CSCl 104
Skip Lists

Mark Redekopp



Sources / Reading

* Material for these slides was derived from the
following sources

— http://courses.cs.vt.edu/cs2604/spring02/Projects
/1/Pugh.Skiplists.pdf

— http://www.cs.umd.edu/~meesh/420/Notes/Mou
ntNotes/lecturell-skiplist.pdf



http://courses.cs.vt.edu/cs2604/spring02/Projects/1/Pugh.Skiplists.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf

— ()5 Viterbi >
Skip List Intro

* Another map/set implementation (storing keys or key/value pairs)
— Insert, Remove, Find
 Remember the story of Goldilocks and the Three Bears

— Father's porridge was too hot
— Mother's porridge was too cold
— Baby Bear's porridge was just right

 Compare Set/Map implementations

— BST's were easy but could degenerate to O(n) operations with an
adversarial sequence of keys (too hot?)
— Balanced BSTs guarantee O(log(n)) operations but are more complex to
implement and may require additional memory overhead (too cold?)
— Skip lists are fairly simple to implement, fairly memory efficient, and offer
"expected" O(log(n)) operations (just right?)
 Skip lists are a probabilistic data structure so we expect O(log(n))
* Expectation of log(n) does not depend on keys but only random # generator



Skip List Visual

* Think of a skip list like a sorted linked list with shortcuts
(wormholes?)

* Given the skip list below with the links (arrows) below what
would be the fastest way to find if 28 is in the list?

i

> :21‘ >
23 ° t7 ~— &13 g 25 %28{

O>»m=IT

NIL




Skip List Visual

* Think of a skip list like a sorted linked list with shortcuts
(wormholes?)

* Given the skip list below with the links (arrows) below what
would be the fastest way to find if 28 is in the list?

— Let p point to a node. Walk at level i while the desired search key is
bigger than p->next->key, then descend to the level i-1 until you find the
value or hit the NIL (end node)

— NIL node is a special node whose stored key is BIGGER than any key we
might expect (i.e. MAXKEY+1 / +infinity)

: o ' :'214% — NI
23 ° t7+—> 13] 4| $-{18] +- 25%28{

O>»m=IT




— 5 iterbi
Perfect Skip List

* How did we form this special linked list?
— We started with a normal linked list (level 0)

— Then we took every other node in level 0 (2"¥ node from original list) and
added them to level 1

— Then we took every other node in level 1 (4™ node from the original list)
and raised it to level 2

— Then we took every other node ) in level 2 (8™ node from the original list)
and raised it to level 3

— There will be O(log,(n)) levels (We would have only 1 node at level log,(n)

Level 3 | 4 > >
Level 2 |E > > >
Level 1 | A 9 ' el » NIL
Level 0 [D[$-2] 4+ ° t7 > 13 4 -f1g[ 25 %28{:




i, TS(“Viterbi -

School of Engineering

Search Time for Perfect Skip List

* How long would it take us to find an item or determine it
is not present in the list

— O(log(n))

 Proof

— At each level we visit at most 2 nodes

* At any node, x, in level i, you sit between two nodes (p,q) at level i+1 and
you will need to visit at most one other node in level i before descending

— There are O(log(n)) levels
— So we visit at most O(2*log(n)) levels = O(log(n))

Level 3 [ {2 9, .
Level 2 |E X, . .
Level 1 | A 9 i~—' el » NIL
Level 0 [D[$-2] 4+ ° t7 > 13 4 -fig[ 25 %28{:




i, TS(“Viterbi

School of Engineering

The Problem w/ Perfect Skip Lists

e Remember in a perfect skip list
— Every 2"9 node is raised to level 1

— Every 4™ node is raised to level 2

 What if | want to insert a new node or remove a node,
how many nodes would need their levels adjusted to

maintain the pattern described above?

— In the worst case, all n-1 remaining nodes

— Inserting/removing may require n-1 nodes to adjust

Level 3
Level 2
Level 1
Level O

O>mI

q:

X:

-

&13 +—»’

15

18

121

1

25

+_"28

INIL




Quick Aside

* Imagine a game where if you flip a
coin and it comes up heads you get $S1
and get to play again. If you get tails
you stop.

 What's the chance you win at least

+ P($1)=1/2, P($2)=1/4, P($3)=1/8



Randomized Skip Lists

e Rather than strictly enforcing every other node of
level i be promoted to level i+1 we simply use
probability to give an "expectation" that every other
node is promoted

* Whenever a node is inserted we will promote it to the
next level with probability p (=1/2 for now)...we'll
keep promoting it while we get heads

 What's the chance we promote to level 1, 2, 37

* Given ninsertions, how many would you expect to be
promoted to:
— Level 1 =n/2, Level 2 =n/4, Level 3 =n/8



Randomized Skip List

* As nodes are inserted they are repeating trials of probability p
(stopping when the first unsuccessful outcome occurs)

* This means we will not have an "every other" node promotion
scheme, but the expected number of nodes at each level matches

the non-randomized version

* Note: This scheme introduces the chance of some very high levels
— We will usually cap the number of levels at some MAXIMUM value

— However the expected number of levels is still log,(n)

Level 4
Level 3
Level 2
Level 1
Level O

O>mzIT

p

\ 4

_'-’24;
?—V

13

18

15

lllllln'_

21

*NIL

25

"




Worst Case

 What might a worst case skip list look like?

— All the same height
— Or just ascending or descending order of height

 These are all highly unlikely

Level 4
Level 3
Level 2
Level 1
Level O

O>mzIT

IIII_\_II

IIII_Lllr

\ 4

15

18

25

28

\ 4

NIL




Analysis

* To analyze the search time with this

Level 4
Level 3
Level 2
Level 1
Level O

randomized approach let's start at
the node and walk backwards to the

head node counting our expected

number of steps

— Recall if we can move up a level we do,
so that we take the "faster" path and
only move left if we can't move up

O>mzIT

na

p

_'-’24;
?—P

+_'9 13

18

\ 4

15

Option A:
If we can move up

we do

21i

Option B: No
higher level, move

P

left

21

4

21

25

+*28

*NIL




i, TS(“Viterbi

School of Engineering

Option A:
If we can move up

Analysis

* Probability of Option A: p
— Recall we added each level independently with probability p

* Probability of Option B: 1-p

e For this analysis let us define the top level at level

0 and the current level where we found our
search node as level k (expected max k = log,(n))

we

do

21

i

Option B: No
higher level, move
left

211" ZSF
Level O — > >
Level 1| H ] R R
Level 2| E y S J15 +NIL
AL 21 =
Level 3 DL 2 6 > 13 , '28
Level 4| | ¢~ 7] +9 18] ¢ 25| ¢




Ana IyS|S Option A:
If we can move up
we do
 Define a recurrence relationship of the cost of L c) =
walking back from level k to level O 21{ 1+C(k-1)
* Base case: C(0) =0(1) ]

— Only expect 1 node + head node at level O

Option B: No
* Recursive case: C(k) = (1-p)(1+C(k)) + p(1+C(k-1))  higher level, move
— 1+C(k) = Option B and its probability is (1-p) ) left
— 1+C(k-1) = Option A and its probability is p 21 ZSF
C(k) =
1+C(k)
Level O — ; >
Level 1| A [ . .
Level 2 i :I;v »15 »NIL
Level 3 DL 5 6 > 13 21 ;8
Level 4 +— 7|49 18| ¢ 25| ¢




Analysis Option A:
If we can move up
we do
 Solve C(k) = (1-p)(1+C(k)) + p(1+C(k'1)) = C(k) =
— C(k) = (1-p) + (1-p)C(k) + p + pC(k-1) 21{ 1+C(k-1)
— pC(k) =1+ pC(k-1) B
— C(k) =1/p + C(k-1) _
Option B: No
B =1/p + 1/p+C(k-2) higher level, move
= =1/p + 1/p+1/p + C(k-3) left
- Tk 21H ZSF
— =log,(N) / p = O(log,(N))
C(K) =
1+C(K)
Level O — ;
Level 1| H [] , .
Level 2 i{—- 15 .. “NIL
Level 3 D—H2£6 19 | ;8{:
Level 4| | ¢ 7]+ 9 18] ¢ 25| ¢




i, TS(“Viterbi -

Node & Class Definition

template < class K, class V >
struct SkipNode {

* Each node has an array | « xey;

V wvalue;

School of Engineering

Of "for‘wa r‘d" ("next") SkipNode** forward; //array of ptrs
H SkipNode (K& k, V& v, int level) {
pOInterS key = k; wvalue = v;

forward = new SkipNode*[level+l];

* Head's key doesn't Y

1
matter as we'll never template < class K, class V >
class SkipList{
1 int maxLevel; // data members
Compare It SkipNode* head;
1 H . . .
 End's forward pointers | sxipnistine max
maxLevel = max;
! 1 1 head = new SkipNode (dummy, dummy, maxLevel) ;
don't matter since its s e
. new SkipNode (INFINITY, dummy,maxLevel) ;
key Value IS +INF for (int i1=0; i1 < maxLevel; i++) {
header->forward[i] = end;
}.} } H[_,
’ E -
NILf
Al
D L
*—




] USCViterbi
Search Pseudocode

Level 4
Level 3
Level 2
Level 1
Level O

search(28) would
stop the for loop
with current
pointing at node
25, then take one
more step

School of Engineering

template < class K, class V >
SkipNode<K,V>* SkipList<K,V>::search(const Keyé& key) {
SkipNode<K,V>* current = head;
for(int i=maxLevel; i1 >= 0; 1i--){
while ( current->forward[i]->key < key) {
current = current->forward[i];
}
}

// will always stop on level 0 w/ current=node

// Jjust prior to the actual target node or End node
current = current->forward[0];

if (current->key == key) return current;

else return NULL; // key is not in the list

-—

p

\ 4

15 *NIL

O>mzIT

(e e o

1III
AN
T

13- el




] USCViterbi
Insert Pseudocode

template < class K, class V >
void SkipList<K,V>::insert (const Keyé& key,

insert(25)

e As we walk we'll fill in

Level 4
Level 3
Level 2
Level 1
Level O

an "update" array of
the last nodes we
walked through at each
level since these will
need to have their
pointers updated

School of Engineering

}

SkipNode<K, V>* current = head;
vector<SkipNode<K,V>*> update (maxLevel+l) ;
// perform typical search but fill in update array

current = current->forward[0];

if (current->key == key)
{ current->value = v;
else {

return; }

int height = randomLevel () ;

// Allocate new node, X
for (int 1i=0;
x->forward[i]
update[i]->forward[i]

}

i < height;

i++) {

const Valueé& v) {

= update[i]->forward[i];

p

A 4

update array

\ 4

\ 4

\ 4

O>mzIT

{17

\4

13

18

\ 4

\ 4

28

Felfclifel Felie]

NIL




i, TS(“Viterbi

School of Engineering

Insert Pseudocode

int SkipList<K,V>::randomLevel ()
{
int height = 1;
while(rand() < p && height < maxLevel)
height++;
return height;

// assume rand() returns double in range [0,1)

tlass K, class V >
t<K,V>::insert (const Keyé& key,
const Valueé& v) {
[, V>* current = head;
pNode<K, V>*> update (maxLevel+l) ;
typical search but fill in update array

current->forward[0] ;

e randomlLevel returns a
height >h with
probability (1/p")

->key == key)
T current->value = v; return; }
else {
int height = randomLevel () ;

// Allocate new node, X

for(int i=0; i < height; i++) {
x->forward[i] = updatel[i]->forward[i];
update[i]->forward[i]

}

Level 4 > >
Level 3| H R ,
Level 2 i > R
Level 1 6 > 25—_.

D ||
Level O ° 74T [ 418+~ 126

NIL




Summary

e Skip lists are a randomized data structure

* Provide "expected" O(log(n)) insert, remove,
and search

 Compared to the complexity of the code for
structures like an RB-Tree they are fairly easy
to implement

* |n practice they perform quite well even
compared to more complicated structures like
balanced BSTs



