
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Log Structured Merge Trees

Mark Redekopp

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Series Summation Review

• Let n = 1 + 2 + 4 + … + 2k = σ𝑖=0
𝑘 2𝑖 . What is n?

– n = 2k+1-1

• What is log2(1) + log2(2) + log2(4) + log2(8)+…+ log2(2k)

= 0 + 1 + 2 + 3+… + k = σ𝑖=0
𝑘 𝑖

– O(k2)

• So then what if k = log(n) as in:
log2(1) + log2(2) + log2(4) + log2(8)+…+ log2(2log(n))

– O(log2n)

Geometric series

𝑖=1

𝑛

𝑐𝑖 =
𝑐𝑛+1 − 1

𝑐 − 1
= 𝜃 𝑐𝑛

Arithmetic series:

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2
= 𝜃 𝑛2

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Merge Two Sorted Lists
• Consider the problem of merging

two n/2 size sorted lists into a new
combined sorted list

• Can be done in O(n)

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

Inputs Lists

Merged Result

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Merge Trees Overview

• Consider a list of (pointers
to) arrays with the
following constraints

– Each array is sorted though
no ordering constraints
exist between arrays

– The array at list index k is
of exactly size 2k or empty

5

NULL …

0 1 2 3 4 …

2 0 3

4 1

6

9

12

14

18

20

S
iz

e
 =

 8

…

51

S
iz

e
 =

 1
6
 i
f
n

o
n

-e
m

p
ty

Note: These are

the keys for a set

(or key,value pairs

for a map)

An array at list

location k can be of

size 2k or empty

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Merge Trees Size

• Define…
– n as the # of keys in the entire

structure

– k as the size of the list (i.e. positions
in the list)

• Given list of size k, how many total
values, n, may be stored?

– Let n = 1 + 2 + 4 + … + 2k-1 = σ𝑖=0
𝑘−1 2𝑖 .

What is n?

• n=2k-1

5

NULL …

0 1 2 3 4 …

2 0 3

4 1

6

9

12

14

18

20

S
iz

e
 =

 8

…

51

S
iz

e
 =

 1
6
 i
f
n

o
n

-e
m

p
ty

Note: These are

the keys for a set

(or key,value pairs

for a map)

An array at list

location k can be of

size 2k or empty

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Merge Trees Find Operation

• To find an element (or check if it
exists)

• Iterate through the arrays in order
(i.e. start with array at list position
0, then the array at list position 1,
etc.)
– In each array perform a binary search

• If you reach the end of the list of
arrays without finding the value it
does not exist in the set/map

5

NULL …

0 1 2 3 4 …

2 0 3

4 1

6

9

12

14

18

20

S
iz

e
 =

 8

…

51

S
iz

e
 =

 1
6
 i
f
n

o
n

-e
m

p
ty

Note: These are

the keys for a set

(or key,value pairs

for a map)

An array at list

location k can be of

size 2k or empty

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Find Runtime

• What is the worst case runtime of
find?
– When the item is not present which

requires, a binary search is performed on
each list

• T(n) = log2(1) + log2(2) + …+ log2(2k-1)

• = 0 + 1 + 2 + … + k-1 = σ𝑖=0
𝑘−1 𝑖

= O(k2)

• But let's put that in terms of the
number of elements in the structure
(i.e. n)
– Recall, n=2k - 1, so k = log2(n+1)

• So find is O(log2(n)2)

5

NULL …

0 1 2 3 4 …

2 0 3

4 1

6

9

12

14

18

20

S
iz

e
 =

 8

…

51

S
iz

e
 =

 1
6
 i
f
n

o
n

-e
m

p
ty

Note: These are

the keys for a set

(or key,value pairs

for a map)

An array at list

location k can be of

size 2k or empty

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Improving Find's Runtime

• While we might be okay with [log(n)]2, how
might we improve the find runtime in the
general case?

– Hint: I would be willing to pay O(1) to know if a
key is not in a particular array without having to
perform find

• A Bloom filter could be maintained alongside
each array and allow us to skip performing a
binary search in an array

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Insertion Algorithm

• Let j be the smallest integer such
that array j is empty (first empty
slot in the list of arrays)

• An insertion will cause
– Location j's array to become filled

– Locations 0 through j-1 to become
empty

5

NULL …

0 1 2 3 …

2 0

4 1

6

9

12

14

18

20

S
iz

e
 =

 8

An array at list location k can be of

size 2k or empty

… … …

0 1 2 3 …

0

1

6

9

12

14

18

20

S
iz

e
 =

 8

insert(19)

Before insertion

After insertion

2

4

5

19

j=2

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Insertion Algorithm

• Starting at array 0, iteratively merge the previously merged
array with the next, stopping when an empty location is
encountered

• Insert stopping at location k requires 1+2+4+…+2k-1+2k =
2k+1-1 = O(2k+1) merge steps

5

NULL

0 1 2

2

4

… … NULL

0 1 2 3

0

1

2

4

5

6

9

19

S
iz

e
 =

 8

insert(19)

19

List 0 is full so merge two

arrays of size 1

NULL

0 1 2

2

4

List 1 is full so merge two

arrays of size 2

19

5

Merge

Merge

2 41

0

1

6

9

2

4

5

19

0

1

6

9

Merge

8

…

0

0

1

6

9

…

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Insert Examples

… … NULL

0 1 2

2

4

5

19

… … NULL

0 1 2

insert(4)

4

… … NULL

0 1 2

insert(2)

2

4

… … NULL

0 1 2

insert(5)

2

4

5

insert(19)

… … NULL

0 1 2

2

4

5

19

insert(8)

8

… … NULL

0 1 2

2

4

5

19

insert(7)

7

8

… … NULL

0 1 2

2

4

5

19

insert(12)

7

8

12

Cost = 1 /

Stop @ 0

Cost = 3 /

Stop @ 1

Cost = 1 /

Stop @ 0

Cost = 7 /

Stop @ 2

Cost = 1 /

Stop @ 0

Cost = 3 /

Stop @ 1

Cost = 1 /

Stop @ 0

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Insertion Runtime: First Look

• Best case?

– First list is empty and allows direct insertion in
O(1)

• Worst case?

– All list entries (arrays) are full so we have to merge
at each location

– In this case we will end with an array of size n=2k

in position k

– Also recall merging two sorted arrays of size m/2 is
Θ(m)

– So the total cost of all the merges is
1 + 2 + 4 + 8 + … + 2k = Θ(2k+1) = Θ(n)

• But if the worst case occurs how soon can it
occur again?

– It seems the costs vary from one insert to the next

– This is a good place to use amortized analysis

… … NULL

0 1 2

2

4

5

19

… … NULL

0 1 2

insert(4)

4

… … NULL

0 1 2

insert(2)

2

4

… … NULL

0 1 2

insert(5)

2

4

5

insert(19)

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Total Cost for N insertions

• Reminder: Insert stopping at location k requires
1+2+4+…+2k-1+2k = 2k+1-1 = O(2k+1) merge steps

• Total cost of n=16 insertions:

– Stop at: 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4

– Cost: 21+22+21+23+21+22+21+24+21+22+21+23+21+22+21+25

• =21*n/2 + 22*n/4 + 23*n/8 + 24*n/16 + 25*1

• = n + n + n + n + 2*n

• =n*log2(n) + 2n

• Amortized cost = Total cost / n operations

– log2(n) + 2 = O(log2(n))

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Amortized Analysis of Insert

• We have said when you end (place an array) in
position k you have to do O(2k+1) work for all the
merges

• How often do we end in position k

– The 0th position will be free with probability ½
(p=0.5)

– We will stop at the 1st position with probability ¼
(p=0.25)

– We will stop at the 2nd position with probability 1/8
(p=0.125)

– We will stop at the kth position with probability
1/2k+1 = 2-(k+1)

• So we pay O(2k+1) with probability 2-(k+1)

• Suppose we have n items in the structure (i.e. max
k is log2n) what is the expected cost of inserting a
new element

– σ𝑘=0
log(𝑛)

2𝑘+12−(𝑘+1) = σ𝑘=0
log(𝑛)

1 = log(𝑛)

… … NULL

0 1 2

2

4

5

19

… … NULL

0 1 2

insert(4)

4

… … NULL

0 1 2

insert(2)

2

4

… … NULL

0 1 2

insert(5)

2

4

5

insert(19)

Cost = 1 /

Stop @ 0

Cost = 2 /

Stop @ 1

Cost = 1 /

Stop @ 0

Cost = 4 /

Stop @ 2

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary

• Variants of log structured merge trees have found popular usage in
industry

– Starting array size might be fairly large (size of memory of a single server)

– Large arrays (from merging) are stored on disk

• Pros:

– Ease of implementation

– Sequential access of arrays helps lower its constant factors

• Operations:

– Find = log2(n)

– Insert = Amortized log(n)

– Remove = often not considered/supported

• More reading:

– http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

