
17.1

CS104 Appendix A

Github

17.2

GIT AND GITHUB

17.3

Source/Version Control

• Have you ever made backups of backups of source files to
save your code at various states of development (so you can
recover to an earlier working version)?

• Have you ever worked on the same code with a partner and
tried to integrate changes they made?

• These tasks can be painful without help

• Source/version control tools make this task easy
– Allows one codebase (no separate folders or copies of files) that can

be "checkpointed" (committed) at various times and then return back
to a previous checkpoint/commit if desired

– Can help merge differences between two versions of the same code

• Common source/version control tools are:
– Git, Subversion, and a few older ones (cvs, rcs, clearcase, etc.)

17.4

Git
• Git is a version control system

– Stores "snapshots" of files (usually code)
in a repository (think folder) at a explicit
points in time that you choose

• No more making backup copies

– Allows easy updates to a view of the code
at some historical point in time

• Git is "distributed" (often via Github)
– Allows the repository to exist on various

machines and each store new updates
(aka "commits")

– Github holds the central repository

– Updates can be communicated to each
"clone" of the repository by "push"-ing
updates to and "pull" updates from the
central repository on Github

repo

repo

repo

Your laptop Some other

machine

github.com

clone/pull

push

17.5

Repositories

• We generally organize our code and
related files for a project in some folder
– We will use the term "repository" for this

top-level folder when it is under "version-
control"

• Your repository can have some files
that ARE version controlled…
– Source code, Makefiles, input files

• …and some that ARE NOT
– Object files, executables, output files

• Version controlled (aka 'tracked') files
have their version history saved and are
uploaded to Github

repo

file1.c

hw2

file1.c file2.c

file1.o

hw1

in1.dat out1.dat

exec1Makefile

17.6

Keys

• Each time you upload or download from Github to/from your repository
you will need to authenticate
– By default you can provide your username/password

– But since you should be uploading often it's easier to setup an SSH key

• To setup a key on your VM or other machine at the terminal:

– $ ssh-keygen -t rsa -b 2048 -C ttrojan@usc.edu

• Then open the contents of ~/.ssh/id_rsa.pub in an editor

• Login to Github, go to your Settings (upper right) and find the "SSH Keys"
tab

– Click New SSH Key

– Provide a name (your choice) for this key and then paste the contents of
id_rsa.pub into the Key textbox

– Click Add SSH Key

mailto:ttrojan@usc.edu

17.7

Cloning Repos

• Cloning a repo brings a copy of the
specified repository onto your local
machine
– git clone url-of-repository

– Only needs to be performed once per
machine

• You can now perform additions,
modifications, and removals locally
(without being connected)

• Allows the two repositories to be
synchronized in both directions via
git push and git pull

repo

repo

Your laptop

github.com

git clone git@github.com:usc-csci104-summer2021/hw-ttrojan.git

17.8

Adds and Commits

• Repositories are updated by performing commits

• We first indicate all the files we want to commit by
performing one or more adds via git add

– Like adding things to your cart

• Then we perform a git commit of the added files

– Like checking out…this is when the snapshot is taken

• Note: Don't add folders, just files…folder structure
will be added automatically

C1

repo

file1.cpp

file2.cpp

C2

repo

file1.cpp'

file2.cpp

file1.cpp

file2.cpp

git add file*.cpp

This Photo by Unknown Author is licensed under CC BY-SA

git commit –m "Initial"

file1.cpp
(modified)

git add file1.cpp git commit –m "Updated"

Sample Sequence:

1 2 3 4

C1 C2

http://commons.wikimedia.org/wiki/File:Nuvola_check-out.svg
https://creativecommons.org/licenses/by-sa/3.0/

17.9

git add

git commit

git add

git commit

Git File Lifecycle

Git "Locations"
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

17.10

Push and Pull

This Photo and This Photo by Unknown Author is licensed under CC BY-SA; This Photo by Unknown Author is licensed under CC BY-NC-ND

Your laptop Another

machine

repo

file1.cpp

file2.cpp

repo

file1.cpp'

file2.cpp

repo

file1.cpp

file2.cpp
• Suppose we make changes to our

local repository
– git add file1.cpp

– git commit -m "Added func2"

• We upload the updates to the
remote repository via a push
operation
– git push

• Another clone of the repository can
download any updates from the
remote repository via a pull
operation
– git pull

git push
(u/l C2)

git pull
(d/l C2)

C1

C2 C1

http://superuser.com/tags/raspberry-pi/info
http://commons.wikimedia.org/wiki/File:Gnome-laptop.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://holait.blogspot.com/2015/02/lanzan-raspberry-pi-2-y-una-computadora.html
https://creativecommons.org/licenses/by-nc-nd/2.5/

17.11

Summary
• git add file(s)

– Stage a file to be committed

• git commit -m "Change summary"

– Makes a snapshot of the code you added

• git checkout -b branch-name

– Create a branch and switch to it

• git pull
– Download commits from your remote repository

• git push
– Upload your local commits to the remote repository

• git checkout branch-name

– Switch to a new branch

• git merge other-branch-name

– Merge the commits from other-branch-name into current branch

• HEAD is synonymous with the (current branch's) latest commit

• origin is usually the remote name for your repo on github

• upstream is usually the remote your repo was forked from (must be added)

17.12

Helpful Links

• https://help.github.com/

• Tutorial
– https://learngitbranching.js.org/ (Do only the lessons below)

• Main Tab: Level 1 - Intro to Git Commits

• Remotes Tab: Level 1: Push & Pull – Git Remotes

• Cheat Sheets
– https://services.github.com/on-demand/downloads/github-git-cheat-sheet/

(web version)

– https://services.github.com/on-demand/downloads/github-git-cheat-
sheet.pdf (print version)

• FAQ for common Github Issues (when you encounter a git
issue doing your HW check this FAQ first)
– http://bytes.usc.edu/cs104/cs-faq.html

http://rogerdudler.github.io/git-guide/files/git_cheat_sheet.pdf
https://learngitbranching.js.org/
https://services.github.com/on-demand/downloads/github-git-cheat-sheet/
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://learngitbranching.js.org/

17.13

ADVANCED GIT (FOR REFERENCE)

(Probably not necessary for 104)

17.14

Branches Motivation

• Branches are useful when you are
adding some new feature/fix,
especially when others developers
may also be doing the same by giving
a separate sandbox to work in

• Branches allow you to
– Grab the code from a particular starting

point (i.e. commit)

– Modify code, add, delete and commit

– Merge the code back into the master
branch

C1

C2

C3

C5

C4

C5

master
branch
(other

developers or
fixes to C2)

feature1
branch

(your updates
for feature 1)

17.15

Branches (1)

• Each commit has one parent

• Branches are just names that can be
associated with a commits

– 'master' is the default branch

– Created using:
git checkout -b branch-name

• You can only be working on one particular
branch at a time

• Any commits are applied to the current
branch

• Example:

– git checkout -b feat1

– git commit -m "Added part1"

– git commit -m "Added part2"

feat1

C1

C2

C3

C5

master

feat1

feat1

17.16

Branches and Merging

• We can switch between branches using git
checkout branch-name

• Example:

– git checkout master

– git commit -m "Fix bug 1"

• Two branches can then be merged together via:
git merge branch-to-merge-in

• A merge is a special commit with two "parents"
and combines the code

• Example:

– git merge feat1

• Note: You must be in the branch that will be
updated with the code from the specified
branch
– The specified branch remains independent (you'd have

to do another merge to sync both branches)

– git checkout feat1

– git commit -m "Separate change"

feat1

C1

C2

C3

C5

feat1

feat1
C4

C6

master

C7

feat1

17.17

Conflicts

• If the merge encounters updates that it is
not sure how to combine, it will leave the
file in a conflicted state

• Can find conflicted files via:

– git status

• Contents of conflicted files must be
manually combined

– Conflicted areas are highlight with <<<<,
====, >>>> with the contents of each
branch

– Edit the file to your desired final contents

– Then add and commit

feat1

C1

C2

C3

C5

C4

C5

master
branch
(other

developers or
fixes to C2)

master

feat1

feat1

If you have questions, please
<<<<<<< HEAD
open an issue
=======
ask your question in IRC.
>>>>>>> feat1

Sample
Conflicted File

17.18

Remotes

• Remotes are just like their name
indicates: remote locations where we
can push and pull (or fetch) data from

• To list remotes
– git remote -v

• To add a remote
– git remote add name remote-url

– origin is the common name for the
remote repo from which you cloned

– A remote is just an association of a name
to a repo URL

• To choose & push a particular branch
to a remote
– git push -u remote local-branch

repo

file1.cpp

file2.cpp

repo

file1.cpp

file2.cpp

repo

file1.cpp

file2.cpp

github.com:usc-ee250/repo

github.com:mredekopp/repo

origin

upstream

17.19

Forks

• A fork is a "copy" of a repository

– Essentially a new repo whose starting point is the current
state of the original, "forked" repo

– Allows changes to be made (like a branch) or starting a new
project based on some current codebase
• If the original fork changes, there are means to pull those updates into

your fork

– It is possible to fork a fork ☺

• Example

– The sensors we use have Python library support available on
Github

– We have forked that repo and made some changes for EE
250

– You will then fork our repo (i.e. a fork of a fork) and modify
it with your lab group
• If we make changes in our repo, you can easily bring them into your fork

Icons made by Dave Gandy
from Flaticon is licensed by

Creative Commons CC 3.0 BY

https://www.flaticon.com/authors/dave-gandy
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/%22

17.20

Upstreams

• Common definitions
– upstream: The parent repository from which you forked

– downstream: The forked ("child") repository (i.e. your repo)

• Common usage
– The upstream fork can be thought of as just another remote

– While the remote named origin usually refers to your fork on github, the
remote named upstream usually refers to the parent of your fork

• Setting up access to the upstream fork
– See https://help.github.com/articles/fork-a-repo/

– git remote -v

– git remote add upstream parent-fork-url

• Updating your code from the parent fork
– git fetch upstream

– git checkout master (can be skipped if you aren't using branches)

– git merge upstream/master

Icons made by Dave Gandy
from Flaticon is licensed by

Creative Commons CC 3.0 BY

https://help.github.com/articles/fork-a-repo/
https://www.flaticon.com/authors/dave-gandy
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/%22

17.21

An Example

• Suppose we create a repo for you: p1-ttrojan

– It comes preloaded (because of actions we took) with some code that was from

our own repo: p1-skel

– git clone git@github.com:usc-csci104-summer2021/hw-ttrojan

– cd p1-ttrojan

– # You make changes; add, commit, push

• Now we make changes to p1-skel, how can you get and merge those
changes in?

– git remote -v # list the remotes

– git remote add upstream git@github.com:usc-csci104-
summer2021/p1-skel

– git fetch upstream # d/l changes to a temp area

– git checkout master # make sure you're in your master branch

– git merge upstream/master # Update your code

mailto:git@github.com:usc-csci104-summer2021/hw-ttrojan
mailto:git@github.com:usc-csci104-summer2021/p1-skel

