
1

CSCI 350
Ch. 11 – File Systems

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Abstracting Persistent Storage

• Thread = Abstraction of the processor

• Address translation => Abstraction of memory

• What about abstracting storage I/O?
– File Systems

• File systems provide persistent, named data capabilities
– Persistent: Contents retained until explicitly deleted even when power is

off

– Named: Use of human-friendly (human-chosen) named files & directories
• Example: /home/student/cs350/pintos/src/threads/thread.c

Processor Memory

Input/Output

Devices

DISK

3

File System Requirements

• Reliability

• High-capacity

• Fast access

• Named data

• Controlled sharing (security)

4

Hardware Components

• Non-volatile storage

– Non-volatile means contents are retained even when
power is not supplied

– By contrast, DRAM (main memory and possibly lower
cache levels) and SRAM (generally used in cache) lose their
contents when power is off

• Types: Tape, magnetic disk, and flash (solid state
drives)

https://www.backblaze.com/blog/hdd-versus-ssd-whats-the-diff/

http://dis-dpcs.wikispaces.com/6.2.1+Blocking%2C+Sectors%2C+Cylinders%2C+Heads

http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
https://www.backblaze.com/blog/hdd-versus-ssd-whats-the-diff/

5

Requirements Met by HW

Requirement HW Ability HW Disability

Reliability Generally long lifespan • Disk (mechanical devices) drives
fail (e.g. head crash)

• Flash memory has a fixed number
of writes/erasures before it will
stop functioning

High Capacity

Fast Access Some drives provide on-board
cache

Generally slow
• Tape access time (sec)
• Magnetic disks access time (ms)
• Flash memory access time (us)

Named Data None • Magnetic disks use
"head/sector/track" addressing

• Flash use sector/block addressing

Controlled Sharing Generally none

6

Requirements Enabled by the OS

Requirement OS File System Design Approaches

Reliability • Since a crash can occur at anytime, use "transactions" to make
updates appear atomic

• Use redundancy to detect and correct failures
• Move data to even the "wear" on disks and Flash drives

Fast Access • Organize data so that access can be as "sequential" as possible
• Provide memory caching
• (Note: file systems generally optimize for sequential read and

append write. Writing to the middle of a file may require
rewriting all of its contents. Reading from random locations
may be extremely time consuming.)

Named Data • Provide abstraction of named files and directories

Controlled Sharing • Include access-control metadata with files (R,W,X permissions,
user, group, all permissions), etc.

7

Volumes

• Volume: Logical storage system along
with an instance of a file system

• Allows for arbitrary logical organization
regardless of physical storage
organization

– 1 disks may contain multiple volumes (file
systems) or partitions (e.g. C:\ and D:\)

– 1 filesystem/volume may encompass several
disks (e.g. servers)

c:\ d:\

/

http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231

8

File Access and Naming

• Users generally access the file
systems by
– Browsing: Know the name of the file

and want to navigate to it

– Searching: Not sure of the name

• Could search by name or content

• Requires some kind of indexing for fast
access

• To enable easy browsing file
systems usually employ a
hierarchical naming system (tree of
directories [internal nodes] and files
[leaves])

/

home lib dev

cs350

READ

ME.txt

f2.doc tty0

ld-

linux.so.

2

9

Special Directories

• Root directory: Starting point of
the file sysem
– Linux/Unix/Mac: /

– Windows: C:\

• Current working directory:
References/Paths to files or other
directories will be interpreted as
starting from this current location
– Can be changed as needed

(i.e. 'cd cs350';)

• Home directory: Starting point of a
user upon login (/home/cs350)
– Linux/Unix/Mac shortcut: ~

/

home lib dev

cs350

READ

ME.txt

f2.doc tty0

ld-

linux.so.

2

10

Paths

• Paths (as their name says) specify
a path from one location in the
file system to another

• Absolute paths start from the
root directory
– /home/cs350/README.txt

• Relative paths start from the
current directory (assume
'/home' is cwd)
– cs350/README.txt

– ../dev/tty0

/

home lib dev

cs350

READ

ME.txt

f2.doc tty0

ld-

linux.so.

2

Current working

directory

Shortcuts:
. = Current directory
.. = Parent directory (up one)
~ = Home directory
Unix commands:
pwd = Print current working dir

11

Mounting A Volume

• Multiple volumes can be
made to co-exist in one
logical hierarchy through a
process known as mounting

• Mounting places a separate
volume at a particular named
location within another
volume

– CD Drives, USB Flash, etc.

/

home Volumes

cs350

READ

ME.txt

f2.doc

file1.c

USB1

lec1.

doc

f2.mp4

/

Mount

Separate

Volume /

Filesys

Host file

system

12

File Concept
• Files consist of 2 parts

– Metadata

– Actual file data

• Metadata

– Permissions, size, user ID, timestamp of
creation and modification
• And the filename too? No.

– OSs may allow user-defined metadata
(author, character encoding, etc.)

• Actual file data

– Sequence of bytes whose interpretation
(text, binary data, pixel data, etc.) is up to
an application to interpret

00 0a 56 c4
81 e0 fa ee
39 bf 53 e1
b8 00 ff 22

Size

Permissions User ID

Group IDunused

Creation Time

Last Mod. Time

Metadata

File Data

13

Directories (Folders)

• Usually "files" that hold lists of
pairs:

– (Human readable filename, file ID/#)

• Filenames are not stored with files
because:

– May have many names/links

– Wouldn't be able to store just
filename but full path since same
filename may be used in multiple
places on the volume

f1.txt, 1043
readme.txt, 2978
test.c 19042

Directory (File) Data

...

Actual f1.txt known to

the filesystem as file

1043 which can be

"easily" indexed and

found on the physical

storage device

14

Links

• Hard link
– A filename, file ID/# association

– Same physical file can be known by
different filenames (in different folders) but
each reference the same physical file

– Unlinking one doesn't affect the file or the
other link

– File maintains hard link count and file is
only truly deleted from storage when last
hard link is removed

• Symbolic (soft) link
– One directory entry mapped to another

– Removing actual file link (i.e. deleting
file) may leave dangling soft links

– Symbolic links can point to other
directories or files on different volumes

/

home

cs350

mylib.so

19042

f1.txt

1043

1043

file

lib

19042

file

lib1.so

19042

Hard Links

cs356

a1.txt
/home/cs350/

f1.txt

Soft Link

15

Issues with Links

• Can have symbolic links to
directories

• Interesting issue with symbolic
links:
– May no longer have a tree (one parent

per node)

– When we try to walk up the tree which
"parent" do we return to

• Some shell applications track
directory you came from and then
return through that path

• No hard links to directories
– Can create cycles

/

home

cs350 Symbolic

Link

os_class

/home/cs350

What is my cwd after this?
$ cd /os_class
$ cd ..

16

COMMON FILESYSTEM SYSCALLS

17

Creating & Deleting Files

• No remove/delete syscall (only unlink)

Syscall Description

create(pathname) Creates a file

link(existingName, newName) Creates a hard link to the underlying file
referenced by existingName

unlink(pathName) Remove the specified name for a file from its
directory; if that is the last reference to a file,
remove the file

mkdir(pathName) Create a new directory with the specified name

rmdir(pathName) Remove the directory with the specified name

18

Open and Close

• Q: Why use a handle/file descriptor
– You could just specify the filename when you call read/write etc.

• A: Avoids rechecking permissions, maintains state (current
location in the file), etc.

Syscall Description

fd = open(fileName) Finds and opens a file performing various checks
(access permission) and initializing necessary
kernel data structures to track access

close(fd) Releases the resources associated with an open
file

19

File Access

• No rmove/delete syscall (only unlink)

Syscall Description

read(fd, buf, len) Creates a file

write(fd, buf, len) Creates a hard link to the underlying file referenced by
existingName

seek(fd, offset) Remove the specified name for a file from its directory;
if that is the last reference to a file, remove the file

ptr = mmap(fd, off, len) Set up a mapping between the data in the file (fd) from
off to off + len and an area in the application's
virtual address space from ptr to ptr + len. Writes
are buffered and flushed periodically or when
msync/munmap are invoked.

munmap(dataPtr, len) Unmaps the file from the virtual address space

msync(dataPtr, len) Flushes modified data from the given range back to the
underlying file

fsync(fd) Force modifications to a file to be flushed to disk

20

mmap Example

• Memory-mapped file I/O

• Provide efficient access when
data from a file will be accessed
multiple times

– Memory access is far faster than
disk access

– Like an explicit caching of a file's
data

unused

Stack

Seg.

Mapped

File

Data

Seg.

Code

Seg.

0x16000

0x18400
File on

disk

Virtual Address

Space

21

APIS AND DEVICE ACCESS

22

Software Layers

• File access consists of many
layers of software

• API layers provide a simplified
interface to the developer

• Performance layers utilize
caching methods

• Device access interfaces to
the HW and utilizes HW-
based performance
enhancements

23

Performance Enhancements

• Buffered I/O

– User level C library functions fwrite buffer writes in
memory and writeback to disk periodically
• Imagine multiple updates to the same data (only the last

update need be written)

– fread may bring in a whole block of data rather
than the few bytes actually requested

• Caching

– OS may maintain its own block cache of recently
accessed disk blocks so that requests to the disk
can be satisfied from the memory cache if possible

• Prefetching

– When we request a block from the disk the OS
may issue a request for the next block so that if it
is needed it will be ready (soon)

– Take care: can lead to issues of cache pressure,
I/O contention, and wasted effort

block

Memory

File

block

block

block

File

block

block

block

File

block
block

B
lo

c
k

 C
a
c

h
e

B
u

ff
e

re
d

 I
/O

24

Device Driver Organization

• OS device drivers must meet a certain
interface for certain classes of devices

• Byte-oriented (character devices)
– Read and write data in units of bytes/characters

– Data may be ephemeral

• Writing to the console, reading from a serial port or
keyboard

• Block-oriented
– Read and write data in blocks (chunks) (e.g. 512

byte sectors at a time)

– Used for devices that can host a file system

– Well-known interface that all devices must
implement (e.g. bread() and bwrite())

• Network interfaces

25

Memory Mapped I/O
• Processor performs reads and writes to communicate with I/O

devices just as it does with memory
– I/O devices have locations (i.e. registers) that contain data that the

processor can access

– These registers are assigned unique addresses just like memory

Video

Interface

FE may

signify a

white dot at

a particular

location

…

800

Processor Memory

A D C

800

FE

WRITE

…

0

3FF

FE

01

Keyboard

Interface

61400

‘a’ = 61 hex

in ASCII

26

Device File Systems

• Devices themselves can be treated like files

• Physical devices have a name and for Linux/Unix/Mac live in
the /dev directory

– tty, sda, usb, etc

• Can be read or written to just as files (e.g. write to the
terminal by just opening and writing to /dev/tty1)

• Specific I/O register access can be done with IOCTL
operations

• Can expose information about the system via the file system
– See a process' open FDs (/proc/1000/fd/) where 1000 is the pid of

the process

27

Direct Memory Access (DMA)

• Large buffers of data often
need to be copied between:

– Memory and I/O (video data,
network traffic, etc.)

– Memory and Memory (OS space
to user app. space)

• DMA devices are small
hardware devices that copy
data from a source to
destination freeing the
processor to do “real” work

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA

28

Data Transfer w/o DMA

• Without DMA, processor would
have to move data using a loop

• Move 16Kwords pointed to by
(%esi) to (%edi)

move $16384,%ecx

AGAIN: move (%esi),%eax

move %eax,(%edi)

add $4,%esi

add $4,%edi

sub $1,%ecx

jnz AGAIN

• Processor wastes valuable execution
time moving data

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

29

Data Transfer w/ DMA

• Processor sets values in DMA control
registers
– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt
on Completion, etc.)

• DMA becomes “bus-master”
(controls system bus to generate
reads and writes) while processor is
free to execute other code
– Small problem: Bus will be busy

– Hopefully, data & code needed by the
CPU will reside in the processor’s cache

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA
DMA

Control

Registers
Src

Dest
Cnt

30

DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the
processor or by certain I/O peripherals
– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus
– Usually winning requestor

has control of the bus until it
relinquishes it
(turns off its request signal)

D
M

A

C
h

a
n

n
e
l

0

D
M

A

C
h

a
n

n
e
l

1

D
M

A

C
h

a
n

n
e
l

2

D
M

A

C
h

a
n

n
e
l

3

Bus Arbiter

Processor

Core

Memory Peripheral Peripheral

Internal

System Bus

Bus

Masters

Slave

devices

Requests /

Grants

31

Disk Access Sample Sequence

• 1) User process performs read syscall

• 2) Kernel invokes device driver

• 3) Dev. driver performs I/O control
commands to disk controller and sets
up DMA engine via memory mapped
I/O reads/writes
– Thread now blocks

• 4) Disk reads data and DMA transfers it to
kernel area of memory (pink)

• 5) When done, processor is interrupted
and the interrupt handler reschedules the
blocked thread

• 6) Once awoken thread can copy the data
from kernel to user space (purple)

• 7) Syscall returns and user process has its
data available

User
Process

OS Kernel

OS Syscall
Stub

Kernel
Code

syscall

DMAProc.

Core

Memory Disk Ctrlr

1

2

Regs.

Regs.

Dev. Driver

Int. Handler
3

3

4

4

4

5 5

Intr.

3
6

7

Disk

32

SECURITY

33

Abstract View of Security

• Security assigns permissions to resources based on the principals
involved
– Principals are usually users or sometimes processes

– Permissions indicate what actions are allowed

• Issues:
– Delegation: Granting access to another

– Escalate privileges to do some task
• Take care! (Confused deputy problem)

– Mandatory vs. Discretionary Access Control

File1 File2 ResourceA

User 1 R/W/X R/W R/W

User 2 R R/X R

User 3 R/W/X R/W R/W

Process X R R/X R

P
ri

n
c

ip
a

ls

Resources

34

Abstract View of Security

• Two system approaches
– Access Control Lists (ACL): Store columns and then check permission when

a user/process presents itself

– Capability-based Systems: Each principal stores its row of permissions and
presents it to the system when it attempts to access a resource

– Essential choice is where do we store this security info (w/ resource or user)

• Which approach facilitates delegation most easily?

File1 File2 ResourceA

User 1 R/W/X R/W R/W

User 2 R R/X R

User 3 R/W/X R/W R/W

Process X R R/X R

P
ri

n
c

ip
a

ls

Resources

35

Unix/Linux/MacOS
• Uses ACL approach

– Each resource belongs to a {user, group} pair

– Permissions are maintained for user, group, all

– Process is associated with the user at creation

– When a file/resource is opened access is checked using the ACL

– See output from 'ls -l' command
• -rw-rw-r-- 1 redekopp bits-www 868 Jul 28 2015 README.md

Syscall Description

access(pathname, mode) Checks if the current process has mode
permission to access pathName

chown Changes the owner and group of a file

chmod Changes the permissions of a file

umask Changes current process' default permissions for
files it creates

setuid Sets the effective user id of the current process

