
1

CSCI 104
Skip Lists

Mark Redekopp

2

Sources / Reading

• Material for these slides was derived from the
following sources

– http://courses.cs.vt.edu/cs2604/spring02/Projects
/1/Pugh.Skiplists.pdf

– http://www.cs.umd.edu/~meesh/420/Notes/Mou
ntNotes/lecture11-skiplist.pdf

http://courses.cs.vt.edu/cs2604/spring02/Projects/1/Pugh.Skiplists.pdf
http://courses.cs.vt.edu/cs2604/spring02/Projects/1/Pugh.Skiplists.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf

3

Skip List Intro
• Another map/set implementation (storing keys or key/value pairs)

– Insert, Remove, Find

• Remember the story of Goldilocks and the Three Bears
– Father's porridge was too hot

– Mother's porridge was too cold

– Baby Bear's porridge was just right

• Compare Set/Map implementations
– BST's were easy but could degenerate to O(n) operations with an

adversarial sequence of keys (too hot?)

– Balanced BSTs guarantee O(log(n)) operations but are more complex to
implement and may require additional memory overhead (too cold?)

– Skip lists are fairly simple to implement, fairly memory efficient, and offer
"expected" O(log(n)) operations (just right?)

• Skip lists are a probabilistic data structure so we expect O(log(n))

• Expectation of log(n) does not depend on keys but only random # generator

4

Skip List Visual
• Think of a skip list like a sorted linked list with shortcuts

(wormholes?)

• Given the skip list below with the links (arrows) below what
would be the fastest way to find if 28 is in the list?

2

H

E

A

D
6

7

9

13
15

18

21

25
28

NIL

5

Skip List Visual
• Think of a skip list like a sorted linked list with shortcuts

(wormholes?)

• Given the skip list below with the links (arrows) below what
would be the fastest way to find if 28 is in the list?
– Let p point to a node. Walk at level i until the desired search key is

between p->key and p->next->key, then descend to the level i-1 until you
find the value or hit the NIL (end node)

– NIL node is a special node whose stored key is BIGGER than any key we
might expect (i.e. MAXKEY+1 / +infinity)

2

H

E

A

D
6

7

9

13
15

18

21

25
28

NIL

6

Perfect Skip List
• How did we form this special linked list?

– We started with a normal linked list (level 0)

– Then we took every other node in level 0 (2nd node from
original list) and added them to level 1

– Then we took every other node in level 1 (4th node from the
original list) and raised it to level 2

– Then we took every other node) in level 2 (8th node from the
original list) and raised it to level 3

– There will be O(log2(n)) levels

2

H

E

A

D
6

7

9

13
15

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3

7

Search Time for Perfect Skip List
• How long would it take us to find an item or determine it

is not present in the list

– O(log(n))

• Proof
– At each level we visit at most 2 nodes

• At any node, x, in level i, you sit between two nodes (p,q) at level i+1 and
you will need to visit at most one other node in level i before descending

– There are O(log(n)) levels

– So we visit at most O(2*log(n)) levels = O(log(n))

2

H

E

A

D
6

7

9

13
15

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3
x

p q

8

The Problem w/ Perfect Skip Lists
• Remember in a perfect skip list

– Every 2nd node is raised to level 1

– Every 4th node is raised to level 2

– …

• What if I want to insert a new node or remove a node,
how many nodes would need their levels adjusted to
maintain the pattern described above?

– In the worst case, all n-1 remaining nodes

– The same is true of inserting…n-1 nodes may need to adjust

2

H

E

A

D
6

7

9

13
15

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3
x

p q

9

Quick Aside

• Imagine a game where if you flip a
coin and it comes up heads you get $1
and get to play again. If you get tails
you stop.

• What's the chance you win at least

– $1

– $2

– $3

• P($1)=1/2, P($2)=1/4, P($3)=1/8

10

Randomized Skip Lists

• Rather than strictly enforcing every other node of
level i be promoted to level i+1 we simply use
probability to give an "expectation" that every other
node is promoted

• Whenever a node is inserted we will promote it to the
next level with probability p (=1/2 for now)…we'll
keep promoting it while we get heads

• What's the chance we promote to level 1, 2, 3?

• Given n insertions, how many would you expect to be
promoted to:

– Level 1 = n/2, Level 2 = n/4, Level 3 = n/8

11

Randomized Skip List

• As nodes are inserted they are repeating trials of probability p
(stopping when the first unsuccessful outcome occurs)

• This means we will not have an "every other" node promotion
scheme, but the expected number of nodes at each level matches
the non-randomized version

• Note: This scheme introduces the chance of some very high levels
– We will usually cap the number of levels at some MAXIMUM value

– However the expected number of levels is still log2(n)

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3

15

Level 4

12

Worst Case

• What might a worst case skip list look like?
– All the same height

– Or just ascending or descending order of height

• These are all highly unlikely

H

E

A

D
7

9 13 15 25 28

NIL

Level 0

Level 1

Level 2

Level 3

Level 4

4
2

18 24

13

Analysis

• To analyze the search time with this
randomized approach let's start at
the node and walk backwards to the
head node counting our expected
number of steps

– Recall if we can move up a level we do so
that we take the "faster" path and only
move left if we can't move up

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3

15

Level 4

28 28

21

Option B: No

higher level, move

right

Option A:

If we can move up

we do

14

Analysis

• Probability of Option A: p
– Recall we added each level independently with probability p

• Probability of Option B: 1-p

• For this analysis let us define the top level at level
0 and the current level where we found our
search node as level k (expected max k = log2(n))

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 4

Level 3

Level 2

Level 1

15

Level 0

28 28

21

Option B: No

higher level, move

right

Option A:

If we can move up

we do

15

Analysis

• Define a recurrence relationship of the cost of
walking back to level 0

• Base case: C(0) = O(1)
– Only expect 1 node + head node at level 0

• Recursive case: C(k) = (1-p)(1+C(k)) + p(1+C(k-1))
– 1+C(k) = Option B and its probability is (1-p)

– 1+C(k-1) = Option A and its probability is p

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 4

Level 3

Level 2

Level 1

15

Level 0

28 28

21

Option B: No

higher level, move

right

Option A:

If we can move up

we do

C(k) =

1+C(k-1)

C(k) =

1+C(k)

16

Analysis

• Solve C(k) = (1-p)(1+C(k)) + p(1+C(k-1))
– C(k) = (1-p) + (1-p)C(k) + p + pC(k-1)

– pC(k) = 1 + pC(k-1)

– C(k) = 1/p + C(k-1)

– = 1/p + 1/p + C(k-2)

– = 1/p + 1/p + 1/p + C(k-3)

– = k/p

– = log2(N) / p = O(log2(N))

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 4

Level 3

Level 2

Level 1

15

Level 0

28 28

21

Option B: No

higher level, move

right

Option A:

If we can move up

we do

C(k) =

1+C(k-1)

C(k) =

1+C(k)

17

Node & Class Definition
• Each node has an array

of "forward" ("next")
pointers

• Head's key doesn't
matter as we'll never
compare it

• End's forward pointers
don't matter since its
key value is +INF

template < class K, class V >

struct SkipNode{

 K key;

 V value;

 SkipNode** forward; //array of ptrs

 SkipNode(K& k, V& v, int level){

 key = k; value = v;

 forward = new SkipNode*[level+1];

 } };

template < class K, class V >

class SkipList{

 int maxLevel; // data members

 SkipNode* head;

 SkipList(int max){

 maxLevel = max;

 head = new SkipNode(dummy,dummy,maxLevel);

 SkipNode* end =

 new SkipNode(INFINITY,dummy,maxLevel);

 for(int i=0; i < maxLevel; i++){

 header->forward[i] = end;

 } }

};

H

E

A

D

NIL

18

Search Pseudocode

• search(28) would
stop the for loop
with current
pointing at node
25, then take one
more step

2

H

E

A

D
6

7 9
13

18

21

25
28

NIL

Level 0

Level 1

Level 2

Level 3

15

Level 4

template < class K, class V >

SkipNode<K,V>* SkipList<K,V>::search(const Key& key){

 SkipNode<K,V>* current = head;

 for(int i=maxLevel; i >= 0; i--){

 while(current->forward[i]->key < key){

 current = current->forward[i];

 }

 }

 // will always stop on level 0 w/ current=node

 // just prior to the actual target node or End node

 current = current->forward[0];

 if(current->key == key) return current;

 else return NULL; // current was actually END node

}

19

Insert Pseudocode

• insert(25)

• As we walk we'll fill in
an "update" array of
the last nodes we
walked through at each
level since these will
need to have their
pointers updated

2

H

E

A

D
6

7 9
13

18

21

28

NIL

Level 0

Level 1

Level 2

Level 3

15

Level 4

template < class K, class V >

void SkipList<K,V>::insert(const Key& key,

 const Value& v){

 SkipNode<K,V>* current = head;

 vector<SkipNode<K,V>*> update(maxLevel+1);

 // perform typical search but fill in update array

 ...

 current = current->forward[0];

 if(current->key == key)

 { current->value = v; return; }

 else {

 int height = randomLevel();

 // Allocate new node, x

 for(int i=0; i < height; i++){

 x->forward[i] = update[i]->forward[i];

 update[i]->forward[i] = x;

} }

q

q

q

q

p

 update array p

q

20

Insert Pseudocode

• randomLevel returns a
height >h with
probability (1/ph)

2

H

E

A

D
6

7 9
13

18

21

28

NIL

Level 0

Level 1

Level 2

Level 3

15

Level 4

q

q

q

q

p

p

q

template < class K, class V >

void SkipList<K,V>::insert(const Key& key,

 const Value& v){

 SkipNode<K,V>* current = head;

 vector<SkipNode<K,V>*> update(maxLevel+1);

 // perform typical search but fill in update array

 ...

 current = current->forward[0];

 if(current->key == key)

 { current->value = v; return; }

 else {

 int height = randomLevel();

 // Allocate new node, x

 for(int i=0; i < height; i++){

 x->forward[i] = update[i]->forward[i];

 update[i]->forward[i] = x;

} }

int SkipList<K,V>::randomLevel()

{

 int height = 1;

 // assume rand() returns double in range [0,1)

 while(rand() < p && height < maxLevel)

 height++;

 return height;

}

25

 update

array

21

Summary

• Skip lists are a randomized data structure

• Provide "expected" O(log(n)) insert, remove,
and search

• Compared to the complexity of the code for
structures like an RB-Tree they are fairly easy
to implement

• In practice they perform quite well even
compared to more complicated structures like
balanced BSTs

