CSCI 104
C++11 Features

Design Patterns
Mark Redekopp

Plugging the leaks

SMART POINTERS

-] USCViterbi @
C++11, 14, 17

 Most of what we have taught you in this class are language
features that were part of C++ since the C++98 standard

* New, helpful features have been added in C++11, 14, and now

17 standards

— Beware: compilers are often a bit slow to implement the standards so
check the documentation and compiler version

— You often must turn on special compile flags to tell the compiler to
look for C++11 features, etc.
* For g++ you would need to add: -std=c++11 or -std=c++0x
* Many of the features in the these revisions to C++ are
originally part of 3 party libraries such as the Boost library

e — 5 Viterbi
Pointers or Objects? Both!

* In C++, the dereference
operator (*) should appear Flass Tidag
before...

— A pointer to an object

g

int main ()

— An actual object {

Thing tl1;

 "Good" answer is Thing *ptr = &tl

— A Pointer to an object // Which is legal?

« "Technically correct" answer... ot
— EITHER!!!! /

* Due to operator overloading we
can make an object behave as a
pointer

— Overload operator *, &, ->, ++,
etc.

A "Dumb" Pointer Class

We can make a class
operate like a pointer

Use template parameter as
the type of data the
pointer will point to

Keep an actual pointer as
private data

Overload operators

This particular class doesn't
really do anything useful

— It just does what a normal
pointer would do

template <typename T>
class dumb ptr
{ private:
T* p_;
public:
dumb ptr(T* p) : p_ (p)
T& operator* () { return *p ; }
T* operator->() { return p ; }
dumb ptré& operator++() // pre-inc
{ ++p ; return *this; }

{}

I g

int main ()
{
int datall0];
dumb ptr<int> ptr (data);

for(int 1i=0; 1 < 10; 1i++) {
cout << *ptr; ++ptr;
}
}

A "Useful" Pointer Class

* | can add automatic
memory deallocation
so that when my local
"unique_ptr" goes
out of scope, it will
automatically delete
what it is pointing at

template <typename T>
class unique ptr
{ private:

T p ;
public:

unique ptr(T* p) : p (p) { }
~unique ptr() { delete p ; }

T& operator* () { return *p ; }

T* operator->() { return p ; }
unique ptré& operator++() // pre-inc

{ ++p_; return *this; }

I

int main ()
{
unique ptr<Obj> ptr(new 0bj);
/] ..
ptr->all words ()
// Do I need to delete Obj?

A "Useful" Pointer Class

 What happens when
| make a copy?

 Can we make it
impossible for
anyone to make a
copy of an object?

— Remember C++
provides a default
"shallow" copy
constructor and
assignment operator

template <typename T>
class unique ptr
{ private:
T p ;
public:
unique ptr(T* p) : p_(p) { }
~unique ptr() { delete p ; }

T& operator* () { return *p ; }
T* operator->() { return p ; }
unique ptré& operator++() // pre-inc

{ ++p_; return *this; }
bi

int main ()
{
unique ptr<Obj> ptr(new 0bj);
unique ptr<Obj> ptr2 = ptr;
/] ...
ptr2->all words();
// Does anything bad happen here?

i, TS(“Viterbi

School of Engineering

Hiding Functions

Can we make it impossible for
anyone to make a copy of an
object?

— Remember C++ provides a default

"shallow" copy constructor and
assignment operator

Yes!!

— Put the copy constructor and
operator= declaration in the
private section...now the
implementations that the compiler
provides will be private (not
accessible)

You can use this technique to hide
"default constructors" or other
functions

template <typename T>
class unique ptr
{ private:
T p ;
public:
unique ptr(T* p) : p (p) { }
~unique ptr() { delete p ; }
T& operator* () { return *p ; }
T* operator->() { return p ; }
unique ptré& operator++() // pre-inc
{ ++p_; return *this; }
private:
unique ptr (const UsefultPtré& n);
unique ptr& operator=(const
UsefultPtré& n);

b2

int main ()

{
unique ptr<Obj> ptr(new 0bj);
unique ptr<Obj> ptr2 = ptr;
// Try to compile this?

}

i, TS(“Viterbi -

A "shared" Pointer Class

* Could we write a pointer class where

template <typename T>

we can make copies that somehow class shared ptr
" n . { public:

kI?OW to only delete the underlying shared ptr(T* p);
object when the last copy of the smart ~shared ptr () ;
pointer dies? f epeRateRt g

shared ptré& operator++();
* Basicidea }
. shared ptr<Obj> f1 ()
— shared_ptr class will keep a count of (=
how many copies are alive shared ptr<Obj> ptr (new Obj) ;

cout << "In F1\n" << *ptr << endl;

— shared_ptr destructor simply return ptr;

decrements this count }

* |f countis 0, delete the object
int main ()

{
shared ptr<Obj> p2 = f1();
cout << "Back in main\n" << *p2;
cout << endl;
return 0;

i, TS(“Viterbi

School of Engineering

A "shared" Pointer Class

e Basicidea

— shared_ptr class will keep a count of

how many copies are alive

— Constructors/copies increment this

count

— shared_ptr destructor simply
decrements this count

* |f countis 0, delete the object

shared_ptr p

ControlObjPtr

\/ ControlObj

RefCnt: 1

Pointer

Actual
Object

int main ()

{
shared ptr<Obj> pl (new Obj) ;
doit (pl);
return 0;

}

void doit (shared ptr<Obj> p2)
{
if(...){
shared ptr<Obj> p3 = p2;

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main ()

: . {
how many copies are alive sl e L ae @5 s

— shared_ptr destructor simply doit (pl);

decrements this count } return 0;

e Basicidea

* |f countis 0, delete the object

void doit(shared ptr<Obj> p2)

{
1f(...) 1
shared_ptr p shared ptr<Obj> p3 = p2;

ControlObjPtr

}
\/ ControlObj }

RefCnt: 2
shared ptr p Actual

Pointer Object

ControlObjPtr ————=$\\\\¥

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main ()

: . {
how many copies are alive sl e L ae @5 s

— shared_ptr destructor simply doit (pl);

decrements this count } return 0;

e Basicidea

* |f countis 0, delete the object

void doit(shared ptr<Obj> p2)

{
1f(...) 1
shared_ptr p shared ptr<Obj> p3 = p2;

ControlObjPtr

}
\/ ControlObj }

RefCnt: 3
shared ptr p Actual

Pointer Object

ControlObjPtr ————=$\\\\¥

shared ptrp

ControlObjPtr

N7

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main ()

: . {
how many copies are alive sl e L ae @5 s

— shared_ptr destructor simply doit (pl);

decrements this count } return 0;

e Basicidea

* |f countis 0, delete the object

void doit(shared ptr<Obj> p2)

{
1f(...) 1
shared_ptr p shared ptr<Obj> p3 = p2;

ControlObjPtr

} // p3 dies
\/ ControlObj }

RefCnt: 2
shared ptr p Actual

Pointer Object

ControlObjPtr ————=$\\\\¥

i, TS(“Viterbi

School of Engineering

A "shared" Pointer Class

e Basicidea

— shared_ptr class will keep a count of int main ()

: . {
how many copies are alive sl e L ae @5 s

— shared_ptr destructor simply doit (pl);

decrements this count } retaEn U
* |f countis 0, delete the object

void doit(shared ptr<Obj> p2)

{
1f(...) 1
shared_ptr p shared ptr<Obj> p3 = p2;

ControlObjPtr

} // p3 dies
\/m } // p2 dies

RefCnt: 1

Actual
Object

Pointer

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main ()

: . {
how many copies are alive sl e L ae @5 s

— shared_ptr destructor simply doit (pl);

decrements this count return 0;
} // pl dies

e Basicidea

* |f countis 0, delete the object
void doit(shared ptr<Obj> p2)

{
1f(...){
shared ptr<Obj> p3 = p2;

} // p3 dies
} // p2 dies

RefCnt: O

Pointer

i, TS(“Viterbi

School of Engineering

C++ shared ptr

C++ std::shared_ptr/
boost::shared ptr

— Boost is a best-in-class C++ library of
code you can download and use with
all kinds of useful classes

Can only be used to point at dynamically
allocated data (since it is going to call
delete on the pointer when the reference
count reaches 0)

Compile in g++ using '-std=c++11' since
this class is part of the new standard
library version

#include <memory>
#include "obj.h"
using namespace std;

shared ptr<Obj> f1 ()

{
shared ptr<Obj> ptr (new 0bj);
//
cout << "In F1\n" << *ptr << endl;
return ptr;

}

int main ()
{
shared ptr<Obj> p2 = f1();
cout << "Back in main\n" << *p2;
cout << endl;
return 0;

$ g++ -std=c++11 shared_ptrl.cpp obj.cpp

B S C Viterbi
C++ shared ptr

* Using shared_ptr's you can put WG SrEme s
. . -) . #include <vector>
pointers into container objects #include "obj.h"

(VeCtOFS, maps) etc) and nOt have using namespace std;
to worry about iterating through int main ()

. {
and dElEtlng them vector<shared ptr<Obj> > myvec;

* When myvec goes out of scope, it e TS il (e G

deallocates what it is storing myvec.push_back(pl);
(shared_ptr's), but that causes the | ., i Lirconis p2 new oby)
shared_ptr destructor to myvec.push_back(p2);
automatically delete the Objs return 0;

e Think about your project } // myvec goes out of scope...
homeworks...this might be (have
been) nice

$ g++ -std=c++11 shared_ptrl.cpp obj.cpp

i, TS(“Viterbi

School of Engineering

shared ptr vs. unique_ptr

* Both will perform automatic deallocation

* Unique_ptr only allows one pointer to the object at a time
— Copy constructor and assignment operator are hidden as private functions
— Obiject is deleted when pointer goes out of scope

— Does allow "move" operation
e |f interested read more about this on your own

* C++11 defines "move" constructors (not just copy constructors) and "rvalue
references" etc.

* Shared_ptr allow any number of copies of the pointer
— Object is deleted when last pointer copy goes out of scope

 Note: Many languages like python, Java, C#, etc. all use this idea of
reference counting and automatic deallocation (aka garbage collection) to
remove the burden of memory management from the programmer

i, TS(“Viterbi

School of Engineering

RAII

Class Obj{
int wval;
public:

void £f1 ()
{
val++;
if () A

return;

}

else {

val—--;

b g

STATIC MEMBERS

One For All

e As students are
created we want

them to have unique
IDs

* How can we
accomplish this?

class USCStudent {

public:
USCStudent (string n) : name (n)
{ id = ; /) 2227
}

private:
string name;
int id;

}

int main ()

{
// should each have unique IDs
USCStudent sl ("Tommy") ;
USCStudent s2("Jill");

- USCViterbi @
One For All

* Can we just make a slass Uscotudent |
counter data member of sEestucnt (ectae o) 5 wous(al
the USCStudent class? S

e What's wrong with this? ring o

int id;

int main ()

{
USCStudent sl ("Tommy"); // id
USCStudent s2("Jill"); // id

i, TS(“Viterbi (=

One For All

* It's not something that we can do class USCStudent {
from w/in an instance public: |
USCStudent (string n) : name (n)
— A student doesn't assign { id = id cntr++;)
themselves an ID, they are told
) private:
their ID static int 1d cntr;
 Sometimes there are functions or string name;
int id;
data members that make sense to }

be part of a class but are shared

aﬁNDngStaHinstances // initialization of static member

int USCStudent::id cntr = 1;
— The variable or function doesn't
int main ()

depend on the instance of the {
object, but just the object in USCStudent sl ("Tommy™); // id = 1
general UsCStudent s2("Jill"); // id = 2

— We can make these 'static'
members which means one
definition shared by all instances }

i, TS(“Viterbi

School of Engineering

Static Data Members

* A'static' data memberis a class USCStudent {
] . public:
single variable that all static int id cntr;

USCStudent (string n) : name (n)
{ 1d = id cntr++; }

instances of the class share
e (Can think of it as belonging

private:
to the class and not each static int id cntr;
. string name;
instance int id;

}
* Declare with keyword 'static'

// 1nitialization of static member

* |nitialize outside the class in int USCStudent::id cntr = 1;

a .cpp (can't be in a header) int main ()

ith {
— Precede name wit USCStudent sl ("Tommy"); // id

className:: UsCStudent s2("Jill"™); // id

i, TS(“Viterbi -«

School of Engineering

Another Example

All US Citizens share the same
president, though it changes
over time

Rather than wasting memory
for each citizen to store a
pointer to the president, we
can make it static

However, private static
members can't be accessed
from outside functions

For this we can use a static
member functions

class USCitizen({
public:
USCitizen () ;

private:
static President* pres;
string name;
int ssn;

}

int main ()
{
USCitizen cl;
USCitizen c2;
President* curr = new President;

// won't compile..pres is private
USCitizen::pres = curr;

I (S C Viterbi (22
Static Member Functions

Static member functions do tasks
at a class level and can't access
data members (since they don't
belong to an instance)

Call them by preceding with
'className::'

Use them to do common tasks for
the class that don't require access
to an instance's data members

— Static functions could really just be
globally scoped functions but if they
are really serving a class' needs it
makes sense to group them with the
class

School of Engineering

class USCitizen({
public:
USCitizen () ;
static void setPresident (President* p)

{ pres = p; }

private:
static President* pres;
string name;
int ssn;

}

int main ()
{
USCitizen cl;
USCitizen c2;
President* curr = new President;
USCitizen::setPresident (curr) ;

President* next = new President;
USCitizen: :setPresident (next) ;

It's an object, it's a function...it's both rolled into one!

DESIGN PATTERNS AND PRINCIPLES

i, TS(“Viterbi

School of Engineering
C I .

* Coupling refers to how much components depend on each other's
implementation details (i.e. how much work it is to remove one
component and drop in a new implementation of it)

— Placing a new battery in your car vs. a new engine
— Adding a USB device vs. a new processor to your laptop

* 0O Design seeks to reduce coupling (i.e. loose coupling) as much
as possible

— If you need to know or depend on the specific implementation of another
class to write your current code, you are tightly coupled...BAD!!!!

— Code should be designed so modification of one component/class does not
require modification and unit-testing of other components

e Just unit-test the new code and test the overall system

i, TS(“Viterbi

School of Engineering

Design Principles

* Let the design dictate the details as much as possible rather than the
details dictate the design

Top-down design

A car designer shouldn't say, "It would be a lot easier to make
anti-lock brakes if the driver would just pulse the brake pedal 30 times a
second"

* Open-Close Principle

Classes should be open to extension but closed to modification (After initial
design and testing that is)

* To alter behavior and functionality, inheritance should be used
* Base classes should be designed with that in mind (i.e. extensible)
Extend and change behavior by allocating different (derived) objects at
creation and passing them in (via the abstract base class pointer) to an object
* Did you use this idea during the semester?

The client has programmed to an interface and thus doesn't need to change
(is decoupled)

i, TS(“Viterbi

School of Engineering

Re-Factoring
o f(x)=axy+ bxy+cy
— How would you factor this?
— f(x) = y*(x*(a+b)+c)
— We pull or lift the common term out leaving just what is unique to
each term
* During design implementation we often need to refactor our
code which may include
— Extracting a common sequence of code into a function

— Extracting a base class when you see many classes with a common
interface

— Replacing if..else statements based on the "type" of thing with
polymorphic classes

— ...and many more
— http://sourcemaking.com/

http://sourcemaking.com/

How to design effective class hierarchies with low coupling

SPECIFIC DESIGN PATTERNS

e — 5 Viterbi
Design Patterns

« Common software practices to create modular code
— Often using inheritance and polymorphism

* Researches studied software development processes and actual code to see
if there were common patterns that were often used
— Most well-known study resulted in a book by four authors affectionately known
as the "Gang of Four" (or GoF)

* Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides

* Creational Patterns

— Singleton, Factory Method, Abstract Factory, Builder, Prototype
e Structural Patterns

— Adapter, Facade, Decorator, Bridge, Composite, Flyweight, Proxy
* Behavioral Patterns

— Iterator, Mediator, Chain of Responsibility, Command, State, Memento, Observer,
Template Method, Strategy, Visitor, Interpreter

e USCVlterb1 @

School of Engine

Understanding UML Relationships

 UML Relationships

— http://wiki.msvincognito.nl/Study/Bachelor/Year 2/Object
Oriented Modelling/Summary/Object-
Oriented Design Process

— http://www.cs.sjsu.edu/~drobot/cs146/UMLDiagrams.htm

* Design Patterns
— Strategy
— Factory Method
— Template Method
— Observer

http://wiki.msvincognito.nl/Study/Bachelor/Year_2/Object_Oriented_Modelling/Summary/Object-Oriented_Design_Process
http://www.cs.sjsu.edu/~drobot/cs146/UMLDiagrams.htm

Ilterator

* Decouples organization of data in a collection
from the client who wants to iterate over the
data

— Data could be in a BST, linked list, or array

— Client just needs to...
 Allocate an iterator [it = collection.begin()]
» Dereferences the iterator to access data [*it]
* Increment/decrement the iterator [++it]

- 00000000 USCViterbi @
Strategy

e Abstracting interface to allow alternative Ep— —
approaches et i — |

A

* Fairly classic polymorphism idea

* In avideo game the Al may take different
. Concrete Concrete
strategies ObjectA ObjectB

— Decouples Al logic from how moves are
chosen and provides for alternative
approaches to determine what move to
make AL

+ makeMove
- MoveBehavior* if —> ()

* Recall "Shapes" exercise in class Y

MoveBehavior

— Program that dealt with abstract shape

class rather than concrete rectangles,

circles, etc. Aggres§lve Rand(?m
Behavior Behavior

— The program could now deal with any new
shape provided it fit the interface

I (/S C Viterbi (2

School of Engineering

Your Search Engine

Think about your class project and
where you might be able to use the

strategy pattern
AND, OR, Normal Search

client

| - SearchMode* if

SearchMode

+ search ()

A

ANDSearch ORSearch

SingleSearch

string searchType;
string searchWords;

cin >> sType;
SearchMode* s;
if (sType == "AND") {
s = new ANDSearch;
}
else if(sType == "OR")
{
s = new ORSearch;
}
else {
s = new SingleSearch;

}

getline(cin, searchWords);
s—>search (searchWords) ;

Client

- 00000000 USCVlterbl@
Factory Pattern

e A function, class, or static function of a class used to abstract
creation

e Rather than making your client construct objects (via 'new’,
etc.), abstract that functionality so that it can be easily extended
without affecting the client

-» Item* 1 = factory.makeltem (type) :

Client

<< code >>
Factory é‘ Item

+ makeItem/()

makeItem (int type) Concrete Concrete
{ ItemA ItemB
if (type==A)
return new ItemA;
else if(type == B)
return new ItemB;

i, TS(“Viterbi

School of Engineering

Factory Example

* We can pair up our search strategy objects with a factory to
allow for easy creation of new approaches

Factory Client
class SearchFactory/{ string searchType;
public: string searchWords;
static SearchMode* create(string type)
{ cin >> sType;
if (type == "AND") SearchMode* s = SearchFactory::create(sType);
return new ANDSearch;
else if (searchType == "OR") getline(cin, searchWords):;
return new ORSearch; s—>search (searchWords) ;
else

return new SingleSearch;

Search Interface

Concrete Search

class SearchMode {
public:
virtual search(set<string> searchWords)

class AndSearchMode
{
public:
search (set<string> searchWords) {
// perform AND search approach
}

: public SearchMode

i, TS(“Viterbi

School of Engineering

Factory Example

* The benefitis now | can add new search modes without the client

changing or even recompiling

class SearchFactory({
public:
static SearchMode* create(string type)

{

if (type == "AND")
return new ANDSearch;

else if (searchType == "OR")
return new ORSearch;

else if (searchType == "XOR")
return new XORSearch;

else

return new SingleSearch;

) 5

string searchType;
string searchWords;

cin >> sType;
SearchMode* s = SearchFactory::create(sType);

getline (cin, searchWords);
s—>search (searchWords) ;

class XORSearchMode : public SearchMode
{
public:
search (set<string> searchWords) ;

i, TS(“Viterbi

School of Engineering

On Your Own

* Design Patterns
— Observer
— Proxy
— Template Method
— Adapter

* (Questions to try to answer
— How does it make the design more modular (loosely coupled)
— When/why would you use the pattern

* Resources

— http://sourcemaking.com/

— http://www.vincehuston.org/dp/

— http://www.oodesign.com/

http://sourcemaking.com/
http://www.vincehuston.org/dp/
http://www.oodesign.com/

- 00000000 USCViterbi
Templates vs. Inheritance

Inheritance and dynamic-binding provide run-time polymorphism

— Example:

e Strategy *s; ...; s->search(words);

C++ templates provide compile-time inheritance

class ANDSearch {
public:

set<WebPage*> search (vector<string>& words);

) &

class ORSearch {

) &

template <typename S>
set<WebPage*> doSearch (S* search mode,
vector<string>& words)

{

return search mode->search (words);

}

ANDSearch mode;
Set<WebPage*> results = doSearch(mode, ...);

School of Engineering

Templates vs. Inheritance

* Benefit of inheritance and dynamic-binding is
its ability to store different-type but related
objects in a single container
— Example:

e forEach shape s in Shapes { s->getArea(); }
— Benefit: Different objects in one collection

* Benefit of templates is less run-time overhead
(faster) due to compiler ability to optimize
since it knows the specific type of object used

