filling it

31

More About Block Groups

• Within a block group, first-fit algorithm
is used

– Attempts to fill holes thus leaving
greater contiguous free space at the end
of the block group

• To increase ability to support sequential
allocation, some amount of the disk is
reserved (i.e. disk is "full" even if block
groups have an average of 10% free
space remaining)

– Want to ensure each block group has
free space so large files might be split
across a block group

Good reference for FFS:

http://pages.cs.wisc.edu/~remzi/Classes/537/Fall2008/

Notes/file-ffs.txt

32

Opening and Reading a File

• List the sequence for finding and opening /tmp/f1.txt

– Use the well-known inode index for root directory, /

– Use the inode to go to the block where the file for "/" is stored

– Read through the data (possibly spanning multiple blocks) to find the mappint
of 'tmp' to its file (inode) number

– Go back to the inode array and possibly read a new sector/block to get the
inode

– Use the inode for tmp to go to the block where the file for "tmp" is stored

– Read through the data to find the file (inode) number associated with "f1.txt"

– Go back to the inode array to read the inode for "f1.txt"

– Use the inode for "f1.txt" to start reading through its direct blocks

– If "f1.txt" is large enough to require use of an indirect block, read the indirect
block to obtain the subsequent direct pointers and then continue to read the
blocks indicated by those direct pointers

– And so on for double or triply indirect blocks

33

Opening and Reading a File

• Reading a file may
require many "random"
accesses to walk the
directory and file index
structures

OS:PP 2nd Ed. Fig. 13.25

Read of /foo/bar/baz in

the FFS file system

34

NTFS

35

MFT Records

• Uses an extent-based (variable size,
contiguous ranges) approach

• Allocates by unit of clusters (multiple
sectors) usually starts at 4KB

• Master File Table (MFT)

– Entries are 1KB

– Each entry contains

• A header (hard link count, in use, dir/file, size
of MFT entry)

• Some number of attributes

– Attributes hold file metadata (name, std. info)
or data

– Attributes can be resident (in the current
extent) or non-resident (pointers to other
extents)

• Usually 1/8 of disk set aside for MFT growth

http://www.kes.talktalk.net/ntfs/

Header

Std. Info Attribute (0x10)

Indicates size

Offset to 1st Attribute

Filename Attribute (0x30)

Inidcates size

Data (Non-Resident)

Attribute (0x80)

Data

Extent

Data

Extent

End of Attribute (0xffffffff)

36

Resident Data Attributes

• A small file's data
(smaller than 1KB) can
be contained in a
"data" attribute entirely
in the MFT record

Header

Std. Info Attribute

(0x10)

Offset to 1st Attribute

Filename Attribute

(0x30)

Data (Resident) Attribute

(0x80)

37

Entry with Large Number of Attributes

• If there are too many
attributes or an attribute is
too large to fit in the MFT
entry, an extension record
can be created using
another MFT entry

• This may occur if the file is
fragmented over many
extents

• First entry acts as the file
number/index

Header

Std. Info Attribute

[Resident] (0x10)

Offset to 1st Attribute

Attribute List

(0x20)

Filename Attribute

(0x30)

Data (Non-Resident)

Attribute

Header

Std. Info Attribute

[Resident] (0x10)

Offset to 1st Attribute

Data (Non-Resident)

Attribute

38

Non-resident Attribute Lists (Very Large Files)

• Even attribute lists can be non-resident
Header

Std. Info Attribute

[Non-Resident] (0x10)

Offset to 1st Attribute

Attribute List

(0x20)

Filename Attribute

(0x30)

Data (Non-Resident)

Attribute

Attribute Extent

Header

Std. Info Attribute

[Resident] (0x10)

Offset to 1st Attribute

Data (Non-Resident)

Attribute

39

Comparison

FFS (Linux ext2, ext3)

• Block-based
– Can be susceptible to long

seek times

• Fixed-depth (asymmetric)
index tree
– Limits file size

• Data never stored in inode
entry

• Block groups using first-fit
– Internal Fragmentation

NTFS (Linux ext4, Apple HFS)

• Extent-based
– Allows better sequential

access

• Variable-depth index
structure
– Arbitrary file size

• Small files in MFT entry
itself

• Best-fit algorithm (API
allows estimated file size to
be communicated)
– External Fragmentation

40

COPY-ON-WRITE FILE SYSTEMS
ZFS, Btrfs

41

Motivation

• Small writes are expensive…

– Random access (data block, indirect node, i-node)

– Especially to RAID (if one block on a disk changes, need to
update parity block)

• …but sequential writes are faster

• Block caches (data from files maintained in RAM by
the OS) filter reads

• Prevalence of flash

– Need to even wearing

• Greater disk space

– Allows versioning

42

Basic Idea

• Don't update blocks in place, simply write
them all sequentially to a new location

– Data block, indirect block, i-node, directory, free-
space bitmap, etc

• Make everything mobile

– Main issue: inodes need to be mobile rather than
at fixed locations

• Solution: Store inode array itself in a file

43

Copy-On-Write Idea

• Suppose we need to add a block
to a file whose old size fit in direct
blocks but now needs to start
using indirect pointers

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

…

44

Copy-On-Write Idea

• Suppose we need to add a block
to a file whose old size fit in direct
blocks but now needs to start
using indirect pointers

• We would allocate and update
– The actual data block

– The indirect block

– The inode indirect ptr.

– The freespace bitmap

• The writes would like be non-
sequential (spread) over the disk

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP
…

…

OS:PP 2nd Ed. Fig. 13.19

45

Copy-On-Write Idea

• Instead, COW file systems would
sequentially write new versions of
the following blocks
– Data block

– Indirect block

– I-node

– Freespace bitmap

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP
…

…

OS:PP 2nd Ed. Fig. 13.19

46

Updates Lead to Re-Writes

• If we already had an
indirect block of pointers
and wanted to add a new
data block, would the
inode need to change?

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP

DP

DP

DP

DP

IP

IP

…

…

…

…

47

Updates Lead to Re-Writes

• No, but in COW we don't
update in place instead
making a new indirect block
– And since the indirect block location

is different the inode we need to be
updated

– Since the inode would need to be
updated we'd simply write a new
version of it sequentially with the
other updated blocks

– And since the inode got updated, our
directory entry would have to change,
so we'd rewrite the directory file

– And since the directory file changed…

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP

DP

DP

DP

DP

IP

IP

…

…

…

…

OS:PP 2nd Ed. Fig. 13.19

48

Chain of Updates

• In COW, we would re-write all the updated blocks sequentially

– Since blocks are moving, may need to update inode and directory entries

– If the file is deep in the directory path, all parent directories would likely need
to be updated

• We would move all the way to the root node of the file system

Free-

map

Root-

dir

f1's

inode

f1

data

f1

data

f1 ind.

block

f1

data

Free-

map

Root-

dir

f1's

inode

f1 ind.

block

new f1

data

0

4

8

12

16

Free-

map

Root-

dir

f1's

inode

f1

data

f1

data

f1 ind.

block

f1

data

new f1

data

0

4

8

12

16

Many random

sectors may need to

be updated when

adding a new block

In COW, we make al updates in new,

sequential blocks (which may require

updating more blocks), but might be

as fast or faster as the random writes.

49

Implementation

• In FFS the inode array would need
to be in fixed (well-known) locations
so that they could be found when
needed

• In COW, inodes change and thus
need to be mobile
– We could place them in a file (files are

extensible)

– But how do we know where that file is?

– We could have a small "circular" buffer
of "root inode" slots with only one (the
latest) in use at a time

– Each update moves the root inode on

OS:PP 2nd Ed. Fig. 13.21

OS:PP 2nd Ed. Fig. 13.20

50

ZFS Implementation

• Sun's ZFS implements COW concepts

• Uberblock array is like the root inode
array slots (rotates entries on
updates) and stores a pointer to the
current "root Dnode" which is
essentially the inode for the file
containing all the other inodes

• Dnodes are like i-nodes

– Variable depth tree of block pointers

– Initial Dnode has room for 3 block
pointers

– Support small files with data in the
Dnode itself (i.e. tree depth=0)

• Like MFT entry of NTFS

File containing all the

inodes ("dnodes")

Actual files are variable

depth trees of indirect

block pointers with a

certain max depth

(6 levels ZFS)

OS:PP 2nd Ed. Fig. 13.23

51

ZFS Example and Block Sizes

• Figure to the right shows an
update of a file that uses 1 level
of indirection

• Files can specify block size
ranging from 512 bytes to 128KB
– But block pointers are large 128-

byte structures (not just 4-bytes
like in Pintos) as they hold
checksums and other info,
snapshots, etc.

– Large blocks…
• Larger file sizes w/ same size index tree

• Potentially less free-space tracking
overhead

• But it seems like a lot of work…

OS:PP 2nd Ed. Fig. 13.22

52

Performance Enhancements

• Recall: Sequential writes are fast

• Writes can be buffered in memory
allowing writes to the same file which
cause multiple updates of the indirect
pointers and dnodes to be coalesced

– In the figure if we did two writes, EACH
write may require re-writing the indirect
block, inode, etc.

– But if we buffer these updates in memory
and coalesce the writes we would only
need to write the indirect block and inode
once (amortizing the cost over the 2 data
blocks written)

• After a short interval the writes are
performed on disk

Inode

File Metadata

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

Direct Ptr

…

Direct Ptr.

Indirect Ptr.

Dbl. Ind. Ptr.

DP

DP

DP

DP

DP

DP

IP

IP

…

…

…

…

1st Write

2nd Write

53

COW Benefits

• Versioning!
– Notice old version of file and directory structure are still present

• Consistency
– Transactional approach (all data maintained until atomic switch of

uberblock)

– Power failure or crash still presents a consistent (old or new) view of the FS

• Even wearing
– Many updates to one file will now result in many rewrites to different

locations

OS:PP 2nd Ed. Fig. 13.22

54

ZFS Locality (Free-Space) Management

• Bitmaps for large drives can still consume
vast amounts of space

– 32 TB drive with 4KB pages = 1GB of bitmap
space

• ZFS uses a similar notion of FFS block groups

• Maintains free-space:

– Per block group

• Partitions the free-space data structure
(bitmap or extent tree) to make lookups faster

– As extents (contiguous ranges)
• Large, sequential free extents can be stored

compactly rather than 1 bit per block

• Stores extents in an AVL tree indexed on size

– Using log-based updates
• Frees are simply logged (in memory) and then the

free-space tree is updated only when a new
allocation need be performed

Start: 1043

Size: 216

1043 1258

Bitmap for a large contiguous

set of free blocks

Extent Representation

…

55

Allocation Strategies

• When we do write to disk we must
choose which block group and then
allocate blocks within that group

• ZFS may span multiple disks

– Round robin between disks with some
bias towards those with more free space

• Choose a block group

– Prefer spatial locality and continue in the
block group where you last wrote

– Once a block group reaches a certain limit
of free space, move on to the next
(biasing selection based on free-space,
location [nearby / outer-tracks of disk],
etc.)

– Use first fit until the block group is close
to full then use best-fit

56

COW Summary

• Versioning and Error-detection
(checksumming)

• Much better write performance

• Comparable read performance

• Comparable file sizes (support for large
volumes)

• Flash optimized

