
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Amortized Analysis

Aaron Cote

Mark Redekopp'

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A different form of runtime analysis

• Recall that a vector (from the STL) is implemented
using an array.

• What is the worst-case runtime for the pushback
function?
– Is it O(1)?
– If the array is full, we’ll need to double the size of the

array, which takes (n) time!
– It is correct to say that pushback takes worst-case
(n) runtime.

– But, this analysis seems rather unfair, given that the
worst-case will happen rarely, and at predictable
intervals.

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example

• You love going to Disneyland. You purchase an
annual pass for $240. You visit Disneyland once a
month for a year. Each time you go you spend $20
on food, etc.

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or
averaged) over the duration of its usefulness

• Often, an operation on a data structure will have
similar "irregular" costs (i.e. if we can prove the
worst case can't happen each call) that we can then
amortize over future calls

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Amortized Runtime

• We could accurately say that the average runtime for
pushback is O(1).
– This still doesn’t capture everything: that implies that if we get

bad luck, the average will be worse than O(1) [like a hash table]
– There is no luck involved: we know exactly how many inputs will

be required to produce the worst-case scenario, and it will
always be the same effect.

• Amortized Runtime is a blend between average-case and
worst-case. It is kind of the “worst-case average-case”.
– Use when it is provable that the worst-case runtime CAN'T

happen on each call

To use amortized analysis, usually some state must be maintained from one

call to the next and that state will determine when the worst case happens.

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A LOOK BACK: AMORTIZED
RUNTIME WITH VECTORS

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Amortized Run-time

• Used when it is impossible for the
worst case of an operation to
happen on each call (i.e. we can
prove after paying a high cost that
we will not have to pay that cost
again for some number of future
operations)
– Example: Resizing a vector

• We will see 3 methods of
performing amortized analysis

30 51 52 53 54

0 1 2 3 4

21push_back(21) =>

Old, full array

0 1 2 3 4 …

Double the size of

the array

9

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Amortized Runtime

• Method 1: Analyze all k operations

• If in the worst case, the first k operations take a
total (sum) of (m) time, then the average time

per operation is
1

𝑘
σ𝑘 𝜃(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘) = 𝜃(

𝑚

𝑘
).

– The amortized runtime chooses the number and
sequence of operations that produces the worst-
possible average runtime.

– It is like the “worst-case average-case”.

– Assume that the array starts at size 1, and you do n
inserts. What is the amortized runtime for pushback?

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pushback analysis, method 1

• Suppose we start at size 1 and double the array size when it
becomes full

• There will be a few expensive pushbacks when we have to resize
the array.

• When we have to resize and the array is of size, i, how costly is the
pushback?
– ________, where i is the current size of the array.

• If we started with an array size of 1, what values of i would cause us
to resize: ______________________________

• How many expensive pushbacks will there be over n pushbacks?
– _____________

0 1 2 3 4 5 6 8 97

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pushback analysis, method 1

• Suppose we start at size 1 and double the array size when it becomes full

• There will be a few expensive pushbacks, when we have to resize the array.

• When we have to resize and the array is of size, i, how costly is the pushback?
– (i), where i is the current size of the array.

• If we started with an array size of 1, what values of i would cause us to resize:
1, 2, 4, 8, 16, …

• How many expensive pushbacks will there be over n pushbacks?
– log n

• The total runtime/cost is:

(෍

𝑖=1

log 𝑛

2𝑖) + (𝑛 − log 𝑛) = (𝑛)

• The average is then
 𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝑛 𝑐𝑎𝑙𝑙𝑠
=  1

• So, the average time per operation is O(1).
Guaranteed!

Pushbacks

w/o resize.
Pushbacks

w/ resize.

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pushback analysis, Method 2

• Method 2: Analyze one "period/phase"
– Let a new "phase" start just after the array has resized from n/2 to n.

• Analyze the amortized runtime for an arbitrary phase:

– The array has just grown to size n, because we inserted Τ𝑛 2+ 1 things
leaving n/2 – 1 free locations.

– So we can insert Τ𝑛 2 − 1 more things in (1) time.

– On the next push back, we have to copy all n items to a new array (of
size 2n), which takes (n) time.

• Amortized runtime =

ൗ𝑛 2 − 1 ∙ 1 + 1 ∙ n

ൗ𝑛 2
= (1)

Pushbacks

w/o resize.

1 Pushback

w/ resize.

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pushback analysis, Method 3

• Method 3: Credit/Debit (Piggy Bank Method)
• Again, let a new "phase" start just after the array has

resized from n/2 to n.
• Every time we call pushback, we pay 3 dollars.

– Cheap operations only truly cost 1 dollar (to write the new
value), so each of the cheap operations saves us a net of $2
which we place in a piggy bank.

– When we get to an expensive operation, the last Τ𝑛 2 cheap
operations have each paid 2 extra dollars for a total of n dollars
saved up

– We need to copy over the n elements to a new larger array, so
we have one dollar for each item we need to copy.

– We always have enough money saved up!
– 3 dollars per pushback = (1), so the amortized runtime is

constant.

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Practice

• Let an integer, n, be represented as a Boolean array
(requiring log(n) bits). You are given an
increment() function

• What is the cost of incrementing the binary value?
• Each call to increment must visit the bits from right

to left until we flip a bit from 0 to 1
• The runtime depends on how many bits we must

visit
– Some increments (from 1010 to 1011, for example)

require only constant time.
– Other increments (from 01111111 to 10000000) take a

longer time.

• What is the worst-case runtime of our increment
function?
– (log n), all bits may need to flip in the worst case

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0

Dec.Bin.

n

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Amortized analysis of the Binary Increment

• Starting at the least significant (rightmost) bit
– If the current bit is a 0, we flip it and stop!

– Otherwise, we flip the 1 to a 0 and continue to the
next bit and repeat.

• Costs:
– Define our "cost" as 1 unit for each bit we flip (i.e.

every bit takes a single dollar to flip, from either 0
to 1 or 1 to 0)

– We will always flip a single 0 to a 1.

– We will flip a variable number of 1s to 0s.

• We will use the piggy bank method (method
3) to solve this.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Practice

• Recall: As stated, each time we call increment a single bit will
flip from 0 to 1

• Each time we call the increment function, we will pay a
constant $2

– $1 for the bit that will flip from 0 to 1, and

– $1 more in advance for when that bit eventually flips back to 0)

– All of the bits start at 0.

– Whenever we flip a bit from 0 to 1, we give both of our 2
dollars towards that bit. 1 dollar to cover the immediate costs,
and the other dollar to be stored for when it eventually flips
from 1 to 0.

– A bit cannot flip from 1 to 0 if hadn't first flipped 0 to 1…so
we'll never be in debt.

– Since $2 = (1), this takes amortized constant time!

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

0
1
1
2
1
2
2
3
1
2
2
3
2
3
3
4
2

Balance

-
1
2
1
3
1
2
1
4
1
2
1
3
1
2
1
4

Cost

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

An Alternate Approach – Expected Value

• We might also let X be a random variable
defined to be the number of bits that flip (i.e.
cost of) on a call to increment and compute E[X]
(recall E X = σ𝒙𝒙 ∙ 𝒑(𝑿 = 𝒙))
– X=1, P(X=1) = 1/2 or All calls cost >= 1

– X=2, P(X=2) = 1/4 or 1/2 calls cost >= 2 (at least 1 more)

– X=3, P(X=3) = 1/8 or 1/4 calls cost >= 3 (at least 1 more)

– …

– 𝑬 𝑿 = 𝟏 ∙
𝟏

𝟐
+ 𝟐 ∙

𝟏

𝟒
+ 𝟑 ∙

𝟏

𝟖
+ 𝟒 ∙

𝟏

𝟏𝟔
+⋯+ 𝑳𝒂𝒔𝒕 𝒕𝒆𝒓𝒎 ≤ 𝟐

– or

– 𝑬 𝑿 = 𝟏 ∙ 𝟏 + 𝟏 ∙
𝟏

𝟐
+ 𝟏 ∙

𝟏

𝟒
+ 𝟏 ∙

𝟏

𝟖
+⋯ ≤ σ𝒊=𝟎

∞ 𝟏

𝟐𝒊
≤ 𝟐

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

-
1
2
1
3
1
2
1
4
1
2
1
3
1
2
1
4

