
Compiling Options, Make, etc.

Mark Redekopp

2
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

COMPILATION UNITS

3
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compilation Units

 Often rather than putting all our code/functions in one file

it is easier to maintain and re-use code if we break them

into multiple files

 We want functions defined in one file to be able to be

called in another

 But the compiler only compiles one file at a time…how

does it know if the functions exist elsewhere?

 void shuffle(int items[], int len)

{

 for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

 }

}

shuffle.cpp

int main(int argc, char *argv[])

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

4
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compilation Units

 We must prototype any function we want to

use that is in another file

 Rather than make us type in the prototypes

for each new program we write that needs

that function, put prototypes in a header file

that can be reused (included) for any new

program

shuffle.cpp

void shuffle(int [], int);

int main()

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

void shuffle(int items[], int len)

{ for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

} }

shuffle.h

#include “shuffle.h”

int main()

{

 int cards[52];

 // Initialize cards

 ...

 // Shuffle cards

 shuffle(cards, 52);

 return 0;

}

shuffle_test.cpp

#include “shuffle.h”

int main()

{ int cards[52];

 int hand[5];

 // Shuffle cards

 shuffle(cards, 52);

}

poker.cpp

void shuffle(int [], int);

5
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Compiling to Object Code

 Two issues:

– We may not want to distribute our .cpp files

– With a large program, we don’t want to re-compile all the files if the

code only changed in one

 Solution

– Compiling to object code, creates the machine code/assembly code

for just a single file BUT DOESN’T try to link any function calls to

other files nor does it try to create an executable

– Use: g++ –c filename.cpp

void shuffle(int items[], int len)

{

 for(int i=len-1; i > 0; --i){

 int r = rand() % i;

 int temp = items[i];

 items[i] = items[r];

 items[r] = temp;

 }

} shuffle.cpp

g++ –c shuffle.cpp

11001010101010101010101011

10101010101110101011101010

10111010101011...

shuffle.o

6
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Linking

 After we compile to

object code we

eventually need to link

all the files together

and their function calls

 Without the –c, g++

will always try to link

 You can give g++

source files (.cpp files)

or object (.o files)

shuffle.cpp

(Plain source)

shuffle_test.cpp

(Plain source)

shuffle.o

(Machine

 / object code)

shuffle_test.o

(Machine

 / object code)

shuffle_test

(Executable)

g++ -g –Wall –c shuffle.cpp g++ -g –Wall –c shuffle_test.cpp

Note: g++ -g –Wall –o shuffle shuffle.o shuffle_test.cpp

Would also work and be fine and thus not require you

to compile shuffle_test.cpp to object code in a separate

step

g++ -g –Wall –o shuffle_test shuffle.o shuffle_test.o

7
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

CONDITIONAL COMPILATION

8
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Multiple Inclusion

 Often separate files may

#include's of the same

header file

 This may cause compiling

errors when a duplicate

declaration is encountered
– See example

 Would like a way to include only

once and if another attempt to

include is encountered, ignore it

string.h

class string{

... };

#include "string.h"

class Widget{

 public:

 string s;

};

widget.h

#include "string.h"

#include "widget.h"

int main()

{ }

main.cpp

class string { // inc. from string.h

};

class string{ // inc. from widget.h

};

class Widget{

... }

int main()

{ }

main.cpp after preprocessing

9
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Conditional Compiler Directives

 Compiler directives start

with '#'

– #define XXX

• Sets a flag named XXX in the

compiler

– #ifdef, #ifndef XXX … #endif

• Continue compiling code below

until #endif, if XXX is (is not)

defined

 Encapsulate header

declarations inside a

– #ifndef XX

#define XX

…

#endif

String.h

#ifndef STRING_H

#define STRING_H

class string{

... };

#endif

#include "string.h"

class Widget{

 public:

 string s;

};

Character.h

#include "string.h"

#include "string.h"

 main.cpp

class string{ // inc. from string.h

};

class Widget{ // inc. from widget.h

...

main.cpp after preprocessing

10
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Conditional Compilation

 Often used to compile

additional DEBUG code
– Place code that is only needed for

debugging and that you would not

want to execute in a release version

 Place code in a #ifdef

XX...#endif bracket

 Compiler will only compile

if a #define XX is found

 Can specify #define in:

– source code

– At compiler command line

with (-Dxx) flag

• g++ -o stuff –DDEGUG stuff.cpp

stuff.cpp

int main()

{

 int x, sum=0, data[10];

 ...

 for(int i=0; i < 10; i++){

 sum += data[i];

#ifdef DEBUG

 cout << "Current sum is ";

 cout << sum << endl;

#endif

 }

 cout << "Total sum is ";

 cout << sum << endl;

$ g++ -o stuff –DDEBUG stuff.cpp

11
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

COMPILER OPTIONS

12
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

g++ Options

 Most basic usage
– g++ cpp_filenames

– Creates an executable a.out

 Options

– -o => Specifies output executable name (other than default a.out)

– -g => Include info needed by debuggers like gdb, kdbg, etc.

– -Wall => show all warnings

– -c => compile but don't link (i.e. create an object file)

– -Ipath => add path into #include search directory

– -Lpath => add path into library search directory

– -Dmacro => #define macro

– -llibname => link in the code in library, libname

– -On => n=[0..6] => Optimization level 0-6

13
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

MAKEFILES

14
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

 XKCD #303

Courtesy of Randall Munroe @ http://xkcd.com

15
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

‘make’ and Makefiles

 ‘make’ is a utility program on most Linux/Unix

machines which processes commands in a

provided Makefile

Helps automate compilation process

– Essentially can use Makefiles as scripts of commands

to be run

Helps provide ‘smart’ compilation

– Compiles only files or those that depend on files that

have changed since last compilation

– Reduces wait time for compilation process especially for

large programs

16
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Analogy: Evaluating

Expressions
 Take the equation:

– x = 5*y + (8*z + 3)

– Evaluate for y=9, z=7

– We evaluate term by term & add

 What if only y changed and we needed to find the new

value of x? What would you re-evaluate

 What if only z changed, what operations would be needed

to find the new value of x

17
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

shuffle.h

Smart Compilation

 Only compile code

that has changed and

any files that

DEPEND on that code

shuffle.cpp

(Plain source)

[CHANGED]

shuffle_test.cpp

(Plain source)

shuffle.o

(Machine

 / object code)

shuffle_test.o

(Machine

 / object code)

shuffle_test

(Executable)

g++ -g –Wall –c shuffle.cpp g++ -g –Wall –c shuffle_test.cpp

g++ -g –Wall –o shuffle shuffle.o shuffle_test.cpp

18
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

‘make’ utility

 Looks for commands in a file called ‘Makefile’ or whatever is given

as the –f option on the command line

 Makefile is a text file with rules (a.k.a targets), dependencies and

actions along with macros if desired

rule: dependencies

[TAB] action1

[TAB] action2

 Rules => outputs; Dependencies => Inputs; Actions => commands

to build the output from inputs

 To run the Makefile, we use the make command from the command

prompt:

make [-f filename] [specific_rule]

 If no target specified at command line, 'all' target is made:

• http://www.eng.hawaii.edu/Tutor/Make/

http://www.eng.hawaii.edu/Tutor/Make/

19
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Environment variables

 From the Linux shell (terminal) we can set "variables" that

contain values that can be accessed by other programs

that provide system and other info

– PATH

– LD_LIBRARY_PATH

 Set with export command

– export VARIABLE=VALUE

 Access value with $VARIABLE in shell

 Access value with $(VARIABLE) in Makefile

 We defined CXXFLAGS in most of your .profile or .bashrc

(startup script)

– CXXFLAGS = -g -Wall

20
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Makefile

 Defining macros/variables

– MACRO_NAME = MACRO_DEF

– SRCS = test.cpp prog1.cpp

– FLAGS = $(CXXFLAGS) # if CXXFLAGS defined by shell

 Using macros

– $(MACRO_NAME)

– $(SRCS)

 Built-in Macros

– $< = dependency name / name of the related file that caused the

action

– $@ name of the file to be “made” / target name

 Macro Modification
– OBJS = ${SRCS:.cpp=.o}

• Substitute .o for .cpp wherever it occurs in the expansion of SRCS

21
© Copyright 2013 Brent Nash & Mark Redekopp, All Rights Reserved

Example

 Example

– wget

http://ee.usc.edu/~redekopp/cs104/makeex.tar

– tar xvf makeex.tar

– cd makeex

 test1: foo.cpp bar.cpp test1.cpp

 test2: bar.cpp list.cpp

 Two Makefile

– Makefile.basic

• Just hard code dependencies

• I might suggest you go this route for your

assignments…easier for now

– Makefile.inter

• Intermediate: uses some substitutions to be

more general

src

proj

include

build

common

src

foo.cpp

foo.h

list.h

list.cpp

bar.cpp

test1.cpp

bar.h

test2.cpp

Put your .o &

exec here

http://ee.usc.edu/~redekopp/cs104/makeex.tar

