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Sources / Reading 

• Material for these slides was derived from the 
following sources 

– http://courses.cs.vt.edu/cs2604/spring02/Projects
/1/Pugh.Skiplists.pdf 

– http://www.cs.umd.edu/~meesh/420/Notes/Mou
ntNotes/lecture11-skiplist.pdf 

 

http://courses.cs.vt.edu/cs2604/spring02/Projects/1/Pugh.Skiplists.pdf
http://courses.cs.vt.edu/cs2604/spring02/Projects/1/Pugh.Skiplists.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
http://www.cs.umd.edu/~meesh/420/Notes/MountNotes/lecture11-skiplist.pdf
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Skip List Intro 
• Another map/set implementation (storing keys or key/value pairs) 

– Insert, Remove, Find 

• Remember the story of Goldilocks and the Three Bears 
– Father's porridge was too hot 

– Mother's porridge was too cold 

– Baby Bear's porridge was just right 

• Compare Set/Map implementations 
– BST's were easy but could degenerate to O(n) operations with an 

adversarial sequence of keys (too hot?) 

– Balanced BSTs guarantee O(log(n)) operations but are more complex to 
implement and may require additional memory overhead (too cold?) 

– Skip lists are fairly simple to implement, fairly memory efficient, and offer 
"expected" O(log(n)) operations (just right?) 

• Skip lists are a probabilistic data structure so we expect O(log(n))  

• Expectation of log(n) does not depend on keys but only random # generator 
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Skip List Visual 
• Think of a skip list like a sorted linked list with shortcuts 

(wormholes?) 

• Given the skip list below with the links (arrows) below what 
would be the fastest way to find if 28 is in the list? 
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Skip List Visual 
• Think of a skip list like a sorted linked list with shortcuts 

(wormholes?) 

• Given the skip list below with the links (arrows) below what 
would be the fastest way to find if 28 is in the list? 
– Let p point to a node.  Walk at level i until the desired search key is 

between p->key and p->next->key, then descend to the level i-1 until you 
find the value or hit the NIL (end node) 

– NIL node is a special node whose stored key is BIGGER than any key we 
might expect (i.e. MAXKEY+1 / +infinity) 
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Perfect Skip List 
• How did we form this special linked list? 

– We started with a normal linked list (level 0) 

– Then we took every other node in level 0 (2nd node from 
original list) and added them to level 1 

– Then we took every other node in level 1 (4th node from the 
original list) and raised it to level 2 

– Then we took every other node ) in level 2 (8th node from the 
original list) and raised it to level 3 

– There will be O(log2(n)) levels 
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Search Time for Perfect Skip List 
• How long would it take us to find an item or determine it 

is not present in the list 

– O(log(n)) 

• Proof 
– At each level we visit at most 2 nodes 

• At any node, x, in level i, you sit between two nodes (p,q) at level i+1 and 
you will need to visit at most one other node in level i before descending 

– There are O(log(n)) levels 

– So we visit at most O(2*log(n)) levels = O(log(n)) 
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The Problem w/ Perfect Skip Lists 
• Remember in a perfect skip list 

– Every 2nd node is raised to level 1 

– Every 4th node is raised to level 2 

– … 

• What if I want to insert a new node or remove a node, 
how many nodes would need their levels adjusted to 
maintain the pattern described above? 

– In the worst case, all n-1 remaining nodes 

– The same is true of inserting…n-1 nodes may need to adjust 
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Quick Aside 

• Imagine a game where if you flip a 
coin and it comes up heads you get $1 
and get to play again. If you get tails 
you stop. 

• What's the chance you win at least 

– $1 

– $2 

– $3 

• P($1)=1/2, P($2)=1/4, P($3)=1/8 
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Randomized Skip Lists 

• Rather than strictly enforcing every other node of 
level i be promoted to level i+1 we simply use 
probability to give an "expectation" that every other 
node is promoted 

• Whenever a node is inserted we will promote it to the 
next level with probability p (=1/2 for now)…we'll 
keep promoting it while we get heads 

• What's the chance we promote to level 1, 2, 3? 

• Given n insertions, how many would you expect to be 
promoted to: 

– Level 1 = n/2, Level 2 = n/4, Level 3 = n/8 



11 

Randomized Skip List 

• As nodes are inserted they are repeating trials of probability p 
(stopping when the first unsuccessful outcome occurs) 

• This means we will not have an "every other" node promotion 
scheme, but the expected number of nodes at each level matches 
the non-randomized version 

• Note: This scheme introduces the chance of some very high levels 
– We will usually cap the number of levels at some MAXIMUM value 

– However the expected number of levels is still log2(n) 
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Worst Case 

• What might a worst case skip list look like? 
– All the same height 

– Or just ascending or descending order of height  

• These are all highly unlikely 
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Analysis 

• To analyze the search time with this 
randomized approach let's start at 
the node and walk backwards to the 
head node counting our expected 
number of steps 

– Recall if we can move up a level we do so 
that we take the "faster" path and only 
move left if we can't move up 
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Analysis 

• Probability of Option A:  p 
– Recall we added each level independently with probability p 

• Probability of Option B: 1-p 

• For this analysis let us define the top level at level 
0 and the current level where we found our 
search node as level k (expected max k = log2(n)) 
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Analysis 

• Define a recurrence relationship of the cost of 
walking back to level 0 

• Base case: C(0) = O(1) 
– Only expect 1 node + head node at level 0 

• Recursive case: C(k) = (1-p)(1+C(k)) + p(1+C(k-1)) 
– 1+C(k) = Option B and its probability is (1-p) 

– 1+C(k-1) = Option A and its probability is p 
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Analysis 

• Solve C(k) = (1-p)(1+C(k)) + p(1+C(k-1)) 
– C(k) = (1-p) + (1-p)C(k) + p + pC(k-1) 

– pC(k) = 1 + pC(k-1) 

– C(k) = 1/p + C(k-1) 

–         = 1/p  +  1/p + C(k-2) 

–         = 1/p  +  1/p + 1/p + C(k-3) 

–         = k/p 

–         = log2(N) / p = O(log2(N)) 
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Node & Class Definition 
• Each node has an array 

of "forward" ("next") 
pointers 

• Head's key doesn't 
matter as we'll never 
compare it 

• End's forward pointers 
don't matter since its 
key value is +INF 

 

template < class K, class V > 

struct SkipNode{ 

 K key; 

 V value; 

 SkipNode** forward; //array of ptrs 

  

 SkipNode(K& k, V& v, int level){ 

   key = k;  value = v;  

   forward = new SkipNode*[level+1]; 

 } }; 

 

template < class K, class V > 

class SkipList{ 

 int maxLevel;    // data members 

 SkipNode* head;   

  

 SkipList(int max){ 

   maxLevel = max; 

   head = new SkipNode(dummy,dummy,maxLevel); 

   SkipNode* end = 

         new SkipNode(INFINITY,dummy,maxLevel); 

   for(int i=0; i < maxLevel; i++){ 

     header->forward[i] = end; 

  } } 

}; 
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Search Pseudocode 

• search(28) would 
stop the for loop 
with current 
pointing at node 
25, then take one 
more step  
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template < class K, class V > 

SkipNode<K,V>* SkipList<K,V>::search(const Key& key){ 

  SkipNode<K,V>* current = head; 

  for(int i=maxLevel; i >= 0; i--){ 

    while( current->forward[i]->key < key){ 

       current = current->forward[i]; 

    } 

  } 

  // will always stop on level 0 w/ current=node  

  //  just prior to the actual target node or End node 

  current = current->forward[0]; 

  if(current->key == key) return current; 

  else return NULL;  // current was actually END node 

} 
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Insert Pseudocode 

• insert(25)  

• As we walk we'll fill in 
an "update" array of 
the last nodes we 
walked through at each 
level since these will 
need to have their 
pointers updated 
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template < class K, class V > 

void SkipList<K,V>::insert(const Key& key,  

                           const Value& v){ 

  SkipNode<K,V>* current = head; 

  vector<SkipNode<K,V>*> update(maxLevel+1);  

  // perform typical search but fill in update array 

  ... 

  current = current->forward[0]; 

  if(current->key == key)  

    { current->value = v; return; } 

  else { 

    int height = randomLevel(); 

    // Allocate new node, x 

    for(int i=0; i < height; i++){ 

      x->forward[i] = update[i]->forward[i]; 

      update[i]->forward[i] = x; 

}   } 
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 update array p 
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Insert Pseudocode 

• randomLevel returns a 
height >h with 
probability (1/ph) 
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template < class K, class V > 

void SkipList<K,V>::insert(const Key& key,  

                           const Value& v){ 

  SkipNode<K,V>* current = head; 

  vector<SkipNode<K,V>*> update(maxLevel+1);  

  // perform typical search but fill in update array 

  ... 

  current = current->forward[0]; 

  if(current->key == key)  

    { current->value = v; return; } 

  else { 

    int height = randomLevel(); 

    // Allocate new node, x 

    for(int i=0; i < height; i++){ 

      x->forward[i] = update[i]->forward[i]; 

      update[i]->forward[i] = x; 

}   } 

int SkipList<K,V>::randomLevel() 

{ 

  int height = 1; 

  // assume rand() returns double in range [0,1) 

  while(rand() < p && height < maxLevel)  

    height++; 

  return height; 

} 

25 

 update 

array 
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Summary 

• Skip lists are a randomized data structure 

• Provide "expected" O(log(n)) insert, remove, 
and search 

• Compared to the complexity of the code for 
structures like an RB-Tree they are fairly easy 
to implement  

• In practice they perform quite well even 
compared to more complicated structures like 
balanced BSTs  


