CSCI 104
Log Structured Merge Trees
Mark Redekopp
Series Summation Review

• Let $n = 1 + 2 + 4 + \ldots + 2^k = \sum_{i=0}^{k} 2^i$. What is n?
 – $n = 2^{k+1}-1$

• What is $\log_2(1) + \log_2(2) + \log_2(4) + \log_2(8)+\ldots+ \log_2(2^k)$
 $= 0 + 1 + 2 + 3+\ldots + k = \sum_{i=0}^{k} i$
 – $O(k^2)$

• So then what if $k = \log(n)$ as in:
 $\log_2(1) + \log_2(2) + \log_2(4) + \log_2(8)+\ldots+ \log_2(2^{\log(n)})$
 – $O(\log^2n)$

Arithmetic series:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

Geometric series

$$\sum_{i=1}^{n} c^i = \frac{c^{n+1} - 1}{c - 1} = \Theta(c^n)$$
Merge Trees Overview

- Consider a list of (pointers to) arrays with the following constraints
 - Each array is sorted *though no ordering constraints exist between arrays*
 - The array at list index k is of exactly size 2^k or empty

Note: These are the keys for a set (or key, value pairs for a map)
Merge Trees Size

- Define...
 - n as the # of keys in the entire structure
 - k as the size of the list (i.e. positions in the list)
- Given list of size k, how many total values, n, may be stored?
 - Let $n = 1 + 2 + 4 + \ldots + 2^{k-1} = \sum_{i=0}^{k-1} 2^i$. What is n?
- $n=2^k-1$
Merge Trees Find Operation

• To find an element (or check if it exists)
• Iterate through the arrays in order (i.e. start with array at list position 0, then the array at list position 1, etc.)
 – In each array perform a binary search
• If you reach the end of the list of arrays without finding the value it does not exist in the set/map
Find Runtime

• What is the worst case runtime of find?
 – When the item is not present which requires, a binary search is performed on each list
• \(T(n) = \log_2(1) + \log_2(2) + \ldots + \log_2(2^{k-1}) \)
 = \(0 + 1 + 2 + \ldots + k - 1 = \sum_{i=0}^{k-1} i \)
 = \(O(k^2) \)
• But let's put that in terms of the number of elements in the structure (i.e. \(n \))
 – Recall \(k = \log_2(n+1) \)
• So find is \(O(\log_2(n)^2) \)
Improving Find's Runtime

• While we might be okay with $[\log(n)]^2$, how might we improve the find runtime in the general case?
 – Hint: I would be willing to pay $O(1)$ to know if a key is not in a particular array without having to perform find

• A Bloom filter could be maintained alongside each array and allow us to skip performing a binary search in an array
Insertion Algorithm

• Let \(j \) be the smallest integer such that array \(j \) is empty (first empty slot in the list of arrays)

• An insertion will cause
 – Location \(j \)'s array to become filled
 – Locations 0 through \(j-1 \) to become empty
Insertion Algorithm

• Starting at array 0, iteratively merge the previously merged array with the next, stopping when an empty location is encountered.
Insert Examples

insert(4)
Cost = 1 / Stop @ 0

insert(2)
Cost = 3 / Stop @ 1

insert(5)
Cost = 1 / Stop @ 0

insert(19)
Cost = 7 / Stop @ 2

insert(8)
Cost = 1 / Stop @ 0

insert(7)
Cost = 1 / Stop @ 1

insert(12)
Cost = 1 / Stop @ 0
Insertion Runtime: First Look

- **Best case?**
 - First list is empty and allows direct insertion in \(O(1)\)

- **Worst case?**
 - All list entries (arrays) are full so we have to merge at each location
 - In this case we will end with an array of size \(n=2^k\) in position \(k\)
 - Also recall merging two sorted arrays of size \(m/2\) is \(\Theta(m)\)
 - So the total cost of all the merges is
 \[
 1 + 2 + 4 + 8 + \ldots + 2^k = \Theta(2^{k+1}) = \Theta(n)
 \]

- But if the worst case occurs how soon can it occur again?
 - It seems the costs vary from one insert to the next
 - This is a good place to use amortized analysis
Total Cost for N insertions

• Reminder: Insert stopping at location k requires
 \[1+2+4+\ldots+2^{k-1}+2^k = 2^{k+1}-1 = O(2^{k+1})\] merge steps

• Total cost of n=16 insertions:
 – Stop at: 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4
 – Cost: \[2^1+2^2+2^1+2^3+2^1+2^2+2^1+2^4+2^1+2^2+2^1+2^3+2^1+2^2+2^1+2^5\]

 \[=2^1*n/2 + 2^2*n/4 + 2^3*n/8 + 2^4*n/16 + 2^5*1\]

 \[= n + n + n + n + 2*n\]

 \[=n*\log_2(n) + 2n\]

• Amortized cost = Total cost / n operations
 – \[\log_2(n) + 2 = O(\log_2(n))\]
Amortized Analysis of Insert

- We have said when you end (place an array) in position k you have to do $O(2^{k+1})$ work for all the merges.
- How often do we end in position k?
 - The 0th position will be free with probability $\frac{1}{2}$ ($p=0.5$).
 - We will stop at the 1st position with probability $\frac{1}{4}$ ($p=0.25$).
 - We will stop at the 2nd position with probability $\frac{1}{8}$ ($p=0.125$).
 - We will stop at the kth position with probability $\frac{1}{2^{k+1}} = 2^{-(k+1)}$.
- So we pay 2^{k+1} with probability $2^{-(k+1)}$.
- Suppose we have n items in the structure (i.e. max k is $\log_2 n$) what is the expected cost of inserting a new element?
 - $\sum_{k=0}^{\log(n)} 2^{k+1} 2^{-(k+1)} = \sum_{k=0}^{\log(n)} 1 = \log(n)$.
Summary

• Variants of log structured merge trees have found popular usage in industry
 – Starting array size might be fairly large (size of memory of a single server)
 – Large arrays (from merging) are stored on disk
• Pros:
 – Ease of implementation
 – Sequential access of arrays helps lower its constant factors
• Operations:
 – Find = \(\log^2(n) \)
 – Insert = Amortized \(\log(n) \)
 – Remove = often not considered/supported
• More reading:
 – http://www.benstopford.com/2015/02/14/log-structured-merge-trees/