
1

CSCI 104
C++11 Features
Design Patterns

Mark Redekopp

2

SMART POINTERS

Plugging the leaks

3

C++11, 14, 17

• Most of what we have taught you in this class are language
features that were part of C++ since the C++98 standard

• New, helpful features have been added in C++11, 14, and now
17 standards
– Beware: compilers are often a bit slow to implement the standards so

check the documentation and compiler version

– You often must turn on special compile flags to tell the compiler to
look for C++11 features, etc.

• For g++ you would need to add: -std=c++11 or -std=c++0x

• Many of the features in the these revisions to C++ are
originally part of 3rd party libraries such as the Boost library

4

Pointers or Objects? Both!
• In C++, the dereference

operator (*) should appear
before…
– A pointer to an object

– An actual object

• "Good" answer is
– A Pointer to an object

• "Technically correct" answer…
– EITHER!!!!

• Due to operator overloading we
can make an object behave as a
pointer
– Overload operator *, &, ->, ++,

etc.

class Thing

{

};

int main()

{

Thing t1;

Thing *ptr = &t1

// Which is legal?

*t1;

*ptr;

}

5

A "Dumb" Pointer Class
• We can make a class

operate like a pointer

• Use template parameter as
the type of data the
pointer will point to

• Keep an actual pointer as
private data

• Overload operators

• This particular class doesn't
really do anything useful

– It just does what a normal
pointer would do

template <typename T>

class dumb_ptr

{ private:

T* p_;

public:

dumb_ptr(T* p) : p_(p) { }

T& operator*() { return *p_; }

T* operator->() { return p_; }

dumb_ptr& operator++() // pre-inc

{ ++p_; return *this; }

};

int main()

{

int data[10];

dumb_ptr<int> ptr(data);

for(int i=0; i < 10; i++){

cout << *ptr; ++ptr;

}

}

6

A "Useful" Pointer Class
• I can add automatic

memory deallocation
so that when my local
"unique_ptr" goes
out of scope, it will
automatically delete
what it is pointing at

template <typename T>

class unique_ptr

{ private:

T* p_;

public:

unique_ptr(T* p) : p_(p) { }

~unique_ptr() { delete p_; }

T& operator*() { return *p_; }

T* operator->() { return p_; }

unique_ptr& operator++() // pre-inc

{ ++p_; return *this; }

};

int main()

{

unique_ptr<Obj> ptr(new Obj);

// ...

ptr->all_words()

// Do I need to delete Obj?

}

7

A "Useful" Pointer Class
• What happens when

I make a copy?

• Can we make it
impossible for
anyone to make a
copy of an object?

– Remember C++
provides a default
"shallow" copy
constructor and
assignment operator

template <typename T>

class unique_ptr

{ private:

T* p_;

public:

unique_ptr(T* p) : p_(p) { }

~unique_ptr() { delete p_; }

T& operator*() { return *p_; }

T* operator->() { return p_; }

unique_ptr& operator++() // pre-inc

{ ++p_; return *this; }

};

int main()

{

unique_ptr<Obj> ptr(new Obj);

unique_ptr<Obj> ptr2 = ptr;

// ...

ptr2->all_words();

// Does anything bad happen here?

}

8

Hiding Functions
• Can we make it impossible for

anyone to make a copy of an
object?

– Remember C++ provides a default
"shallow" copy constructor and
assignment operator

• Yes!!

– Put the copy constructor and
operator= declaration in the
private section…now the
implementations that the compiler
provides will be private (not
accessible)

• You can use this technique to hide
"default constructors" or other
functions

template <typename T>

class unique_ptr

{ private:

T* p_;

public:

unique_ptr(T* p) : p_(p) { }

~unique_ptr() { delete p_; }

T& operator*() { return *p_; }

T* operator->() { return p_; }

unique_ptr& operator++() // pre-inc

{ ++p_; return *this; }

private:

unique_ptr(const UsefultPtr& n);

unique_ptr& operator=(const

UsefultPtr& n);

};

int main()

{

unique_ptr<Obj> ptr(new Obj);

unique_ptr<Obj> ptr2 = ptr;

// Try to compile this?

}

9

A "shared" Pointer Class
• Could we write a pointer class where

we can make copies that somehow
"know" to only delete the underlying
object when the last copy of the smart
pointer dies?

• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

template <typename T>

class shared_ptr

{ public:

shared_ptr(T* p);

~shared_ptr();

T& operator*();

shared_ptr& operator++();

}

shared_ptr<Obj> f1()

{

shared_ptr<Obj> ptr(new Obj);

cout << "In F1\n" << *ptr << endl;

return ptr;

}

int main()

{

shared_ptr<Obj> p2 = f1();

cout << "Back in main\n" << *p2;

cout << endl;

return 0;

}

10

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– Constructors/copies increment this
count

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

}

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

}

}

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 1

Pointer
Actual

Object

11

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

}

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

}

}

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 2

Pointer
Actual

Object

shared_ptr p2

ControlObjPtr

12

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

}

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

}

}

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 3

Pointer
Actual

Object

shared_ptr p2

ControlObjPtr

shared_ptr p3

ControlObjPtr

13

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

}

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

} // p3 dies

}

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 2

Pointer
Actual

Object

shared_ptr p2

ControlObjPtr

14

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

}

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

} // p3 dies

} // p2 dies

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 1

Pointer
Actual

Object

15

A "shared" Pointer Class
• Basic idea

– shared_ptr class will keep a count of
how many copies are alive

– shared_ptr destructor simply
decrements this count

• If count is 0, delete the object

int main()

{

shared_ptr<Obj> p1(new Obj);

doit(p1);

return 0;

} // p1 dies

void doit(shared_ptr<Obj> p2)

{

if(...){

shared_ptr<Obj> p3 = p2;

} // p3 dies

} // p2 diesControlObj

RefCnt: 0

Pointer
Actual

Object

16

C++ shared_ptr
• C++ std::shared_ptr /

boost::shared_ptr

– Boost is a best-in-class C++ library of
code you can download and use with
all kinds of useful classes

• Can only be used to point at dynamically
allocated data (since it is going to call
delete on the pointer when the reference
count reaches 0)

• Compile in g++ using '-std=c++11' since
this class is part of the new standard
library version

#include <memory>

#include "obj.h"

using namespace std;

shared_ptr<Obj> f1()

{

shared_ptr<Obj> ptr(new Obj);

// ...

cout << "In F1\n" << *ptr << endl;

return ptr;

}

int main()

{

shared_ptr<Obj> p2 = f1();

cout << "Back in main\n" << *p2;

cout << endl;

return 0;

}

$ g++ -std=c++11 shared_ptr1.cpp obj.cpp

17

C++ shared_ptr
• Using shared_ptr's you can put

pointers into container objects
(vectors, maps, etc) and not have
to worry about iterating through
and deleting them

• When myvec goes out of scope, it
deallocates what it is storing
(shared_ptr's), but that causes the
shared_ptr destructor to
automatically delete the Objs

• Think about your project
homeworks…this might be (have
been) nice

#include <memory>

#include <vector>

#include "obj.h"

using namespace std;

int main()

{

vector<shared_ptr<Obj> > myvec;

shared_ptr<Obj> p1(new Obj);

myvec.push_back(p1);

shared_ptr<Obj> p2(new Obj);

myvec.push_back(p2);

return 0;

// myvec goes out of scope...

}

$ g++ -std=c++11 shared_ptr1.cpp obj.cpp

18

shared_ptr vs. unique_ptr

• Both will perform automatic deallocation

• Unique_ptr only allows one pointer to the object at a time

– Copy constructor and assignment operator are hidden as private functions

– Object is deleted when pointer goes out of scope

– Does allow "move" operation

• If interested read more about this on your own

• C++11 defines "move" constructors (not just copy constructors) and "rvalue
references" etc.

• Shared_ptr allow any number of copies of the pointer

– Object is deleted when last pointer copy goes out of scope

• Note: Many languages like python, Java, C#, etc. all use this idea of
reference counting and automatic deallocation (aka garbage collection) to
remove the burden of memory management from the programmer

19

RAII
Class Obj{

int val;

public:

...

void f1()

{

val++;

if() {

return;

}

else {

}

val--;

};

20

STATIC MEMBERS

21

One For All
• As students are

created we want
them to have unique
IDs

• How can we
accomplish this?

class USCStudent {

public:

USCStudent(string n) : name(n)

{ id = _________ ; // ????

}

private:

string name;

int id;

}

int main()

{

// should each have unique IDs

USCStudent s1("Tommy");

USCStudent s2("Jill");

}

22

One For All
• Can we just make a

counter data member of
the USCStudent class?

• What's wrong with this?

class USCStudent {

public:

USCStudent(string n) : name(n)

{ id = id_cntr++; }

private:

int id_cntr;

string name;

int id;

}

int main()

{

USCStudent s1("Tommy"); // id = 1

USCStudent s2("Jill"); // id = 2

}

23

One For All
• It's not something that we can do

from w/in an instance

– A student doesn't assign
themselves an ID, they are told
their ID

• Sometimes there are functions or
data members that make sense to
be part of a class but are shared
amongst all instances

– The variable or function doesn't
depend on the instance of the
object, but just the object in
general

– We can make these 'static'
members which means one
definition shared by all instances

class USCStudent {

public:

USCStudent(string n) : name(n)

{ id = id_cntr++; }

private:

static int id_cntr;

string name;

int id;

}

// initialization of static member

int USCStudent::id_cntr = 1;

int main()

{

USCStudent s1("Tommy"); // id = 1

USCStudent s2("Jill"); // id = 2

}

24

Static Data Members
• A 'static' data member is a

single variable that all
instances of the class share

• Can think of it as belonging
to the class and not each
instance

• Declare with keyword 'static'

• Initialize outside the class in
a .cpp (can't be in a header)
– Precede name with

className::

class USCStudent {

public:

static int id_cntr;

USCStudent(string n) : name(n)

{ id = id_cntr++; }

private:

static int id_cntr;

string name;

int id;

}

// initialization of static member

int USCStudent::id_cntr = 1;

int main()

{

USCStudent s1("Tommy"); // id = 1

USCStudent s2("Jill"); // id = 2

}

25

Another Example
• All US Citizens share the same

president, though it changes
over time

• Rather than wasting memory
for each citizen to store a
pointer to the president, we
can make it static

• However, private static
members can't be accessed
from outside functions

• For this we can use a static
member functions

class USCitizen{

public:

USCitizen();

private:

static President* pres;

string name;

int ssn;

}

int main()

{

USCitizen c1;

USCitizen c2;

President* curr = new President;

// won't compile..pres is private

USCitizen::pres = curr;

}

26

Static Member Functions
• Static member functions do tasks

at a class level and can't access
data members (since they don't
belong to an instance)

• Call them by preceding with
'className::'

• Use them to do common tasks for
the class that don't require access
to an instance's data members
– Static functions could really just be

globally scoped functions but if they
are really serving a class' needs it
makes sense to group them with the
class

class USCitizen{

public:

USCitizen();

static void setPresident(President* p)

{ pres = p; }

private:

static President* pres;

string name;

int ssn;

}

int main()

{

USCitizen c1;

USCitizen c2;

President* curr = new President;

USCitizen::setPresident(curr);

...

President* next = new President;

USCitizen::setPresident(next);

}

27

DESIGN PATTERNS AND PRINCIPLES

It's an object, it's a function…it's both rolled into one!

28

Coupling
• Coupling refers to how much components depend on each other's

implementation details (i.e. how much work it is to remove one
component and drop in a new implementation of it)
– Placing a new battery in your car vs. a new engine

– Adding a USB device vs. a new processor to your laptop

• OO Design seeks to reduce coupling (i.e. loose coupling) as much
as possible
– If you need to know or depend on the specific implementation of another

class to write your current code, you are tightly coupled…BAD!!!!

– Code should be designed so modification of one component/class does not
require modification and unit-testing of other components

• Just unit-test the new code and test the overall system

29

Design Principles
• Let the design dictate the details as much as possible rather than the

details dictate the design

– Top-down design

– A car designer shouldn't say, "It would be a lot easier to make
anti-lock brakes if the driver would just pulse the brake pedal 30 times a
second"

• Open-Close Principle

– Classes should be open to extension but closed to modification (After initial
design and testing that is)

• To alter behavior and functionality, inheritance should be used

• Base classes should be designed with that in mind (i.e. extensible)

– Extend and change behavior by allocating different (derived) objects at
creation and passing them in (via the abstract base class pointer) to an object

• Did you use this idea during the semester?

– The client has programmed to an interface and thus doesn't need to change
(is decoupled)

30

Re-Factoring
• f(x) = axy + bxy + cy

– How would you factor this?

– f(x) = y*(x*(a+b)+c)

– We pull or lift the common term out leaving just what is unique to
each term

• During design implementation we often need to refactor our
code which may include
– Extracting a common sequence of code into a function

– Extracting a base class when you see many classes with a common
interface

– Replacing if..else statements based on the "type" of thing with
polymorphic classes

– …and many more

– http://sourcemaking.com/

http://sourcemaking.com/

31

SPECIFIC DESIGN PATTERNS

How to design effective class hierarchies with low coupling

32

Design Patterns
• Common software practices to create modular code

– Often using inheritance and polymorphism

• Researches studied software development processes and actual code to see
if there were common patterns that were often used

– Most well-known study resulted in a book by four authors affectionately known
as the "Gang of Four" (or GoF)

• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides

• Creational Patterns

– Singleton, Factory Method, Abstract Factory, Builder, Prototype

• Structural Patterns

– Adapter, Façade, Decorator, Bridge, Composite, Flyweight, Proxy

• Behavioral Patterns

– Iterator, Mediator, Chain of Responsibility, Command, State, Memento, Observer,
Template Method, Strategy, Visitor, Interpreter

33

Understanding UML Relationships

• UML Relationships

– http://wiki.msvincognito.nl/Study/Bachelor/Year_2/Object
_Oriented_Modelling/Summary/Object-
Oriented_Design_Process

– http://www.cs.sjsu.edu/~drobot/cs146/UMLDiagrams.htm

• Design Patterns

– Strategy

– Factory Method

– Template Method

– Observer

http://wiki.msvincognito.nl/Study/Bachelor/Year_2/Object_Oriented_Modelling/Summary/Object-Oriented_Design_Process
http://www.cs.sjsu.edu/~drobot/cs146/UMLDiagrams.htm

34

Iterator

• Decouples organization of data in a collection
from the client who wants to iterate over the
data

– Data could be in a BST, linked list, or array

– Client just needs to…

• Allocate an iterator [it = collection.begin()]

• Dereferences the iterator to access data [*it]

• Increment/decrement the iterator [++it]

35

Strategy
• Abstracting interface to allow alternative

approaches

• Fairly classic polymorphism idea

• In a video game the AI may take different
strategies

– Decouples AI logic from how moves are
chosen and provides for alternative
approaches to determine what move to
make

• Recall "Shapes" exercise in class

– Program that dealt with abstract shape
class rather than concrete rectangles,
circles, etc.

– The program could now deal with any new
shape provided it fit the interface

Client Interface

Concrete

ObjectA

Concrete

ObjectB

- Interface* if

AI
+ makeMove()

Aggressive

Behavior

Random

Behavior

- MoveBehavior* if

MoveBehavior

36

Your Search Engine
• Think about your class project and

where you might be able to use the
strategy pattern

• AND, OR, Normal Search

client

+ search()

ANDSearch ORSearch

- SearchMode* if

SearchMode

string searchType;

string searchWords;

cin >> sType;

SearchMode* s;

if(sType == "AND"){

s = new ANDSearch;

}

else if(sType == "OR")

{

s = new ORSearch;

}

else {

s = new SingleSearch;

}

getline(cin, searchWords);

s->search(searchWords);

SingleSearch

Client

37

Factory Pattern
• A function, class, or static function of a class used to abstract

creation

• Rather than making your client construct objects (via 'new',
etc.), abstract that functionality so that it can be easily extended
without affecting the client

Client

Item

Concrete

ItemA

Concrete

ItemB

<< code >>

Factory

+ makeItem()

makeItem(int type)

{

if(type==A)

return new ItemA;

else if(type == B)

return new ItemB;

}

Item* i = factory.makeItem(type):

38

Factory Example
• We can pair up our search strategy objects with a factory to

allow for easy creation of new approaches

class SearchFactory{

public:

static SearchMode* create(string type)

{

if(type == "AND")

return new ANDSearch;

else if(searchType == "OR")

return new ORSearch;

else

return new SingleSearch;

}

};

string searchType;

string searchWords;

cin >> sType;

SearchMode* s = SearchFactory::create(sType);

getline(cin, searchWords);

s->search(searchWords);

Concrete SearchSearch Interface
class SearchMode {

public:

virtual search(set<string> searchWords) = 0;

...

};

class AndSearchMode : public SearchMode

{

public:

search(set<string> searchWords){

// perform AND search approach

}

...

};

ClientFactory

39

Factory Example

• The benefit is now I can add new search modes without the client
changing or even recompiling

class SearchFactory{

public:

static SearchMode* create(string type)

{

if(type == "AND")

return new ANDSearch;

else if(searchType == "OR")

return new ORSearch;

else if(searchType == "XOR")

return new XORSearch;

else

return new SingleSearch;

}

};

string searchType;

string searchWords;

cin >> sType;

SearchMode* s = SearchFactory::create(sType);

getline(cin, searchWords);

s->search(searchWords);

class XORSearchMode : public SearchMode

{

public:

search(set<string> searchWords);

...

};

40

On Your Own

• Design Patterns
– Observer

– Proxy

– Template Method

– Adapter

• Questions to try to answer
– How does it make the design more modular (loosely coupled)

– When/why would you use the pattern

• Resources
– http://sourcemaking.com/

– http://www.vincehuston.org/dp/

– http://www.oodesign.com/

http://sourcemaking.com/
http://www.vincehuston.org/dp/
http://www.oodesign.com/

41

Templates vs. Inheritance

• Inheritance and dynamic-binding provide run-time polymorphism

– Example:

• Strategy *s; …; s->search(words);

• C++ templates provide compile-time inheritance

class ANDSearch {

public:

set<WebPage*> search(vector<string>& words);

};

class ORSearch {

...

};

template <typename S>

set<WebPage*> doSearch(S* search_mode,

vector<string>& words)

{

return search_mode->search(words);

}

...

ANDSearch mode;

Set<WebPage*> results = doSearch(mode, ...);

42

Templates vs. Inheritance

• Benefit of inheritance and dynamic-binding is
its ability to store different-type but related
objects in a single container

– Example:

• forEach shape s in Shapes { s->getArea(); }

– Benefit: Different objects in one collection

• Benefit of templates is less run-time overhead
(faster) due to compiler ability to optimize
since it knows the specific type of object used

