
Compiling Options, Make, etc.

Mark Redekopp

2
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

COMPILATION UNITS

3
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compilation Units

 Often rather than putting all our code/functions in one file

it is easier to maintain and re-use code if we break them

into multiple files

 We want functions defined in one file to be able to be

called in another

 But the compiler only compiles one file at a time…how

does it know if the functions exist elsewhere?

 void shuffle(int items[], int len)

{

 for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

 }

}

shuffle.cpp

int main(int argc, char *argv[])

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

4
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compilation Units

 We must prototype any function we want to

use that is in another file

 Rather than make us type in the prototypes

for each new program we write that needs

that function, put prototypes in a header file

that can be reused (included) for any new

program

shuffle.cpp

void shuffle(int [], int);

int main()

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

void shuffle(int items[], int len)

{ for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

} }

shuffle.h

#include “shuffle.h”

int main()

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

#include “shuffle.h”

int main()

{ int cards[52];

 int hand[5];

 // Shuffle cards

 shuffle(cards, 52);

}

poker.cpp

void shuffle(int [], int);

5
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compiling to Object Code

 Two issues:

– We may not want to distribute our .cpp files

– With a large program, we don’t want to re-compile all the files if the

code only changed in one

 Solution

– Compiling to object code, creates the machine code/assembly code

for just a single file BUT DOESN’T try to link any function calls to

other files nor does it try to create an executable

– Use: g++ –c filename.cpp

void shuffle(int items[], int len)

{

 for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

 }

} shuffle.cpp

g++ –c shuffle.cpp

11001010101010101010101011

10101010101110101011101010

10111010101011...

shuffle.o

6
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Linking

 After we compile to

object code we

eventually need to link

all the files together

and their function calls

 Without the –c, g++

will always try to link

 You can give g++

source files (.cpp files)

or object (.o files)

shuffle.cpp

(Plain source)

shuffle_test.cpp

(Plain source)

shuffle.o

(Machine

 / object code)

shuffle_test.o

(Machine

 / object code)

shuffle_test

(Executable)

g++ -g –Wall –c shuffle.cpp g++ -g –Wall –c shuffle_test.cpp

Note: g++ -g –Wall –o shuffle shuffle.o shuffle_test.cpp

Would also work and be fine and thus not require you

to compile shuffle_test.cpp to object code in a separate

step

g++ -g –Wall –o shuffle_test shuffle.o shuffle_test.o

7
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

CONDITIONAL COMPILATION

8
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Multiple Inclusion

 Often separate files may

#include's of the same

header file

 This may cause compiling

errors when a duplicate

declaration is encountered
– See example

 Would like a way to include only

once and if another attempt to

include is encountered, ignore it

string.h

class string{

... };

#include "string.h"

class Widget{

 public:

 string s;

};

widget.h

#include "string.h"

#include "widget.h"

int main()

{ }

main.cpp

class string { // inc. from string.h

};

class string{ // inc. from widget.h

};

class Widget{

... }

int main()

{ }

main.cpp after preprocessing

9
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Conditional Compiler Directives

 Compiler directives start

with '#'

– #define XXX

• Sets a flag named XXX in the

compiler

– #ifdef, #ifndef XXX … #endif

• Continue compiling code below

until #endif, if XXX is (is not)

defined

 Encapsulate header

declarations inside a

– #ifndef XX

#define XX

…

#endif

String.h

#ifndef STRING_H

#define STRING_H

class string{

... };

#endif

#include "string.h"

class Widget{

 public:

 string s;

};

Character.h

#include "string.h"

#include "string.h"

 main.cpp

class string{ // inc. from string.h

};

class Widget{ // inc. from widget.h

...

main.cpp after preprocessing

10
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Conditional Compilation

 Often used to compile

additional DEBUG code
– Place code that is only needed for

debugging and that you would not

want to execute in a release version

 Place code in a #ifdef

XX...#endif bracket

 Compiler will only compile

if a #define XX is found

 Can specify #define in:

– source code

– At compiler command line

with (-Dxx) flag

• g++ -o stuff –DDEGUG stuff.cpp

stuff.cpp

int main()

{

 int x, sum=0, data[10];

 ...

 for(int i=0; i < 10; i++){

 sum += data[i];

#ifdef DEBUG

 cout << "Current sum is ";

 cout << sum << endl;

#endif

 }

 cout << "Total sum is ";

 cout << sum << endl;

$ g++ -o stuff –DDEBUG stuff.cpp

11
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

COMPILER OPTIONS

12
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

g++ Options

 Most basic usage
– g++ cpp_filenames

– Creates an executable a.out

 Options

– -o => Specifies output executable name (other than default a.out)

– -g => Include info needed by debuggers like gdb, kdbg, etc.

– -Wall => show all warnings

– -c => compile but don't link (i.e. create an object file)

– -Ipath => add path into #include search directory

– -Lpath => add path into library search directory

– -Dmacro => #define macro

– -llibname => link in the code in library, libname

– -On => n=[0..6] => Optimization level 0-6

13
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

MAKEFILES

14
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

 XKCD #303

Courtesy of Randall Munroe @ http://xkcd.com

15
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

‘make’ and Makefiles

 ‘make’ is a utility program on most Linux/Unix

machines which processes commands in a

provided Makefile

Helps automate compilation process

– Essentially can use Makefiles as scripts of commands

to be run

Helps provide ‘smart’ compilation

– Compiles only files or those that depend on files that

have changed since last compilation

– Reduces wait time for compilation process especially for

large programs

16
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Analogy: Evaluating

Expressions
 Take the equation:

– x = 5*y + (8*z + 3)

– Evaluate for y=9, z=7

– We evaluate term by term & add

 What if only y changed and we needed to find the new

value of x? What would you re-evaluate

 What if only z changed, what operations would be needed

to find the new value of x

17
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

shuffle.h

Smart Compilation

 Only compile code

that has changed and

any files that

DEPEND on that code

shuffle.cpp

(Plain source)

[CHANGED]

shuffle_test.cpp

(Plain source)

shuffle.o

(Machine

 / object code)

shuffle_test.o

(Machine

 / object code)

shuffle_test

(Executable)

g++ -g –Wall –c shuffle.cpp g++ -g –Wall –c shuffle_test.cpp

g++ -g –Wall –o shuffle shuffle.o shuffle_test.cpp

18
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

‘make’ utility

 Looks for commands in a file called ‘Makefile’ or whatever is given

as the –f option on the command line

 Makefile is a text file with rules (a.k.a targets), dependencies and

actions along with macros if desired

rule: dependencies

[TAB] action1

[TAB] action2

 Rules => outputs; Dependencies => Inputs; Actions => commands

to build the output from inputs

 To run the Makefile, we use the make command from the command

prompt:

make [-f filename] [specific_rule]

 If no target specified at command line, 'all' target is made:

• http://www.eng.hawaii.edu/Tutor/Make/

http://www.eng.hawaii.edu/Tutor/Make/

19
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Environment variables

 From the Linux shell (terminal) we can set "variables" that

contain values that can be accessed by other programs

that provide system and other info

– PATH

– LD_LIBRARY_PATH

 Set with export command

– export VARIABLE=VALUE

 Access value with $VARIABLE in shell

 Access value with $(VARIABLE) in Makefile

 We defined CXXFLAGS in most of your .profile or .bashrc

(startup script)

– CXXFLAGS = -g -Wall

20
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Makefile

 Defining macros/variables

– MACRO_NAME = MACRO_DEF

– SRCS = test.cpp prog1.cpp

– FLAGS = $(CXXFLAGS) # if CXXFLAGS defined by shell

 Using macros

– $(MACRO_NAME)

– $(SRCS)

 Built-in Macros

– $< = dependency name / name of the related file that caused the

action

– $@ name of the file to be “made” / target name

 Macro Modification
– OBJS = ${SRCS:.cpp=.o}

• Substitute .o for .cpp wherever it occurs in the expansion of SRCS

21
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Example

 Example

– wget

http://ee.usc.edu/~redekopp/cs104/makeex.tar

– tar xvf makeex.tar

– cd makeex

 test1: foo.cpp bar.cpp test1.cpp

 test2: bar.cpp list.cpp

 Two Makefile

– Makefile.basic

• Just hard code dependencies

• I might suggest you go this route for your

assignments…easier for now

– Makefile.inter

• Intermediate: uses some substitutions to be

more general

src

proj

include

build

common

src

foo.cpp

foo.h

list.h

list.cpp

bar.cpp

test1.cpp

bar.h

test2.cpp

Put your .o &

exec here

http://ee.usc.edu/~redekopp/cs104/makeex.tar

