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GIT AND GITHUB
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Source/Version Control

• Have you ever made backups of backups of source files to 
save your code at various states of development (so you can 
recover to an earlier working version)?

• Have you ever worked on the same code with a partner and 
tried to integrate changes they made?

• These tasks can be painful without help

• Source/version control tools make this task easy
– Allows one codebase (no separate folders or copies of files) that can 

be "checkpointed" (committed) at various times and then return back 
to a previous checkpoint/commit if desired

– Can help merge differences between two versions of the same code

• Common source/version control tools are:
– Git, Subversion, and a few older ones (cvs, rcs, clearcase, etc.)
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Git
• Git is a version control system

– Stores "snapshots" of files (usually code) 
in a repository (think folder) at a explicit 
points in time that you choose

• No more making backup copies

– Allows easy updates to a  view of the code 
at some historical point in time

• Git is "distributed" (often via Github)
– Allows the repository to exist on various 

machines and each store new updates 
(aka "commits")

– Github holds the central repository

– Updates can be communicated to each 
"clone" of the repository by "push"-ing
updates to and "pull" updates from the 
central repository on Github

repo
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repo
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clone/pull
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Repositories

• We generally organize our code and 
related files for a project in some folder
– We will use the term "repository" for this 

top-level folder when it is under "version-
control"

• Your repository can have some files 
that ARE version controlled…
– Source code, Makefiles, input files

• …and some that ARE NOT
– Object files, executables, output files

• Version controlled (aka 'tracked') files 
have their version history saved and are 
uploaded to Github

repo

file1.c

hw2
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Keys

• Each time you upload or download from Github to/from your repository 
you will need to authenticate
– By default you can provide your username/password

– But since you should be uploading often it's easier to setup an SSH key

• To setup a key on your VM or other machine at the terminal:

– $ ssh-keygen -t rsa -b 2048 -C ttrojan@usc.edu

• Then open the contents of ~/.ssh/id_rsa.pub in an editor

• Login to Github, go to your Settings (upper right) and find the "SSH Keys" 
tab

– Click New SSH Key

– Provide a name (your choice) for this key and then paste the contents of 
id_rsa.pub into the Key textbox 

– Click Add SSH Key

mailto:ttrojan@usc.edu
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Cloning Repos

• Cloning a repo brings a copy of the 
specified repository onto your local 
machine
– git clone url-of-repository

– Only needs to be performed once per 
machine

• You can now perform additions, 
modifications, and removals locally 
(without being connected)

• Allows the two repositories to be 
synchronized in both directions via 
git push and git pull

repo

repo

Your laptop

github.com

git clone git@github.com:usc-csci104-summer2021/hw-ttrojan.git
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Adds and Commits

• Repositories are updated by performing commits

• We first indicate all the files we want to commit by 
performing one or more adds via  git add

– Like adding things to your cart

• Then we perform a git commit of the added files 

– Like checking out…this is when the snapshot is taken

• Note:  Don't add folders, just files…folder structure 
will be added automatically

C1

repo

file1.cpp

file2.cpp

C2

repo

file1.cpp'

file2.cpp

file1.cpp

file2.cpp

git add file*.cpp

This Photo by Unknown Author is licensed under CC BY-SA

git commit –m "Initial"

file1.cpp
(modified)

git add file1.cpp git commit –m "Updated"

Sample Sequence:

1 2 3 4

C1 C2

http://commons.wikimedia.org/wiki/File:Nuvola_check-out.svg
https://creativecommons.org/licenses/by-sa/3.0/
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git add

git commit

git add

git commit

Git File Lifecycle

Git "Locations"
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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Push and Pull

This Photo and This Photo by Unknown Author is licensed under CC BY-SA; This Photo by Unknown Author is licensed under CC BY-NC-ND
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file2.cpp
• Suppose we make changes to our 

local repository
– git add file1.cpp

– git commit -m "Added func2"

• We upload the updates to the 
remote repository via a push 
operation
– git push

• Another clone of the repository can 
download any updates from the 
remote repository via a pull 
operation
– git pull

git push
(u/l C2)

git pull
(d/l C2)

C1

C2 C1

http://superuser.com/tags/raspberry-pi/info
http://commons.wikimedia.org/wiki/File:Gnome-laptop.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://holait.blogspot.com/2015/02/lanzan-raspberry-pi-2-y-una-computadora.html
https://creativecommons.org/licenses/by-nc-nd/2.5/
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Summary
• git add file(s)

– Stage a file to be committed

• git commit -m "Change summary"

– Makes a snapshot of the code you added

• git checkout -b branch-name

– Create a branch and switch to it

• git pull
– Download commits from your remote repository

• git push
– Upload your local commits to the remote repository

• git checkout branch-name

– Switch to a new branch

• git merge other-branch-name

– Merge the commits from other-branch-name into current branch

• HEAD is synonymous with the (current branch's) latest commit

• origin is usually the remote name for your repo on github

• upstream is usually the remote your repo was forked from (must be added)
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Helpful Links

• https://help.github.com/

• Tutorial
– https://learngitbranching.js.org/ (Do only the lessons below)

• Main Tab: Level 1 - Intro to Git Commits

• Remotes Tab: Level 1: Push & Pull – Git Remotes

• Cheat Sheets
– https://services.github.com/on-demand/downloads/github-git-cheat-sheet/

(web version)

– https://services.github.com/on-demand/downloads/github-git-cheat-
sheet.pdf (print version)

• FAQ for common Github Issues (when you encounter a git 
issue doing your HW check this FAQ first)
– http://bytes.usc.edu/cs104/cs-faq.html

http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
https://learngitbranching.js.org/
https://services.github.com/on-demand/downloads/github-git-cheat-sheet/
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://learngitbranching.js.org/
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ADVANCED GIT (FOR REFERENCE)

(Probably not necessary for 104)
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Branches Motivation

• Branches are useful when you are 
adding some new feature/fix, 
especially when others developers 
may also be doing the same by giving 
a separate sandbox to work in

• Branches allow you to
– Grab the code from a particular starting 

point (i.e. commit)

– Modify code, add, delete and commit 

– Merge the code back into the master 
branch

C1

C2

C3

C5

C4

C5

master 
branch
(other 

developers or 
fixes to C2)

feature1 
branch

(your updates 
for feature 1)
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Branches (1)

• Each commit has one parent

• Branches are just names that can be 
associated with a commits

– 'master' is the default branch

– Created using:
git checkout -b branch-name

• You can only be working on one particular 
branch at a time

• Any commits are applied to the current 
branch

• Example:

– git checkout -b feat1

– git commit -m "Added part1"

– git commit -m "Added part2"

feat1

C1

C2

C3

C5

master

feat1

feat1
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Branches and Merging

• We can switch between branches using git 
checkout branch-name

• Example:

– git checkout master

– git commit -m "Fix bug 1"

• Two branches can then be merged together via:
git merge branch-to-merge-in

• A merge is a special commit with two "parents" 
and combines the code

• Example:

– git merge feat1

• Note: You must be in the branch that will be 
updated with the code from the specified 
branch
– The specified branch remains independent (you'd have 

to do another merge to sync both branches)

– git checkout feat1

– git commit -m "Separate change"

feat1

C1

C2

C3

C5

feat1

feat1
C4

C6

master

C7

feat1
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Conflicts

• If the merge encounters updates that it is 
not sure how to combine, it will leave the 
file in a conflicted state 

• Can find conflicted files via:

– git status

• Contents of conflicted files must be 
manually combined

– Conflicted areas are highlight with <<<<,
====, >>>> with the contents of each 
branch

– Edit the file to your desired final contents

– Then add and commit

feat1

C1

C2

C3

C5

C4

C5

master 
branch
(other 

developers or 
fixes to C2)

master

feat1

feat1

If you have questions, please 
<<<<<<< HEAD 
open an issue 
======= 
ask your question in IRC. 
>>>>>>> feat1

Sample 
Conflicted File
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Remotes

• Remotes are just like their name 
indicates:  remote locations where we 
can push and pull (or fetch) data from

• To list remotes
– git remote -v

• To add a remote
– git remote add name remote-url

– origin is the common name for the 
remote repo from which you cloned

– A remote is just an association of a name 
to a repo URL

• To choose & push a particular branch 
to a remote
– git push -u remote local-branch

repo

file1.cpp

file2.cpp

repo

file1.cpp

file2.cpp

repo

file1.cpp

file2.cpp

github.com:usc-ee250/repo

github.com:mredekopp/repo

origin

upstream
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Forks

• A fork is a "copy" of a repository

– Essentially a new repo whose starting point is the current 
state of the original, "forked" repo

– Allows changes to be made (like a branch) or starting a new 
project based on some current codebase
• If the original fork changes, there are means to pull those updates into 

your fork

– It is possible to fork a fork ☺

• Example

– The sensors we use have Python library support available on 
Github

– We have forked that repo and made some changes for EE 
250

– You will then fork our repo (i.e. a fork of a fork) and modify 
it with your lab group
• If we make changes in our repo, you can easily bring them into your fork

Icons made by Dave Gandy 
from Flaticon is licensed by 

Creative Commons CC 3.0 BY

https://www.flaticon.com/authors/dave-gandy
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/%22
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Upstreams

• Common definitions 
– upstream:  The parent repository from which you forked

– downstream: The forked ("child") repository (i.e. your repo)

• Common usage
– The upstream fork can be thought of as just another remote

– While the remote named origin usually refers to your fork on github, the 
remote named upstream usually refers to the parent of your fork

• Setting up access to the upstream fork
– See https://help.github.com/articles/fork-a-repo/

– git remote -v

– git remote add upstream parent-fork-url

• Updating your code from the parent fork
– git fetch upstream

– git checkout master (can be skipped if you aren't using branches)

– git merge upstream/master 

Icons made by Dave Gandy 
from Flaticon is licensed by 

Creative Commons CC 3.0 BY

https://help.github.com/articles/fork-a-repo/
https://www.flaticon.com/authors/dave-gandy
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/%22
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An Example

• Suppose we create a repo for you: p1-ttrojan

– It comes preloaded (because of actions we took) with some code that was from 

our own repo: p1-skel

– git clone git@github.com:usc-csci104-summer2021/hw-ttrojan

– cd p1-ttrojan

– # You make changes; add, commit, push

• Now we make changes to p1-skel, how can you get and merge those 
changes in?

– git remote -v       # list the remotes

– git remote add upstream git@github.com:usc-csci104-
summer2021/p1-skel

– git fetch upstream  # d/l changes to a temp area

– git checkout master # make sure you're in your master branch

– git merge upstream/master  # Update your code

mailto:git@github.com:usc-csci104-summer2021/hw-ttrojan
mailto:git@github.com:usc-csci104-summer2021/p1-skel

