
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Hash Tables & Functions

Mark Redekopp

David Kempe

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

REVIEW

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Tables - Insert
• To insert a key, we hash the (potential non-

integer) key to an integer and place the key (and
value) at that index in the array

• The conversion function is known as a hash
function, h(k)

• A hash table implements a set/map ADT
– insert(key) / insert(key,value)

– remove(key)

– lookup/find(key) => value

• Question to address: What should we do if two
keys ("Jill" and "Erin") hash to the same location
(aka a COLLISION)?

• Recall: A "good" hash is one where items hash to a
given location with probability 1/m

Bo

2.7

Ann

3.5

Jill

3.7
-

Tim

3.8

0 1 2 3 4 5

insert("Jill",3.7)

Conversion /

Hash function

2

A map implemented as a hash table

(key=name, value = GPA)

"Jill"

Hash table parameter definitions:
n = # of keys entered (=4 above)

m = tableSize (=6 above)

𝜶 =
𝒏

𝒎
= Loading factor =

(4/6 above)

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Resolving Collisions

• Collisions occur when two keys, k1 and k2, are not
equal, but h(k1) = h(k2)

• Collisions are inevitable so we have to handle them

• Methods

– Closed Addressing (e.g. buckets or chaining): Keys MUST live
in the location they hash to (thus requiring multiple locations
at each hash table index)

– Open Addressing (aka probing): Keys MAY NOT live in the
location they hash to (only requiring a single 1D array as the
hash table)
• Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-

hashing

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Closed Addressing Methods
• Make each entry in the table a fixed-

size ARRAY (bucket) or LINKED LIST
(chain) of items/entries so all keys
that hash to a location can reside at
that index

– Close Addressing => A key will reside
in the location it hashes to (it's just
that there may be many keys (and
values) stored at that location

• Buckets

– How big should you make each array?

– Too much wasted space

• Chaining

– Each entry is a linked list (or,
potentially, vector)

TimBucket 0

1

2

3

4

m-1

k,v

0

1

2

3

4

m-1

…

key, value

…

…

Jill Erin …

…

…

…

Bo …

Tim 3.8

Bo 2.7

Erin 3.2Jill 3.7

Array of Linked

Lists

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Probing Technique Summary

• If h(k) is occupied with another key, then probe

• Let i be number of failed probes

• Linear Probing

– h(k,i) = (h(k)+i) mod m

• Quadratic Probing

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, h(k)+22, h(k)+32, …

• Double Hashing

– Pick a second hash function h2(k) in addition to the
primary hash function, h1(k)

– h(k,i) = [h1(k) + i*h2(k)] mod m

0

Jill1

Tom2

Ana3

4

…

5

m-1

key, valueTom

h(k)

0

Jill1

Tom2

3

4

…

5

m-1

Ana

key, valueTom

h(k)

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Expected Chain Length
• In a hash table that uses chaining, recall that loading factor, α,

defined as:
– (n=number of items in the table) / (m=tableSize) => α = n / m

– It is just the fraction of locations currently occupied

• For chaining, α, can be greater than 1
– This is because n > m

– For given values of n and m, let L = the length of a chain at some location =
number of items that hashed to that location

– What is E[L]? (Hint: Consider an item hashing to location x as a Bernoulli trial
• P(success) = P(1 key hashes to some location x) = 1/m

– E[L] = n/m = α

• Best to keep the loading factor, α, below 1
– Resize and rehash contents if load factor too large (using new hash function)

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Efficiency Summary

• Suboperations

– Compute h(k) should be O(1)

– Array access of table[h(k)] = O(1)

– Probing or search of chain = O(??)

• In a hash table using chaining, the runtime of each
operation is at most the expected length of the chain
(i.e. α) that the item hashes to

– Find = O(α) = O(1) since α should be kept constant

– Insert = O(α) = O(1) since α should be kept constant

– Remove = O(α) = O(1) since α should be kept constant

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of A Few Things Probability and
Number Theory Taught Us

• Quadratic probing: If we use a prime table size, m, the first
m/2 probes are guaranteed to go to distinct locations.

• Double hashing: If we use a prime table size, m, and limit our
2nd hash function to a non-multiple of m, we will visit ALL m
distinct locations in our probe sequence
– Theorem: If p is prime and 0 < 𝑎 < 𝑝, then:

𝟎 ∙ 𝒂 , 𝟏 ∙ 𝒂 , 𝟐 ∙ 𝒂 , … , [(𝒑 − 𝟏) ∙ 𝒂] are all distinct (i.e. a
permutation of 0,1,…,(p-1))

• What is the expected length, L, of a chain at some location in
the hash table?
– E[L] = n/m = α

• What is the expected number of empty buckets?

– k ∙
𝑘−1

𝑘

𝑛

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

HASH FUNCTIONS

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Possible Hash Functions

• Define n = # of entries stored, m = Table Size, k is non-negative
integer key

• h(k) = 0 ?

• h(k) = k mod m ?

• h(k) = rand() mod m ?

• Rules of thumb

– The hash function should examine the entire search key, not just a few
digits or a portion of the key

– When modulo hashing is used, the base should be prime

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Function Goals

• A "perfect hash function" should map each of the n
keys to a unique location in the table

– Recall that we will size our table to be larger than the
expected number of keys…i.e. n < m

– Perfect hash functions are not practically attainable

• A "good" hash function or Universal Hash Function

– Is easy and fast to compute

– Scatters data uniformly throughout the hash table
• P(h(k) = x) = 1/m (i.e. pseudorandom)

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Universal Hash Example

• Suppose we want a universal hash for words in English language
• First, we select a prime table size, m
• For any word, w made of the sequence of letters w1 w2 … wn we

translate each letter into its position in the alphabet (0-25).
• Example: "bad" = 1 0 3

• Suppose the length of the longest word in the English alphabet
has length z (or we set the maximum length of a key to z)

• Choose a random number (key), R, of length z, R = r1 r2 … rz

• The random key is created once when the hash table is created and kept
• Example: say z=35 (longest word in English is 35 characters). Pick 35

random numbers: 28 4 15 … 71

• Hash function: ℎ 𝑤 = σ𝑖=1
𝑙𝑒𝑛(𝑤)

𝑤𝑖 ∙ 𝑟𝑖 𝑚𝑜𝑑 𝒎

• Multiply the number corresponding to each letter times the selected
random value and sum them all up

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Universal Hash Example

• First, we select a prime table size, m
• For any word, w made of the sequence of letters w1 w2 … wn we

translate each letter into its position in the alphabet (0-25).
• Example: "bad" = 1 0 3

• Choose a random number (key), R, of length z, R = r1 r2 … rz

• The random key is created once when the hash table is created and kept

• Example: say z=35 (longest word in English is 35 characters). Pick 35 random
numbers: 28 4 15 … 71

• Hash function: ℎ 𝑤 = σ𝑖=1
𝑙𝑒𝑛(𝑤)

𝑤𝑖 ∙ 𝑟𝑖 𝑚𝑜𝑑 𝒎

• If w = "hello" then h(w) = (h*28 + e*4 + l*15 + l*18 + o*9) mod m
• Plug in alphabet position (or ASCII values in reality) for each letter being multiplied above

• Notice if w = "olleh" we will get a very different h(w)
• w = "olleh" then h(w) = (o*28 + l*4 + l*15 + e*18 + h*9) mod m

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Collisions Occur

• How early (on which insertion) can a collision occur (if we had an adversary)? 2

• When is a collision guaranteed to occur (the latest insertion)? m+1

• If n > m, is every entry in the table used?

– No. Some may be blank?

• If n > m, is it possible we haven't had a collision?

– No. Some entries have hashed to the same location according to the Pigeon Hole
Principle

– We can only avoid a collision when n < m

• Collisions are likely even if n < m
(by the birthday paradox)

– Given n random values chosen from a range
of size m, we would expect a duplicate random
value in O(m1/2) trials

• For actual birthdays where m = 365,
we expect a duplicate within the first 23 trials

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Taking a Step Back

• In most applications the UNIVERSE of possible keys >> m
– To store each of the ~40K USC students suppose we choose a table

size of m ≈ 100K = 105 so α ≈ 0.4

– But because we use 10-digit USC ID's, there are 1010 potential keys

– That means for each of the 100K table locations there are 1010/105

keys that map to any given location (by the generalized pigeon-hole
principle)

– What if we got REALLY unlucky, or worse, we had an adversary who
fed us those 1010/105 keys in an attempt to degrade performance

• How can we try to mitigate the chances of this poor
performance?
– One option: Switch hash functions periodically

– Second option: choose a hash function that makes engineering a
sequence of collisions EXTREMELY hard (aka 1-way hash function)

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One-Way Hash Functions

• Why all this mention of an adversary?

• Fact of Life: What's hard to accomplish when you actually try is even
harder to accomplish when you do not try

• So if we have a hash function that would make it hard to find keys that
collide (i.e. map to a given location, i) when we are trying to be an
adversary…

• …then under normal circumstances (when we are NOT trying to be
adversarial) it would be very rare to accidentally produce a sequence of
keys that leads to a lot of collisions

• We call those hash functions, 1-way or cryptographic hash functions

• Main Point: If we can find a function where even though our adversary
knows our function, they still can't find keys that will collide, then we
would expect good performance under general operating conditions

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One-Way Hash Function
• h(k) = c = k mod 11

– What would be an adversarial sequence of keys to make my hash table perform
poorly?

• It's easy to compute the inverse, h-1(c) => k

– Write an expression to enumerate an adversarial sequence?

– 11*i + c for i=0,1,2,3,…

• We want hash function, h(k), where an inverse function,
h-1(c) is hard to compute

– Said differently, we want a function where given a location, c, in the table it
would be hard to find a key that maps to that location

• We call these functions one-way hash functions or cryptographic hash
functions

– Given c, it is hard to find an input, k, such that h(k) = c

– More on other properties and techniques for devising these in a future course

– Popular examples: MD5, SHA-1, SHA-2

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Uses of Cryptographic Hash Functions
• Hash functions can be used for purposes other than hash tables

• If we no longer use a hash table, the hash code can be in a much larger range
– We can make the hash code much longer (64-bits => 16E+18 options,

128-bits => 256E+36 options) so that chances of collisions are hopefully miniscule (more
chance of a hard drive error than a collision)

• We can use a hash function to produce a "digest" (signature, fingerprint,
checksum) of a longer message

– It acts as a unique "signature" of the original content

• The hash code can be used for purposes of authentication and validation

– Send a message, m, and h(m) over a network.

– The receiver gets the message, m', and computes h(m') which should match the
value of h(m) that was attached

– This ensures it wasn't corrupted accidentally or changed on purpose

Transmitter
Receiver

Is M' = M?
Check if h(M)=h(M')

M, h(M) M', h(M)

http://people.csail.mit.edu/shaih/pubs/Cryptographic-Hash-Functions.ppt

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Example: Passwords
• Should a company just store passwords plain text?

– No

• We could encrypt the passwords
but here's an alternative

• Don't store the passwords!

• Instead, store the hash codes of the passwords.

– What's the implication?

– Some alternative password might just hash to the same location but that
probability can be set to be very small by choosing a "good" hash function

• Remember the idea that if its hard to do when you try, the chance that it naturally
happens is likely smaller

– When someone logs in just hash the password they enter and see if it matches
the hashcode.

• If someone gets into your system and gets the hash codes, does that
benefit them?
– No!

User, h(Pass)
ttrojan : 182938193364

Ttrojan

password

h(k)

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Collisions Occur

• How early (on which insertion) can a collision occur (if we had an adversary)? 2

• When is a collision guaranteed to occur (the latest insertion)? m+1

• If n > m, is every entry in the table used?

– No. Some may be blank?

• If n > m, is it possible we haven't had a collision?

– No. Some entries have hashed to the same location according to the pigeon Hole
Principle

– We can only avoid a collision when n < m

• Collisions are likely even if n < m
(by the birthday paradox)

– Given n random values chosen from a range
of size m, we would expect a duplicate random
value in O(m1/2) trials

• For actual birthdays where m = 365,
we expect a duplicate within the first 23 trials

	Slide 1: CSCI 104 Hash Tables & Functions
	Slide 2: Review
	Slide 3: Hash Tables - Insert
	Slide 4: Resolving Collisions
	Slide 5: Closed Addressing Methods
	Slide 6: Probing Technique Summary
	Slide 7: Expected Chain Length
	Slide 8: Hash Efficiency Summary
	Slide 9: Review of A Few Things Probability and Number Theory Taught Us
	Slide 10: Hash Functions
	Slide 11: Possible Hash Functions
	Slide 12: Hash Function Goals
	Slide 13: Universal Hash Example
	Slide 14: Universal Hash Example
	Slide 15: When Collisions Occur
	Slide 16: Taking a Step Back
	Slide 17: One-Way Hash Functions
	Slide 18: One-Way Hash Function
	Slide 19: Uses of Cryptographic Hash Functions
	Slide 20: Another Example: Passwords
	Slide 21: Solutions
	Slide 22: When Collisions Occur

