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Series Summation Review

• Let n = 1 + 2 + 4 + … + 2k = σ𝑖=0
𝑘 2𝑖 .  What is n?

– n = 2k+1-1

• What is log2(1) + log2(2) + log2(4) + log2(8)+…+ log2(2k) 

= 0 + 1 + 2 + 3+… + k = σ𝑖=0
𝑘 𝑖

– O(k2)

• So then what if k = log(n) as in:
log2(1) + log2(2) + log2(4) + log2(8)+…+ log2(2log(n)) 

– O(log2n)

Geometric series


𝑖=1

𝑛

𝑐𝑖 =
𝑐𝑛+1 − 1

𝑐 − 1
= 𝜃 𝑐𝑛

Arithmetic series:


𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2
= 𝜃 𝑛2



3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Merge Two Sorted Lists
• Consider the problem of merging 

two n/2 size sorted lists into a new 
combined sorted list

• Can be done in O(n)
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Merge Trees Overview

• Consider a list of (pointers 
to) arrays with the 
following constraints

– Each array is sorted though 
no ordering constraints 
exist between arrays

– The array at list index k is 
of exactly size 2k or empty
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Merge Trees Size

• Define…
– n as the # of keys in the entire 

structure

– k as the size of the list (i.e. positions 
in the list)

• Given list of size k, how many total 
values, n, may be stored?

– Let n = 1 + 2 + 4 + … + 2k-1 = σ𝑖=0
𝑘−1 2𝑖 .  

What is n?

• n=2k-1
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Merge Trees Find Operation

• To find an element (or check if it 
exists)

• Iterate through the arrays in order 
(i.e. start with array at list position 
0, then the array at list position 1, 
etc.)
– In each array perform a binary search

• If you reach the end of the list of 
arrays without finding the value it 
does not exist in the set/map
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Find Runtime

• What is the worst case runtime of 
find?
– When the item is not present which 

requires, a binary search is performed on 
each list

• T(n) = log2(1) + log2(2) + …+ log2(2k-1)

• = 0 + 1 + 2 + … + k-1 = σ𝑖=0
𝑘−1 𝑖

= O(k2)

• But let's put that in terms of the 
number of elements in the structure 
(i.e. n)
– Recall, n=2k - 1, so k = log2(n+1)

• So find is O(log2(n)2)
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Improving Find's Runtime

• While we might be okay with [log(n)]2, how 
might we improve the find runtime in the 
general case?

– Hint:  I would be willing to pay O(1) to know if a 
key is not in a particular array without having to 
perform find

• A Bloom filter could be maintained alongside 
each array and allow us to skip performing a 
binary search in an array
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Insertion Algorithm

• Let j be the smallest integer such 
that array j is empty (first empty 
slot in the list of arrays)

• An insertion will cause
– Location j's array to become filled

– Locations 0 through j-1 to become 
empty
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Insertion Algorithm

• Starting at array 0, iteratively merge the previously merged 
array with the next, stopping when an empty location is 
encountered

• Insert stopping at location k requires 1+2+4+…+2k-1+2k = 
2k+1-1 = O(2k+1) merge steps
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Insert Examples
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Insertion Runtime: First Look

• Best case?

– First list is empty and allows direct insertion in 
O(1)

• Worst case?

– All list entries (arrays) are full so we have to merge 
at each location

– In this case we will end with an array of size n=2k

in position k

– Also recall merging two sorted arrays of size m/2 is 
Θ(m)

– So the total cost of all the merges is 
1 + 2 + 4 + 8 + … + 2k = Θ(2k+1) = Θ(n) 

• But if the worst case occurs how soon can it 
occur again?  

– It seems the costs vary from one insert to the next

– This is a good place to use amortized analysis
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Total Cost for N insertions

• Reminder:  Insert stopping at location k requires 
1+2+4+…+2k-1+2k = 2k+1-1 = O(2k+1) merge steps

• Total cost of n=16 insertions:

– Stop at:  0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4

– Cost: 21+22+21+23+21+22+21+24+21+22+21+23+21+22+21+25

• =21*n/2 + 22*n/4 +  23*n/8 + 24*n/16 + 25*1

• = n + n +  n + n + 2*n 

• =n*log2(n) + 2n

• Amortized cost = Total cost / n operations

– log2(n) + 2 = O(log2(n))
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Amortized Analysis of Insert

• We have said when you end (place an array) in 
position k you have to do O(2k+1) work for all the 
merges

• How often do we end in position k

– The 0th position will be free with probability ½ 
(p=0.5)

– We will stop at the 1st position with probability ¼ 
(p=0.25)

– We will stop at the 2nd position with probability 1/8 
(p=0.125)

– We will stop at the kth position with probability 
1/2k+1 = 2-(k+1)

• So we pay O(2k+1) with probability 2-(k+1)

• Suppose we have n items in the structure (i.e. max 
k is log2n) what is the expected cost of inserting a 
new element

– σ𝑘=0
log(𝑛)

2𝑘+12−(𝑘+1) = σ𝑘=0
log(𝑛)

1 = log(𝑛)
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Summary

• Variants of log structured merge trees have found popular usage in 
industry

– Starting array size might be fairly large (size of memory of a single server)

– Large arrays (from merging) are stored on disk

• Pros:

– Ease of implementation 

– Sequential access of arrays helps lower its constant factors

• Operations:

– Find = log2(n)

– Insert = Amortized log(n)

– Remove = often not considered/supported

• More reading:

– http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

