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Series Summation Review

e letn=1+2+4+.. +2k=Y% 2! Whatisn?

— n=2k11

* Whatis log,(1) + log,(2) + log,(4) + log,(8)+...+ log,(2¥)
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— 0(k?)

Arithmetic series:
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Geometric series
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Merge Trees Overview

e Consider a list of (pointers
to) arrays with the
following constraints

— Each array is sorted though

no ordering constraints
exist between arrays

— The array at list index k is
of exactly size 2X or empty

An array at list
location k can be of
size 2% or empty

0 ],/\‘2 3 4
> »NULL—> > >
v v v v v
5 2 ® 0 3
4 1
6

20
Note: These are
the keys for a set

(or key,value pairs
for a map)

=8

Size

51

16 if non-empty

Size =




i, TS(“Viterbi 9

Merge Trees Size

° Defl ne... Iocggo?rs)(/::rg |LS; of
. . ize 2
— n as the # of keys in the entire S'ZNW
structure ° : TR - : . R
— k as the size of the list (i.e. positions ! ! v v v
in the list) : j A\ (1) - _
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Merge Trees Find Operation

* To find an element (or check if it
exists)

* Iterate through the arrays in order
(i.e. start with array at list position
0, then the array at list position 1,
etc.)

— In each array perform a binary search

* If you reach the end of the list of
arrays without finding the value it
does not exist in the set/map

An array at list
location k can be of
size 2% or empty
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Find Runtime

« What s the worst case runtime of oanarray atist
fl N d ? size 2X or empty
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— When the item is not present which

NULL

requires, a binary search is performed ¢ v v v v
on each list > j ® 2 > _
* T(n)=log,(1) + log,(2) + ... log,(2¥) o | |5
. _ vk 12| g
=0+1+2+..+k=)7_ql TR
= O(kz) 18 &
20 n
* Butlet's put that in terms of the 51
number of elements in the Note: These are
structure (i.e. n) (orkeyvale pars

— Recall k = log,(n)-1
* So find is O(log,(n)?)



Improving Find's Runtime

* While we might be okay with [log(n)]?, how
might we improve the find runtime in the
general case?

— Hint: | would be willing to pay O(1) to know if a
key is not in a particular array without having to
perform find

* A Bloom filter could be maintained alongside
each array and allow us to skip performing a
binary search in an array
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Insertion Algorithm

An array at list location k can be of
size 2k or empty

e Letjbe the smallestinteger such Limet@ | /N7
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— Location j's array to become filled 12

Size

— Locations O through j-l to become Before insertion 14
empty ”

0 1 2 3

[
»

A 4
A 4
A 4

& &

After insertion 12

OB DN €
© ||~ | O [«

8

Size




P USCViterbi
Insertion Algorithm

e Starting at array O, iteratively merge the previously merged
array with the next, stopping when an empty location is

encountered
insert(19)
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List O is full so merge two List 1 is full so merge two 18
arrays of size 1 arrays of size 2
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0 1 2
insert(4) > . »NULL
Cost=1/ ¢
Stop @ O 4

0 1 2
insert(2) > .. »NULL
Cost=2/ ¢
Stop@ 1 2
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0 1 2
insert(5) » ... —NULL
Cost=1/ ¢ ¢
Stop @ 0 5 2

0 1 2
insert(19) . ! ... NULL
Cost=4/ ¢
Stop @ 2 2

4
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insert(7) > »NULL—>
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Stop@ 1 7 2
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Insertion Runtime: First Look

0 1 2
o 3 insert(4) . ¥ ... PNULL—>
Best case: 1
— First list is empty and allows direct insertion in 4
0O(1) 0 1 2
e \Worst case? insert(2) > > NULLF—>
v
— All list entries (arrays) are full so we have to merge é 2
at each location 4
— In this case we will end with an array of size n=2k 0 1 2
in position k SisErE) I g i "R
— Also recall merging two arrays of size m is ©(m) 5 2 é
— So the total cost of all the merges is 4
1+2+4+8+..+n=2*%n-1=0(n)=0(2 . . ,
e Butif the worst case occurs how soon can it insert(19) | | .. |+ . =NLiLL—>
occur again? é é 5
— It seems the costs vary from one insert to the next 4

— This is a good place to use amortized analysis
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Total Cost for N insertions

ing

 Total cost of n=16 insertions:
— 1+2+1+4+1+2+1+8+1+2+1+4+1+2+1+16

e =1*n/2 +2*n/4 + 4*n/8 + 8*n/16 + n

e =n/2 +n/2+n/2+n/2 +n

* =n/2*log,(n) + n

 Amortized cost = Total cost / n operations
—log,(n)/2 + 1 = O(log,(n))
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Amortized Analysis of Insert

We have said when you end (place an array) in
position k you have to do O(2%*1) work for all the
merges
How often do we end in position k
— The 0% position will be free with probability %
(p=0.5)
— We will stop at the 15t position with probability '
(p=0.25)

— We will stop at the 2" position with probability 1/8
(p=0.125)

— We will stop at the k" position with probability 1/2k
= 2'k
So we pay 2¥*1 with probability 2-(k+1)
Suppose we have n items in the structure (i.e. max

k is log,n) what is the expected cost of inserting a
new element

1 - 1
kozggn) 2k+12 (k+1) — Zkozgén) 1= log(n)

0 1 2
insert(4) .. ¥ ... ™ NULL—
Cost=1/ ¢ é é
Stop@ 0 4

0 1 2
insert(2) . > ... —»INULL—
Cost=2/ é ¢ é
Stop @ 1 2

4

0 1 2
insert(5) » ... —»NULL—
Cost=1/ ¢ i é
Stop @ 0 5 2

4

0 1 2
insert(19) .. > ... F*NULL—
Cost=4/ é é v
Stop @ 2 2

4
5
19
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Summary

* Variants of log structured merge trees have found popular
usage in industry

— Starting array size might be fairly large (size of memory of a single
server)

— Large arrays (from merging) are stored on disk
* Pros:

— Ease of implementation

— Sequential access of arrays helps lower its constant factors
* QOperations:

— Find =log?(n)

— Insert = Amortized log(n)

— Remove = often not considered/supported



