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A different form of runtime analysis

• Recall that a vector (from the STL) is implemented 
using an array.

• What is the worst-case runtime for the pushback 
function?
– Is it O(1)?
– If the array is full, we’ll need to double the size of the 

array, which takes (n) time!
– It is correct to say that pushback takes worst-case 
(n) runtime.

– But, this analysis seems rather unfair, given that the 
worst-case will happen rarely, and at predictable
intervals.
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Example

• You love going to Disneyland.  You purchase an 
annual pass for $240.  You visit Disneyland once a 
month for a year.  Each time you go you spend $20 
on food, etc.  

– What is the cost of a visit?

• Your annual pass cost is spread or "amortized" (or 
averaged) over the duration of its usefulness

• Often, an operation on a data structure will have 
similar "irregular" costs (i.e. if we can prove the 
worst case can't happen each call) that we can then 
amortize over future calls
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Amortized Runtime

• We could accurately say that the average runtime for 
pushback is O(1).
– This still doesn’t capture everything: that implies that if we get 

bad luck, the average will be worse than O(1) [like a hash table]
– There is no luck involved: we know exactly how many inputs will 

be required to produce the worst-case scenario, and it will 
always be the same effect.

• Amortized Runtime is a blend between average-case and 
worst-case.  It is kind of the “worst-case average-case”.
– Use when it is provable that the worst-case runtime CAN'T 

happen on each call

To use amortized analysis, usually some state must be maintained from one 

call to the next and that state will determine when the worst case happens.
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A LOOK BACK: AMORTIZED 
RUNTIME WITH VECTORS
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Amortized Run-time

• Used when it is impossible for the 
worst case of an operation to 
happen on each call (i.e. we can 
prove after paying a high cost that 
we will not have to pay that cost 
again for some number of future 
operations)
– Example: Resizing a vector

• We will see 3 methods of 
performing amortized analysis
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21push_back(21) =>

Old, full array

0 1 2 3 4 …

Double the size of 

the array
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Amortized Runtime

• Method 1: Analyze all k operations

• If in the worst case, the first k operations take a 
total (sum) of (m) time, then the average time 

per operation is 
1

𝑘
σ𝑘 𝜃(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘) = 𝜃(

𝑚

𝑘
).

– The amortized runtime chooses the number and 
sequence of operations that produces the worst-
possible average runtime.

– It is like the “worst-case average-case”.

– Assume that the array starts at size 1, and you do n 
inserts.  What is the amortized runtime for pushback?
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Pushback analysis, method 1

• Suppose we start at size 1 and double the array size when it 
becomes full

• There will be a few expensive pushbacks when we have to resize 
the array.

• When we have to resize and the array is of size, i, how costly is the 
pushback?
– ________, where i is the current size of the array.

• If we started with an array size of 1, what values of i would cause us 
to resize: ______________________________

• How many expensive pushbacks will there be over n pushbacks?
– _____________

0 1 2 3 4 5 6 8 97
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Pushback analysis, method 1

• Suppose we start at size 1 and double the array size when it becomes full

• There will be a few expensive pushbacks, when we have to resize the array.

• When we have to resize and the array is of size, i, how costly is the pushback?
– (i), where i is the current size of the array.

• If we started with an array size of 1, what values of i would cause us to resize: 
1, 2, 4, 8, 16, …

• How many expensive pushbacks will there be over n pushbacks?
– log n

• The total runtime/cost is:

(෍

𝑖=1

log 𝑛

2𝑖) + (𝑛 − log 𝑛) = (𝑛)

• The average is then 
 𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝑛 𝑐𝑎𝑙𝑙𝑠
=  1

• So, the average time per operation is O(1).  
Guaranteed! 

Pushbacks 

w/o resize.
Pushbacks 

w/ resize.
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Pushback analysis, Method 2

• Method 2: Analyze one "period/phase"
– Let a new "phase" start just after the array has resized from n/2 to n.

• Analyze the amortized runtime for an arbitrary phase:

– The array has just grown to size n, because we inserted Τ𝑛 2+ 1 things 
leaving n/2 – 1 free locations.  

– So we can insert Τ𝑛 2 − 1 more things in (1) time.

– On the next push back, we have to copy all n items to a new array (of 
size 2n), which takes (n) time.

• Amortized runtime = 

ൗ𝑛 2 − 1 ∙ 1 + 1 ∙ n

ൗ𝑛 2
= (1)

Pushbacks 

w/o resize.

1 Pushback 

w/ resize.
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Pushback analysis, Method 3

• Method 3: Credit/Debit (Piggy Bank Method)
• Again, let a new "phase" start just after the array has 

resized from n/2 to n.
• Every time we call pushback, we pay 3 dollars.

– Cheap operations only truly cost 1 dollar (to write the new 
value), so each of the cheap operations saves us a net of $2 
which we place in a piggy bank.

– When we get to an expensive operation, the last Τ𝑛 2 cheap 
operations have each paid 2 extra dollars for a total of n dollars 
saved up

– We need to copy over the n elements to a new larger array, so 
we have one dollar for each item we need to copy. 

– We always have enough money saved up!
– 3 dollars per pushback = (1), so the amortized runtime is 

constant.
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Practice

• Let an integer, n, be represented as a Boolean array 
(requiring log(n) bits).  You are given an 
increment() function 

• What is the cost of incrementing the binary value?  
• Each call to increment must visit the bits from right 

to left until we flip a bit from 0 to 1 
• The runtime depends on how many bits we must 

visit
– Some increments (from 1010 to 1011, for example) 

require only constant time.
– Other increments (from 01111111 to 10000000) take a 

longer time.

• What is the worst-case runtime of our increment 
function?
– (log n), all bits may need to flip in the worst case
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Amortized analysis of the Binary Increment

• Starting at the least significant (rightmost) bit
– If the current bit is a 0, we flip it and stop!  

– Otherwise, we flip the 1 to a 0 and continue to the 
next bit and repeat.

• Costs:
– Define our "cost" as 1 unit for each bit we flip (i.e.

every bit takes a single dollar to flip, from either 0 
to 1 or 1 to 0)

– We will always flip a single 0 to a 1.  

– We will flip a variable number of 1s to 0s.

• We will use the piggy bank method (method 
3) to solve this.
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Practice

• Recall: As stated, each time we call increment a single bit will 
flip from 0 to 1

• Each time we call the increment function, we will pay a 
constant $2

– $1 for the bit that will flip from 0 to 1, and 

– $1 more in advance for when that bit eventually flips back to 0)

– All of the bits start at 0.

– Whenever we flip a bit from 0 to 1, we give both of our 2 
dollars towards that bit.  1 dollar to cover the immediate costs, 
and the other dollar to be stored for when it eventually flips 
from 1 to 0.

– A bit cannot flip from 1 to 0 if hadn't first flipped 0 to 1…so 
we'll never be in debt.

– Since $2 = (1), this takes amortized constant time!
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An Alternate Approach – Expected Value

• We might also let X be a random variable 
defined to be the number of bits that flip (i.e.
cost of) on a call to increment and compute E[X] 
(recall E X = σ𝒙𝒙 ∙ 𝒑(𝑿 = 𝒙) )
– X=1, P(X=1) = 1/2    or    All calls cost >= 1

– X=2, P(X=2) = 1/4    or    1/2 calls cost >= 2 (at least 1 more)

– X=3, P(X=3) = 1/8    or    1/4 calls cost >= 3 (at least 1 more)

– …

– 𝑬 𝑿 = 𝟏 ∙
𝟏
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