
1

CSCI 104
Tries

Mark Redekopp

David Kempe

Sandra Batista

2

TRIES

3

Review of Set/Map Again
• Recall the operations a set or map performs…

– Insert(key)

– Remove(key)

– find(key) : bool/iterator/pointer

– Get(key) : value [Map only]

• We can implement a set or map using a binary search tree

– Search = O(_________)

• But what work do we have to do
at each node?

– Compare (i.e. string compare)

– How much does that cost?

• Int = O(1)

• String = O(k) where k is
length of the string

– Thus, search costs O(____________)

"help"

"hear" "ill"

"heap" "help" "in"

4

Review of Set/Map Again

• Recall the operations a set or map performs…

– Insert(key)

– Remove(key)

– find(key) : bool/iterator/pointer

– Get(key) : value [Map only]

• We can implement a set or map using a binary search tree

– Search = O(log(n))

• But what work do we have to do
at each node?

– Compare (i.e. string compare)

– How much does that cost?

• Int = O(1)

• String = O(k) where k is
length of the string

– Thus, search costs O(k * log(n))

"help"

"hear" "ill"

"heap" "held" "in"

5

Review of Set/Map Again

• We can implement a set or map using a hash table

– Search = O(1)

• But what work do we have to do once we hash?

– Compare (i.e. string compare)

– How much does that cost?
• Int = O(1)

• String = O(k) where k is
length of the string

– Thus, search costs O(k)

healhelp ill hear

0 1 2 3 4 5

3.45

"help"

Conversion

function

2

6

Tries
• Assuming unique keys, can we still

achieve O(k) search but not have
collisions?
– O(k) means the time to compare is

independent of how many keys
(i.e. n) are being stored and only depends
on the length of the key

• Trie(s) (often pronounced "try" or
"tries") allow O(k) retrieval
– Sometimes referred to as a radix tree or

prefix tree

• Consider a trie for the keys
– "HE", "HEAP", "HEAR", "HELP", "ILL", "IN"

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

7

Tries
• Rather than each node storing a full key

value, each node represents a prefix of
the key

• Highlighted nodes indicate terminal
locations
– For a map we could store the associated

value of the key at that terminal location

• Notice we "share" paths for keys that
have a common prefix

• To search for a key, start at the root
consuming one unit (bit, char, etc.) of the
key at a time
– If you end at a terminal node, SUCCESS

– If you end at a non-terminal node, FAILURE

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

8

Tries
• To search for a key, start at the root

consuming one unit (bit, char, etc.) of the
key at a time
– If you end at a terminal node, SUCCESS

– If you end at a non-terminal node, FAILURE

• Examples:
– Search for "He"

– Search for "Help"

– Search for "Head"

• Search takes O(k) where k = length of key
– Notice this is the same as a hash table

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

For a map, a

"value" type could

be stored for each

terminal node

9

Your Turn

• Construct a trie to store the set of words

– Ten

– Tent

– Then

– Tense

– Tens

– Tenth

10

Application: IP Lookups
• Network routers form the backbone of the

Internet

• Incoming packets contain a destination IP
address (128.125.73.60)

• Routers contain a "routing table" mapping
some prefix of destination IP address to
output port
– 128.125.x.x => Output port C

– 128.209.32.x => Output port B

– 128.x.x.x => Output port D

– 132.x.x.x => Output port A

• Keys = Match the longest prefix
– Keys are unique

• Value = Output port

Octet 1 Octet 2 Octet 3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 D

10000100 A

11

IP Lookup Trie
• A binary trie implies that the

– Left child is for bit '0'

– Right child is for bit '1'

• Routing Table:
– 128.125.x.x => Output port C

– 128.209.32.x => Output port B

– 128.209.44.x => Output port D

– 132.x.x.x => Output port A

…

-

D

- -

A

…

1

0

0

0

0 1

00

0

0 1

C

Octet 1 Octet 2 Octet 3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 D

10000100 A

0

B

12

Structure of Trie Nodes
• What do we need to store in each

node?

• Depends on how "dense" or
"sparse" the tree is?

• Dense (most characters used) or
small size of alphabet of possible key
characters
– Array of child pointers

– One for each possible character in the
alphabet

• Sparse
– (Linked) List of children

– Node needs to store ______

V*

template < class V >
struct TrieNode{

V* value; // NULL if non-terminal
TrieNode<V>* children[26];

};

template < class V >
struct TrieNode{
char key;
V* value;
TrieNode<V>* next; // sibling
TrieNode<V>* children; // head ptr

};

a zb …

h r

c
f

s

c f

r

s

h

13

Search
• Search consumes one

character at a time until
– The end of the search key

• If value pointer exists, then
the key is present in the map

– Or no child pointer exists in
the TrieNode

• Insert
– Search until key is consumed

but trie path already exists

• Set v pointer to value

– Search until trie path is NULL,
extend path adding new
TrieNodes and then add value
at terminal

V* search(char* k, TrieNode<V>* node)
{

while(*k != '\0' && node != NULL){
node = node->children[*k – 'a'];
k++;

}
if(node) return node->v;
else return NULL;

}

void insert(char* k, Value& v)
{

TrieNode<V>* node = root;
while(*k != '\0' && node != NULL){

node = node->children[*k – 'a']; k++;
}
if(node){

node->v = new Value(v);
}
else {
// create new nodes in trie
// to extend path
// updating root if trie is empty

}
}

V*

k

h e a r \0

0x120

0x120

14

Thinking Exercise: Removal
• How would removal of a key work in a

trie and what are the cases you'd have to
worry about?
– Does removal of a key always mean removal

of a node?

– If we do remove a node, would it only be one
node in the trie?

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

A "value" type

could be stored for

each non-terminal

node

15

SUFFIX TREES (TRIES)

16

Prefix Trees (Tries) Review

• What problem does a prefix tree solve
– Lookups of keys (and possible associated values)

• A prefix tree helps us match 1-of-n keys
– "He"

– "Help"

– "Hear"

– "Heap"

– "In"

– "Ill"

• Here is a slightly different problem:
– Given a large text string, T, can we find certain substrings or answer

other queries about patterns in T

– A suffix tree (trie) can help here

17

Suffix Trie Slides

• http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixtrees.pdf

18

Suffix Trie Wrap-Up

• How many nodes can a suffix trie have for text, T,
with length |T|?

– |T|2

– Can we do better?

• Can compress paths without branches into a single
node

• Do we need a suffix trie to find substrings or answer
certain queries?

– We could just take a string and search it for a certain
query, q

– But it would be slow => O(|T|) and not O(|q|)

19

What Have We Learned

• [Key Point]: Think about all the data structures we've been
learning?
– There is almost always a trade-off of memory vs. speed

• i.e. Space vs. time

– Most data structures just exploit different points on that time-space
tradeoff continuum

– Think about searches in your project…Do we need a map?

– No, we could just search all items each time a keyword is provided

• But think how slow that would be

– So we build a data structure (i.e. a map) that replicates data and takes
a lot of memory space…

– …so that we can find data faster

