

CSCI 104 Log Structured Merge Trees

Mark Redekopp

- Let $n = 1 + 2 + 4 + ... + 2^k = \sum_{i=0}^k 2^i$. What is n? - $n = 2^{k+1}-1$
- What is $\log_2(1) + \log_2(2) + \log_2(4) + \log_2(8) + ... + \log_2(2^k)$ = 0 + 1 + 2 + 3 + ... + k = $\sum_{i=0}^{k} i$ - O(k²) Arithmetic series:

Arithmetic series:

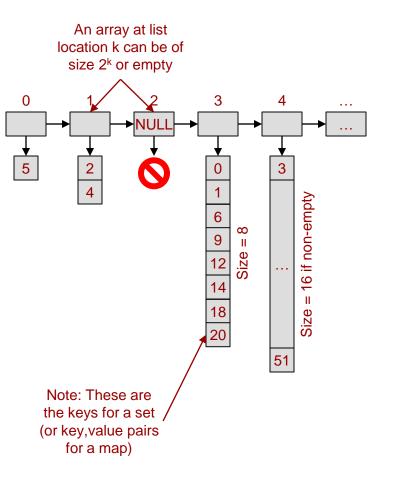
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^{2})$$
Geometric series

$$\sum_{i=1}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1} = \theta(c^{n})$$

2

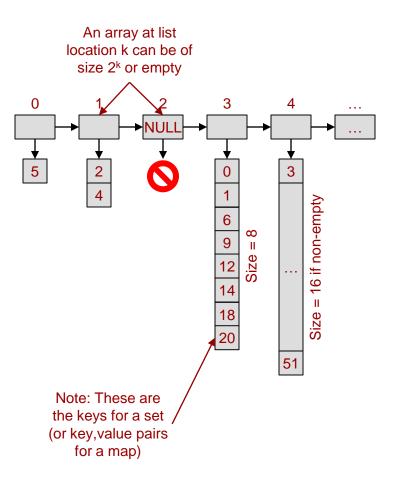
Merge Trees Overview

- Consider a list of (pointers to) arrays with the following constraints
 - Each array is sorted though no ordering constraints exist between arrays
 - The array at list index k is of exactly size 2^k or empty



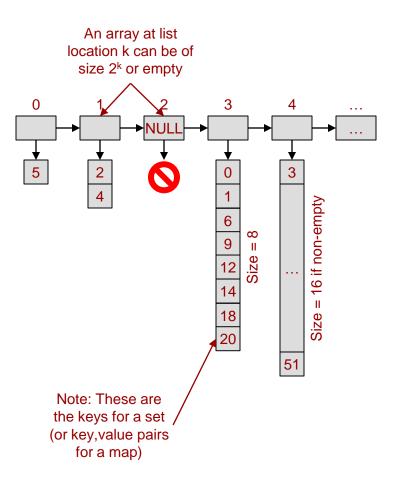
Merge Trees Size

- Define...
 - n as the # of keys in the entire structure
 - k as the size of the list (i.e. positions in the list)
- Given k, what is n?
 - Let n = 1 + 2 + 4 + ... + $2^{k} = \sum_{i=0}^{k} 2^{i}$. What is n?
- n=2^k+1



Merge Trees Find Operation

- To find an element (or check if it exists)
- Iterate through the arrays in order (i.e. start with array at list position 0, then the array at list position 1, etc.)
 - In each array perform a binary search
- If you reach the end of the list of arrays without finding the value it does not exist in the set/map



Find Runtime

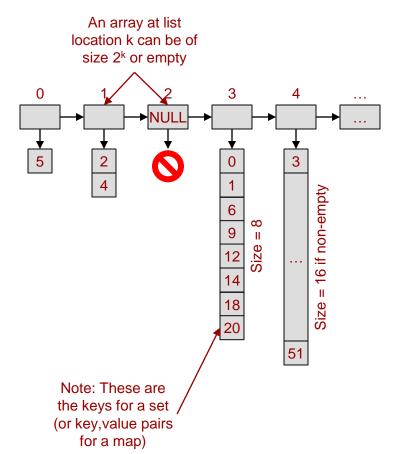
- What is the worst case runtime of find?
 - When the item is not present which requires, a binary search is performed on each list

•
$$T(n) = \log_2(1) + \log_2(2) + ... \log_2(2^k)$$

• = 0 + 1 + 2 + ... + k =
$$\sum_{i=0}^{k} i$$

= O(k²)

- But let's put that in terms of the number of elements in the structure (i.e. n)
 - Recall $k = \log_2(n)-1$
- So find is $O(\log_2(n)^2)$



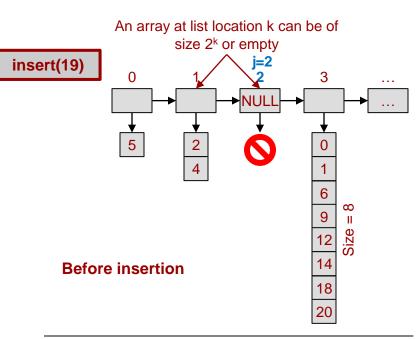
6

Improving Find's Runtime

- While we might be okay with [log(n)]², how might we improve the find runtime in the general case?
 - Hint: I would be willing to pay O(1) to know if a key is not in a particular array without having to perform find
- A Bloom filter could be maintained alongside each array and allow us to skip performing a binary search in an array

Insertion Algorithm

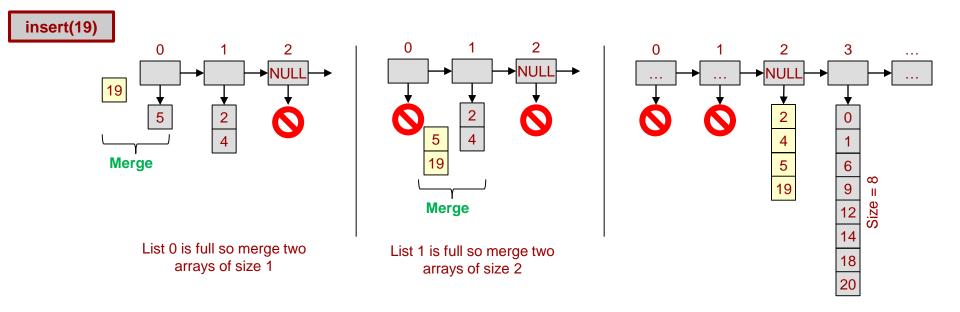
- Let j be the smallest integer such that array j is empty (first empty slot in the list of arrays)
- An insertion will cause
 - Location j's array to become filled
 - Locations 0 through j-1 to become empty



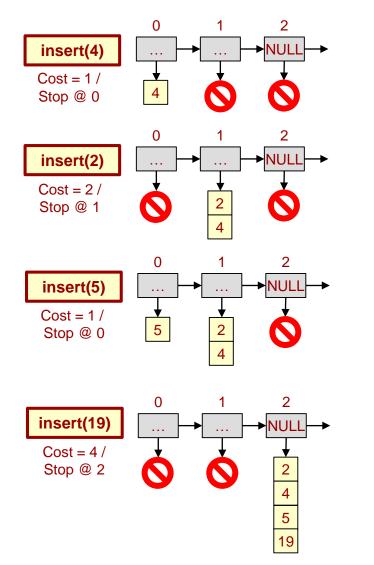


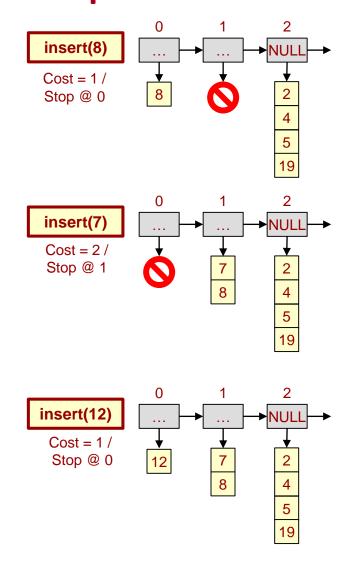
Insertion Algorithm

 Starting at array 0, iteratively merge the previously merged array with the next, stopping when an empty location is encountered



Insert Examples



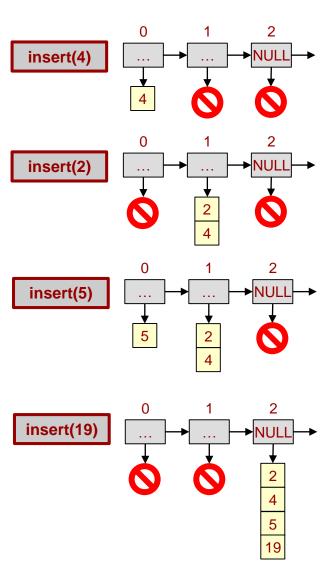


10)

USCViterl

Insertion Runtime: First Look

- Best case?
 - First list is empty and allows direct insertion in O(1)
- Worst case?
 - All list entries (arrays) are full so we have to merge at each location
 - In this case we will end with an array of size n=2^k in position k
 - Also recall merging two arrays of size m is $\Theta(m)$
 - So the total cost of all the merges is $1 + 2 + 4 + 8 + ... + n = 2*n-1 = \Theta(n) = \Theta(2^k)$
- But if the worst case occurs how soon can it occur again?
 - It seems the costs vary from one insert to the next
 - This is a good place to use amortized analysis



11

Total Cost for N insertions

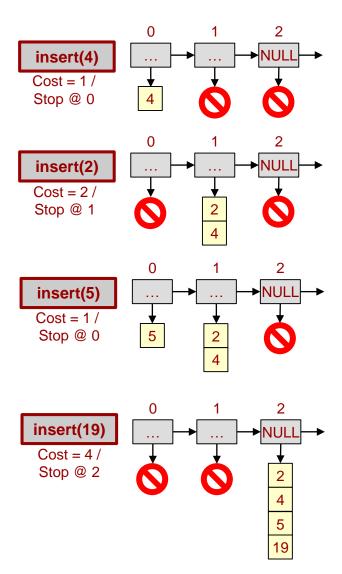
12

- Total cost of n=16 insertions:
 - -1+2+1+4+1+2+1+8+1+2+1+4+1+2+1+16
- =1*n/2 + 2*n/4 + 4*n/8 + 8*n/16 + n
- =n/2 + n/2 + n/2 + n/2 + n
- $=n/2*\log_2(n) + n$
- Amortized cost = Total cost / n operations
 log₂(n)/2 + 1 = O(log₂(n))

Amortized Analysis of Insert

- We have said when you end (place an array) in position k you have to do O(2^{k+1}) work for all the merges
- How often do we end in position k
 - The 0th position will be free with probability ½ (p=0.5)
 - We will stop at the 1st position with probability ¼ (p=0.25)
 - We will stop at the 2nd position with probability 1/8 (p=0.125)
 - We will stop at the k^{th} position with probability $1/2^k = 2^{-k}$
- So we pay 2^{k+1} with probability $2^{-(k+1)}$
- Suppose we have n items in the structure (i.e. max k is log₂n) what is the expected cost of inserting a new element

$$- \sum_{k=0}^{\log(n)} 2^{k+1} 2^{-(k+1)} = \sum_{k=0}^{\log(n)} 1 = \log(n)$$



Summary

- Variants of log structured merge trees have found popular usage in industry
 - Starting array size might be fairly large (size of memory of a single server)
 - Large arrays (from merging) are stored on disk
- Pros:
 - Ease of implementation
 - Sequential access of arrays helps lower its constant factors
- Operations:
 - Find = $\log^2(n)$
 - Insert = Amortized log(n)
 - Remove = often not considered/supported