CSCI 104
Log Structured Merge Trees

Mark Redekopp

Series Summation Review

e letn=1+2+4+.. +2k=Y% 2! Whatisn?

— n=2k11

* Whatis log,(1) + log,(2) + log,(4) + log,(8)+...+ log,(2¥)

=0+1+2+3+..+k=YFK i
— 0(k?)

Arithmetic series:

Ny i="E0 = g(n?)

Geometric series

n . cttl_q
E ct = =6(c")

Merge Trees Overview

e Consider a list of (pointers
to) arrays with the
following constraints

— Each array is sorted though

no ordering constraints
exist between arrays

— The array at list index k is
of exactly size 2X or empty

An array at list
location k can be of
size 2% or empty

0],/\‘2 3 4
> »NULL—> > >
v v v v v
5 2 ® 0 3
4 1
6

20
Note: These are
the keys for a set

(or key,value pairs
for a map)

=8

Size

51

16 if non-empty

Size =

i, TS(“Viterbi 9

Merge Trees Size

° Defl ne... Iocggo?rs)(/::rg |LS; of
. . ize 2
— n as the # of keys in the entire S'ZNW
structure ° : TR - : . R
— k as the size of the list (i.e. positions ! ! v v v
in the list) : j A\ (1) - _
* Givenk, whatis n? o | |3
— letn=1+2+4+..+2k=Yk 2, 12) & =
. 14 —
What is n? 5 &
* n=2k+1 2 ;
51

Note: These are
the keys for a set
(or key,value pairs

for a map)

Merge Trees Find Operation

* To find an element (or check if it
exists)

* Iterate through the arrays in order
(i.e. start with array at list position
0, then the array at list position 1,
etc.)

— In each array perform a binary search

* If you reach the end of the list of
arrays without finding the value it
does not exist in the set/map

An array at list
location k can be of
size 2% or empty

0],/\‘2 3

A 4
A 4

A 4

NULL

A 4

A 4

v

l—
BN [

!
0
© &
6
9

20
Note: These are
the keys for a set

(or key,value pairs
for a map)

=8

Size

51

16 if non-empty

Size =

- USCViterbi @
Find Runtime

« What s the worst case runtime of oanarray atist
fl N d ? size 2X or empty

A 4
A 4

A 4
A 4
A 4

— When the item is not present which

NULL

requires, a binary search is performed ¢ v v v v
on each list > j ® 2 > _
* T(n)=log,(1) + log,(2) + ... log,(2¥) o | |5
. _ vk 12| g
=0+1+2+..+k=)7_ql TR
= O(kz) 18 &
20 n
* Butlet's put that in terms of the 51
number of elements in the Note: These are
structure (i.e. n) (orkeyvale pars

— Recall k = log,(n)-1
* So find is O(log,(n)?)

Improving Find's Runtime

* While we might be okay with [log(n)]?, how
might we improve the find runtime in the
general case?

— Hint: | would be willing to pay O(1) to know if a
key is not in a particular array without having to
perform find

* A Bloom filter could be maintained alongside
each array and allow us to skip performing a
binary search in an array

i, TS(“Viterbi

School of Engineering

Insertion Algorithm

An array at list location k can be of
size 2k or empty

e Letjbe the smallestinteger such Limet@ | /N7

Y

Y
Y

that array j is empty (first empty I e
slot in the list of arrays) 5

v
0
©
6
9

BN [

* Aninsertion will cause

=8

— Location j's array to become filled 12

Size

— Locations O through j-l to become Before insertion 14
empty ”

0 1 2 3

[
»

A 4
A 4
A 4

& &

After insertion 12

OB DN €
© ||~ | O [«

8

Size

P USCViterbi
Insertion Algorithm

e Starting at array O, iteratively merge the previously merged
array with the next, stopping when an empty location is

encountered
insert(19)
0 1 2 0 1 2 0 1 2 3
> »NULL—> > »INULL—> . ¥ ... ~>NULL—> >
Y v v v v v v v
1 e | O 6 o
Y) 4 5 4 4 1
Merge 19 5 6
(o]
I 19 9| n
Merge 12| &
3
_ _ 14
List O is full so merge two List 1 is full so merge two 18
arrays of size 1 arrays of size 2
20

i, TS(“Viterbi

Insert Examples

School of Engineering

0 1 2
insert(4) > . »NULL
Cost=1/ ¢
Stop @ O 4

0 1 2
insert(2) > .. »NULL
Cost=2/ ¢
Stop@ 1 2

4

0 1 2
insert(5) » ... —NULL
Cost=1/ ¢ ¢
Stop @ 0 5 2

0 1 2
insert(19) . ! ... NULL
Cost=4/ ¢
Stop @ 2 2

4
5
19

0 1 2
insert(8) > »NULL—>
Cost=1/ ¢ ¢
Stop @ O 8 2

4
5
19

0 1 2
insert(7) > »NULL—>
Cost=2/ ¢ ¢
Stop@ 1 7 2

8 4
5
19

0 1 2
insert(12) > »NULL—>
Cost=1/ ¢ ¢ ¢

Stop@ 0 12 7 2
8 4

5

19

i, TS(“Viterbi Cw

School of Engineering

Insertion Runtime: First Look

0 1 2
o 3 insert(4) . ¥ ... PNULL—>
Best case: 1
— First list is empty and allows direct insertion in 4
0O(1) 0 1 2
e \Worst case? insert(2) > > NULLF—>
v
— All list entries (arrays) are full so we have to merge é 2
at each location 4
— In this case we will end with an array of size n=2k 0 1 2
in position k SisErE) I g i "R
— Also recall merging two arrays of size m is ©(m) 5 2 é
— So the total cost of all the merges is 4
1+2+4+8+..+n=2*%n-1=0(n)=0(2 . . ,
e Butif the worst case occurs how soon can it insert(19) | | .. |+ . =NLiLL—>
occur again? é é 5
— It seems the costs vary from one insert to the next 4

— This is a good place to use amortized analysis

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]JSCW@Eﬂﬁ<::>

Total Cost for N insertions

ing

 Total cost of n=16 insertions:
— 1+2+1+4+1+2+1+8+1+2+1+4+1+2+1+16

e =1*n/2 +2*n/4 + 4*n/8 + 8*n/16 + n

e =n/2 +n/2+n/2+n/2 +n

* =n/2*log,(n) + n

 Amortized cost = Total cost / n operations
—log,(n)/2 + 1 = O(log,(n))

i, TS(“Viterbi -

School of Engineering

Amortized Analysis of Insert

We have said when you end (place an array) in
position k you have to do O(2%*1) work for all the
merges
How often do we end in position k
— The 0% position will be free with probability %
(p=0.5)
— We will stop at the 15t position with probability '
(p=0.25)

— We will stop at the 2" position with probability 1/8
(p=0.125)

— We will stop at the k" position with probability 1/2k
= 2'k
So we pay 2¥*1 with probability 2-(k+1)
Suppose we have n items in the structure (i.e. max

k is log,n) what is the expected cost of inserting a
new element

1 - 1
kozggn) 2k+12 (k+1) — Zkozgén) 1= log(n)

0 1 2
insert(4) .. ¥ ... ™ NULL—
Cost=1/ ¢ é é
Stop@ 0 4

0 1 2
insert(2) . > ... —»INULL—
Cost=2/ é ¢ é
Stop @ 1 2

4

0 1 2
insert(5) » ... —»NULL—
Cost=1/ ¢ i é
Stop @ 0 5 2

4

0 1 2
insert(19) .. > ... F*NULL—
Cost=4/ é é v
Stop @ 2 2

4
5
19

i, TS(“Viterbi

School of Engineering

Summary

* Variants of log structured merge trees have found popular
usage in industry

— Starting array size might be fairly large (size of memory of a single
server)

— Large arrays (from merging) are stored on disk
* Pros:

— Ease of implementation

— Sequential access of arrays helps lower its constant factors
* QOperations:

— Find =log?(n)

— Insert = Amortized log(n)

— Remove = often not considered/supported

