
1

CSCI 104
Splay Trees

Mark Redekopp

2

Sources / Reading

• Material for these slides was derived from the
following sources

– https://www.cs.cmu.edu/~sleator/papers/self-
adjusting.pdf

– http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf

– http://www.cs.umd.edu/~meesh/420/Notes/MountNotes
/lecture10-splay.pdf

• Nice Visualization Tool

– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture10-splay.pdf
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

3

Splay Tree Intro
• Another map/set implementation (storing keys or key/value pairs)

– Insert, Remove, Find

• Recall…To do m inserts/finds/removes on an AVLTree
w/ n elements would cost?
– O(m*log(n))

• Splay trees have a worst case find, insert, delete time of…
– O(n)

• However, they guarantee that if you do m operations on a splay
tree with n elements that the total time is
– O(m*log(n)) [i.e. amortized time is O(log(n)]

• They have a further benefit that recently accessed elements will
be near the top of the tree
– In fact, the most recently accessed item is always at the top of the tree

4

Splay Operation

• Splay means "spread"

• As you search for an item or after
you insert an item we will perform a
series of splay operations

• These operations will cause the
desired node to always end up at the
top of the tree

– A desirable side-effect is that accessing
a key multiple times within a short time
window will yield fast searches because
it will be near the top

– See next slide on principle of locality

R

T

T

If we search for or

insert T…

…T will end up as the

root node with the old

root in the top level or

two

R

5

Principle of Locality
• 2 dimensions of this principle: space & time

• Spatial Locality – Future accesses will likely cluster
near current accesses
– Instructions and data arrays are sequential (they are all

one after the next)

• Temporal Locality – Future accesses will likely be to
recently accessed items
– Same code and data are repeatedly accessed (loops,

subroutines, if(x > y) x++;

– 90/10 rule: Analysis shows that usually 10% of the written
instructions account for 90% of the executed instructions

• Splay trees help exploit temporal locality by
guaranteeing recently accessed items near the top of
the tree

6

Splay Cases

G

P

X

a b

c

G

P

X

b c

a

G

P

X

b c

a

1.

2.

3.

Zig-Zig

d
R

X

b

a

X

P

G

c d

b

a

c

R

cX

a b

Right rotate of X,R

d

d

1

2 X

P G

a b c d

X

G P

a b c d

1

2

Zig-Zag

Left rotate of X,R

Root/Zig Case

(Single Rotation)

7

Find(1)
6

75

4

3

Zig-Zig2

1

6

75

4

1

2

3

6

71

2

3

4

5

1

6

2

3

4

5

7

Zig-Zig

Zig

Resulting

Tree

8

Find(3)

• Notice the tree is starting to look at lot more
balanced

Zig-Zag

Resulting

Tree

1

6

2

3

4

5

7

1

6

2

3

4

7

5

3

6

2

1

4 7

5

Zig-Zag

9

Worst Case

• Suppose you want to make the amortized time
(averaged time over multiple calls to
find/insert/remove) look bad, you might try to
always access the ______________ node in the tree

– Deepest

• But splay trees have a property that as we keep
accessing deep nodes the tree starts to balance and
thus access to deep nodes start by costing O(n) but
soon start costing O(log n)

10

Insert(11)
20

3012

15 255

3 10

8

Resulting Tree

20

3012

15 255

3 10

8 11

Zig-Zig

20

3012

15 2511

10

5

3 8

20

30

12

15

25

11

10

5

3 8

Zig-Zig

11

Insert(4)
20

3012

15 255

3 10

8

Resulting Tree

Zig-Zag Zig-Zig

20

3012

15 255

3 10

84

20

3012

15 254

3 5

8

10

20

30

25

4

3 12

15

5

8

10

12

Activity

• Go to

– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

– Try to be an adversary by inserting and finding elements
that would cause O(n) each time

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

13

Splay Tree Supported Operations

• Insert(x)

– Normal BST insert, then splay x

• Find(x)

– Attempt normal BST find(x) and splay last node visited

• If x is in the tree, then we splay x

• If x is not in the tree we splay the leaf node where our search ended

• FindMin(), FindMax()

– Walk to far left or right of tree, return that node's value and then splay that
node

• DeleteMin(), DeleteMax()

– Perform FindMin(), FindMax() [which splays the min/max to the root] then
delete that node and set root to be the non-NULL child of the min/max

• Remove(x)

– Find(x) splaying it to the top, then overwrite its value with is
successor/predecessor, deleting the successor/predecessor node

14

FindMin() / DeleteMin()
20

3012

15 255

3 10

8

Resulting Tree

Zig-Zig Zig

20

30

5

12

25

10

8

3

FindMin()

DeleteMin()

Resulting Tree

15

20

305

12 25

10

8

3

15

20

305

12 25

10

8

3

15

20

305

12 25

10

8

15

15

Remove(3)

Zig-Zag

Resulting

Tree

1

6

2

3

4

5

7

1

6

2

3

4

7

5

3

6

2

1

4 7

5

Zig-Zag

3

6

2

1

4 7

5

4

6

2

1

5 7

Copy successor or

predecessor to root

Delete successor

(Remove node or

reattach single child)

16

Top Down Splaying

• Rather than walking down the
tree to first find the value then
splaying back up, we can splay
on the way down

• We will be "pruning" the big
tree into two smaller trees as we
walk, cutting off the unused
pathways

17

Top-Down Splaying

T

2. Final Step (when

reach Target)

L R

T

L R
a b

ba

Root

T

1. Zig (If Target is in 2nd level)

b

aL R
Root

T

b

a

L
R

18

Top-Down Splaying
3. Zig-Zig

X

Y

Z b

c

X

Y

Zb

a

L R

a
X

Y

Z

b c

L

R
a

c

L R

Z

c

R

L

X

Y

ba

4. Zig-Zag

L R

b
X

Z

c

L Rb

X

Y

Za

c

Y

a

L R

b
Y

Z

c

L Rb

X

Y

Z c

a

X

a

19

Find(3)

Zig-Zag

1

6

2

3

4

5

7

Steps taken on

our journey to

find 3

- - 6

L R

b
Y

Z

c

L Rb

X

Y

Z c

a

X

a

1

L-Tree R-Tree L-Tree R-Tree

7
2

3

4

5

L R

b
X

Z

c

L Rb

X

Y

Za

c

Y

a

6

R-Tree

74

5

1

L-Tree

2

3

20

Find(3)
R-Tree

1

L-Tree

2

3

T

2. Final Step (when

reach Target)

L R

T

L R
a b

ba

6

74

5

1

2

6

74

5

3

Resulting tree from

bottom-up approach

3

6

2

1

4 7

5

Resulting tree after find

21

Insert(11)

20

3012

15 255

3 10

8

Original Resulting

Tree from Bottom-

up approach

20

30

12

15

25

11

10

5

3 8

- -

L-Tree R-Tree

5

3 10

8

-

L-Tree

12

20

15 30

25

R-Tree

10

5

3 8

12

20

15 30

25

R-Tree

11

L-Tree

22

Summary

• Splay trees don't enforce balance but are self-
adjusting to yield a balanced tree

• Splay trees provide efficient amortized time
operations

– A single operation may take O(n)

– m operations on tree with n elements => O(m(log n))

• Uses rotations to attempt balance

• Provides fast access to recently used keys

