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Sources / Reading

• Material for these slides was derived from the 
following sources

– https://www.cs.cmu.edu/~sleator/papers/self-
adjusting.pdf

– http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf

– http://www.cs.umd.edu/~meesh/420/Notes/MountNotes
/lecture10-splay.pdf

• Nice Visualization Tool

– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture10-splay.pdf
https://www.cs.usfca.edu/~galles/visualization/SplayTree.html
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Splay Tree Intro
• Another map/set implementation (storing keys or key/value pairs)

– Insert, Remove, Find

• Recall…To do m inserts/finds/removes on an AVLTree
w/ n elements would cost?
– O(m*log(n))

• Splay trees have a worst case find, insert, delete time of…
– O(n)

• However, they guarantee that if you do m operations on a splay 
tree with n elements that the total time is
– O(m*log(n)) [i.e. amortized time is O(log(n)]

• They have a further benefit that recently accessed elements will 
be near the top of the tree 
– In fact, the most recently accessed item is always at the top of the tree
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Splay Operation

• Splay means "spread"

• As you search for an item or after 
you insert an item we will perform a 
series of splay operations

• These operations will cause the 
desired node to always end up at the 
top of the tree

– A desirable side-effect is that accessing 
a key multiple times within a short time 
window will yield fast searches because 
it will be near the top

– See next slide on principle of locality
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Principle of Locality
• 2 dimensions of this principle: space & time

• Spatial Locality – Future accesses will likely cluster 
near current accesses
– Instructions and data arrays are sequential (they are all 

one after the next)

• Temporal Locality – Future accesses will likely be to 
recently accessed items
– Same code and data are repeatedly accessed (loops, 

subroutines, if(x > y) x++;

– 90/10 rule:  Analysis shows that usually 10% of the written 
instructions account for 90% of the executed instructions

• Splay trees help exploit temporal locality by 
guaranteeing recently accessed items near the top of 
the tree
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Splay Cases
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Find(1)
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Find(3)

• Notice the tree is starting to look at lot more 
balanced
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Worst Case

• Suppose you want to make the amortized time 
(averaged time over multiple calls to 
find/insert/remove) look bad, you might try to 
always access the ______________ node in the tree

– Deepest

• But splay trees have a property that as we keep 
accessing deep nodes the tree starts to balance and 
thus access to deep nodes start by costing O(n) but 
soon start costing O(log n)
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Insert(11)
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Insert(4)
20

3012

15 255

3 10

8

Resulting Tree

Zig-Zag Zig-Zig

20

3012

15 255

3 10

84

20

3012

15 254

3 5

8

10

20

30

25

4

3 12

15

5

8

10



12

Activity

• Go to 

– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

– Try to be an adversary by inserting and finding elements 
that would cause O(n) each time

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html
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Splay Tree Supported Operations

• Insert(x)

– Normal BST insert, then splay x

• Find(x)

– Attempt normal BST find(x) and splay last node visited

• If x is in the tree, then we splay x

• If x is not in the tree we splay the leaf node where our search ended

• FindMin(), FindMax()

– Walk to far left or right of tree, return that node's value and then splay that 
node

• DeleteMin(), DeleteMax()

– Perform FindMin(), FindMax() [which splays the min/max to the root] then 
delete that node and set root to be the non-NULL child of the min/max

• Remove(x)

– Find(x) splaying it to the top, then overwrite its value with is  
successor/predecessor, deleting the successor/predecessor node
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FindMin() / DeleteMin()
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Remove(3)
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Top Down Splaying

• Rather than walking down the 
tree to first find the value then 
splaying back up, we can splay 
on the way down

• We will be "pruning" the big 
tree into two smaller trees as we 
walk, cutting off the unused 
pathways
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Top-Down Splaying
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Top-Down Splaying
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Find(3)
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Find(3)
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Insert(11)
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Summary

• Splay trees don't enforce balance but are self-
adjusting to yield a balanced tree

• Splay trees provide efficient amortized time 
operations 

– A single operation may take O(n)

– m operations on tree with n elements => O(m(log n))

• Uses rotations to attempt balance

• Provides fast access to recently used keys


