
1

CSCI 104
Alternative Map and Set

Implementations
Mark Redekopp

David Kempe

2

BLOOM FILTERS
An imperfect set…

3

Set Review

• Recall the operations a set performs…
– Insert(key)

– Remove(key)

– Contains(key) : bool (a.k.a. find())

• We can think of a set as just a map without
values…just keys

• We can implement a set using
– List

• O(n) for some of the three operations

– (Balanced) Binary Search Tree

• O(log n) insert/remove/contains

– Hash table

• O(1) insert/remove/contains

"Jordan"

"Frank" "Percy"

"Anne" "Greg" "Tommy"

4

Bloom Filter Idea
• Suppose you are looking to buy the next hot consumer device.

You can only get it in stores (not online). Several stores who carry
the device are sold out. Would you just start driving from store to
store?

• You'd probably call ahead and see if they have any left.

• If the answer is "NO"…
– There is no point in going…it's not like one will magically appear at the

store

– You save time

• If the answer is "YES"
– It's worth going…

– Will they definitely have it when you get there?

– Not necessarily…they may sell out while you are on your way

• But overall this system would at least help you avoid wasting time

5

Bloom Filter Idea
• A Bloom filter is a set such that "contains()" will quickly answer…

– "No" correctly (i.e. if the key is not present)

– "Yes" with a chance of being incorrect (i.e. the key may not be present but it might still
say "yes")

• Why would we want this?

– A Bloom filter usually sits in front of an actual set/map

– Suppose that set/map is EXPENSIVE to access

• Maybe there is so much data that the set/map doesn't fit in memory and sits on a disk drive
or another server as is common with most database systems

– Disk/Network access = ~milliseconds

– Memory access = ~nanoseconds

– The Bloom filter holds a "duplicate" of the keys but uses FAR less memory and thus is
cheap to access (because it can fit in memory)

– We ask the Bloom filter if the set contains the key

• If it answers "No" we don't have to spend time search the EXPENSIVE set

• If it answers "Yes" we can go search the EXPENSIVE set

6

Bloom Filter Explanation
• A Bloom filter is…

– A hash table of individual bits (Booleans: T/F)

– A set of hash functions, {h1(k), h2(k), … hs(k)}

• Insert()
– Apply each hi(k) to the key

– Set a[hi(k)] = True

• Contains()
– Apply each hi(k) to the key

– Return True if all a[hi(k)] = True

– Return False otherwise

– In other words, answer is "Maybe" or "No"

• May produce "false positives"

• May NOT produce "false negatives"

• We will ignore removal for now

0 0 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

0

9

0

10

insert("Tommy")

h1(k) h2(k) h3(k)

0 1 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

1

9

0

10

insert("Jill")

h1(k) h2(k) h3(k)

0 1 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

1

9

0

10

contains("John")

h1(k) h2(k) h3(k)

a

a

a

7

Implementation Details
• Bloom filter's require only a bit per location,

but modern computers read/write a full byte
(8-bits) at a time or an int (32-bits) at a time

• To not waste space and use only a bit per entry
we'll need to use bitwise operators

• For a Bloom filter with N-bits declare an array
of N/8 unsigned char's (or N/32 unsigned ints)
– unsigned char filter8[ceil(N/8)];

• To set the k-th entry,
– filter[k/8] |= (1 << (k%8));

• To check the k-th entry
– if (filter[k / 8] & (1 << (k%8)))

0 0 0 1 1

7 6 5 4 3

0

2

1 0

1 0

0

15

0

14

0

13

filter[0]

0 0 0 0 0

12 11 10 9 8

filter[1]

8

Probability of False Positives
• What is the probability of a false positive?

• Let's work our way up to the solution
– Probability that one hash function selects or does not select a

location x assuming "good" hash functions

• P(hi(k) = x) = ____________

• P(hi(k) ≠ x) = ____________

– Probability that all j hash functions don't select a location

• _____________

– Probability that all s-entries in the table have not selected
location x

• _____________

– Probability that a location x HAS been chosen by the previous s
entries

• _______________

– Math factoid: For small y, ey = 1+y (substitute y = -1/m)

• _______________

– Probability that all of the j hash functions find a location True
once the table has s entries

• _______________

0 0 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

0

9

0

10

h1(k) h2(k) h3(k)

a

9

Probability of False Positives
• What is the probability of a false positive?

• Let's work our way up to the solution
– Probability that one hash function selects or does not select a

location x assuming "good" hash functions

• P(hi(k) = x) = 1/m

• P(hi(k) ≠ x) = [1 – 1/m]

– Probability that all j hash functions don't select a location

• [1 – 1/m]j

– Probability that all s-entries in the table have not selected
location x

• [1 – 1/m]sj

– Probability that a location x HAS been chosen by the previous s
entries

• 1 – [1 – 1/m]sj

– Math factoid: For small y, ey = 1+y (substitute y = -1/m)

• 1 – e-sj/m

– Probability that all of the j hash functions find a location True
once the table has s entries

• (1 – e-sj/m)j

0 0 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

0

9

0

10

h1(k) h2(k) h3(k)

a

10

Probability of False Positives
• Probability that all of the j hash functions find a location

True once the table has s entries
– (1 – e-sj/m)j

• Define α = s/m = loading factor

– (1 – e-αj)j

• First "tangent": Is there an optimal number of hash
functions (i.e. value of j)
– Use your calculus to take derivative and set to 0

– Optimal # of hash functions, j = ln(2) / α

• Substitute that value of j back into our probability above
– (1 – e-αln(2)/α)ln(2)/α = (1 – e-ln(2))ln(2)/α = (1 – 1/2) ln(2)/α = 2-ln(2)/α

• Final result for the probability that all of the j hash
functions find a location True once the table has s
entries: 2-ln(2)/α

– Recall 0 ≤ α ≤ 1

0 0 0 1 1

0 1 2 3 4

0

5

1 0

6 7

0

8

0

9

0

10

h1(k) h2(k) h3(k)

a

11

Sizing Analysis
• Can also use this analysis to answer or a more "useful"

question…

• …To achieve a desired probability of false positive, what
should the table size be to accommodate s entries?
– Example: I want a probability of p=1/1000 for false positives when I

store s=100 elements

– Solve 2-m*ln(2)/s < p

• Flip to 2m*ln(2)/s ≥ 1/p

• Take log of both sides and solve for m

• m ≥ [s*ln(1/p)] / ln(2)2 ≈ 2s*ln(1/p) because ln(2)2 = 0.48 ≈ ½

– So for p=.001 we would need a table of m=14*s since ln(1000) ≈ 7

• For 100 entries, we'd need 1400 bits in our Bloom filter

– For p = .01 (1% false positives) need m=9.2*s (9.2 bits per key)

– Recall: Optimal # of hash functions, j = ln(2) / α

• So for p=.01 and α = 1/(9.2) would yield j ≈ 7 hash functions

12

TRIES

13

Review of Set/Map Again
• Recall the operations a set or map performs…

– Insert(key)

– Remove(key)

– find(key) : bool/iterator/pointer

– Get(key) : value [Map only]

• We can implement a set or map using a binary search tree

– Search = O(_________)

• But what work do we have to do
at each node?

– Compare (i.e. string compare)

– How much does that cost?

• Int = O(1)

• String = O(m) where m is
length of the string

– Thus, search costs O(____________)

"help"

"hear" "ill"

"heap" "help" "in"

14

Review of Set/Map Again

• Recall the operations a set or map performs…

– Insert(key)

– Remove(key)

– find(key) : bool/iterator/pointer

– Get(key) : value [Map only]

• We can implement a set or map using a binary search tree

– Search = O(log(n))

• But what work do we have to do
at each node?

– Compare (i.e. string compare)

– How much does that cost?

• Int = O(1)

• String = O(m) where m is
length of the string

– Thus, search costs O(m * log(n))

"help"

"hear" "ill"

"heap" "help" "in"

15

Review of Set/Map Again

• We can implement a set or map using a hash table

– Search = O(1)

• But what work do we have to do once we hash?

– Compare (i.e. string compare)

– How much does that cost?
• Int = O(1)

• String = O(m) where m is
length of the string

– Thus, search costs O(m)

heal

help

ill

hear

0 1 2 3 4 5

3.45

"help"

Conversion

function

2

16

Tries
• Assuming unique keys, can we still

achieve O(m) search but not have
collisions?
– O(m) means the time to compare is

independent of how many keys
(i.e. n) are being stored and only depends
on the length of the key

• Trie(s) (often pronounced "try" or
"tries") allow O(m) retrieval
– Sometimes referred to as a radix tree or

prefix tree

• Consider a trie for the keys
– "HE", "HEAP", "HEAR", "HELP", "ILL", "IN"

-

H I

E

A

R P

L

P

L N

L

H I

E

A L

P R P

L

L N

17

Tries
• Rather than each node storing a full key

value, each node represents a prefix of
the key

• Highlighted nodes indicate terminal
locations
– For a map we could store the associated

value of the key at that terminal location

• Notice we "share" paths for keys that
have a common prefix

• To search for a key, start at the root
consuming one unit (bit, char, etc.) of the
key at a time
– If you end at a terminal node, SUCCESS

– If you end at a non-terminal node, FAILURE

-

H I

E

A

R P

L

P

L N

L

H I

E

A L

P R P

L

L N

18

Tries
• To search for a key, start at the root

consuming one unit (bit, char, etc.) of the
key at a time
– If you end at a terminal node, SUCCESS

– If you end at a non-terminal node, FAILURE

• Examples:
– Search for "He"

– Search for "Help"

– Search for "Head"

• Search takes O(m) where m = length of
key
– Notice this is the same as a hash table

-

H I

E

A

R P

L

P

L N

L

H I

E

A L

P R P

L

L N

A "value" type

could be stored for

each non-terminal

node

19

Your Turn

• Construct a trie to store the set of words

– Ten

– Tent

– Then

– Tense

– Tens

– Tenth

20

Application: IP Lookups
• Network routers form the backbone of the

Internet

• Incoming packets contain a destination IP
address (128.125.73.60)

• Routers contain a "routing table" mapping
some prefix of destination IP address to
output port
– 128.125.x.x => Output port C

– 128.209.32.x => Output port B

– 128.209.44.x => Output port D

– 132.x.x.x => Output port A

• Keys = Match the longest prefix
– Keys are unique

• Value = Output port

Octet 1 Octet 2 Octet 3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 11010001 00101100 D

10000100 A

21

IP Lookup Trie
• A binary trie implies that the

– Left child is for bit '0'

– Right child is for bit '1'

• Routing Table:

– 128.125.x.x => Output port C

– 128.209.32.x => Output port B

– 128.209.44.x => Output port
D

– 132.x.x.x => Output port A

…

-

-

- -

A

…

1

0

0

0

0 1

0 0

0

0 1

C

Octet 1 Octet 2 Octet 3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 11010001 00101100 D

10000100 A

0

22

Structure of Trie Nodes
• What do we need to store in each

node?

• Depends on how "dense" or
"sparse" the tree is?

• Dense (most characters used) or
small size of alphabet of possible key
characters
– Array of child pointers

– One for each possible character in the
alphabet

• Sparse
– (Linked) List of children

– Node needs to store ______

V*

template < class V >

struct TrieNode{

 V* value; // NULL if non-terminal

 TrieNode<V>* children[26];

};

template < class V >

struct TrieNode{

 char key;

 V* value;

 TrieNode<V>* next;

 TrieNode<V>* children;

};

a z b …

h r

c
f

s

c f

r

s

h

23

Search
• Search consumes one

character at a time until
– The end of the search key

• If value pointer exists, then
the key is present in the map

– Or no child pointer exists in
the TrieNode

• Insert
– Search until key is consumed

but trie path already exists

• Set v pointer to value

– Search until trie path is NULL,
extend path adding new
TrieNodes and then add value
at terminal

V* search(char* k, TrieNode<V>* node)

{

 while(*k != '\0' && node != NULL){

 node = node->children[*k – 'a'];

 k++;

 }

 if(node){

 return node->v;

 }

}

void insert(char* k, Value& v)

{

 TrieNode<V>* node = root;

 while(*k != '\0' && node != NULL){

 node = node->children[*k – 'a']; k++;

 }

 if(node){

 node->v = new Value(v);

 }

 else {

 // create new nodes in trie

 // to extend path

 // updating root if trie is empty

 }

}

24

SUFFIX TREES (TRIES)

25

Prefix Trees (Tries) Review

• What problem does a prefix tree solve
– Lookups of keys (and possible associated values)

• A prefix tree helps us match 1-of-n keys
– "He"

– "Help"

– "Hear"

– "Heap"

– "In"

– "Ill"

• Here is a slightly different problem:
– Given a large text string, T, can we find certain substrings or answer

other queries about patterns in T

– A suffix tree (trie) can help here

26

Suffix Trie Slides

• http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixtrees.pdf

27

Suffix Trie Wrap-Up

• How many nodes can a suffix trie have for text, T,
with length |T|?

– |T|2

– Can we do better?

• Can compress paths without branches into a single
node

• Do we need a suffix trie to find substrings or answer
certain queries?

– We could just take a string and search it for a certain
query, q

– But it would be slow => O(|T|) and not O(|q|)

28

What Have We Learned

• [Key Point]: Think about all the data structures we've been
learning?
– There is almost always a trade-off of memory vs. speed

• i.e. Space vs. time

– Most data structures just exploit different points on that time-space
tradeoff continuum

– Think about searches in your project…Do we need a map?

– No, we could just search all items each time a keyword is provided

• But think how slow that would be

– So we build a data structure (i.e. a map) that replicates data and takes
a lot of memory space…

– …so that we can find data faster

