

CSCI 104 Hash Tables & Functions

Mark Redekopp David Kempe

REVIEW

Hash Tables - Insert

- To insert a key, we hash the (potential noninteger) key to an integer and place the key (and value) at that index in the array
- The conversion function is known as a *hash function, h(k)*
- A hash table implements a set/map ADT
 - insert(key) / insert(key,value)
 - remove(key)
 - lookup/find(key) => value
- **Question to address**: What should we do if two keys ("Jill" and "Erin") hash to the same location (aka a **COLLISION**)?
- Recall: A "good" hash is one where items hash to a given location with probability 1/m

School of Engineering

A map implemented as a hash table (key=name, value = GPA)

Hash table parameter definitions: n = # of keys entered (=4 above) m = tableSize (=6 above) $\alpha = \frac{n}{m}$ = Loading factor = (4/6 above)

Resolving Collisions

- Collisions occur when two keys, k1 and k2, are not equal, but h(k1) = h(k2)
- Collisions are inevitable so we have to handle them
- Methods
 - Closed Addressing (e.g. buckets or chaining): Keys MUST live in the location they hash to (thus requiring multiple locations at each hash table index)
 - Open Addressing (aka probing): Keys MAY NOT live in the location they hash to (only requiring a single 1D array as the hash table)
 - Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Doublehashing

Closed Addressing Methods

- Make each entry in the table a fixedsize ARRAY (bucket) or LINKED LIST (chain) of items/entries so all keys that hash to a location can reside at that index
 - Close Addressing => A key will reside in the location it hashes to (it's just that there may be many keys (and values) stored at that location

Buckets

- How big should you make each array?
- Too much wasted space
- Chaining
 - Each entry is a linked list (or, potentially, vector)

	,			
Bucket 0	Tim			
1				
2	Jill	Erin		
3				
4				
m-1	Во			

5

Probing Technique Summary

- If h(k) is occupied with another key, then probe
- Let i be number of failed probes
- Linear Probing
 - $h(k,i) = (h(k)+i) \mod m$
- Quadratic Probing
 - $h(k,i) = (h(k)+i^2) \mod m$
 - If h(k) occupied, then check h(k)+ 1^2 , h(k)+ 2^2 , h(k)+ 3^2 , ...
- Double Hashing
 - Pick a second hash function h₂(k) in addition to the primary hash function, h₁(k)
 - $h(k,i) = [h_1(k) + i^*h_2(k)] \mod m$

6

Expected Chain Length

- In a hash table that uses chaining, recall that loading factor, α, defined as:
 - (n=number of items in the table) / (m=tableSize) => α = n / m
 - It is just the fraction of locations currently occupied
- For chaining, α , can be greater than 1
 - This is because n > m
 - For given values of n and m, let L = the length of a chain at some location = number of items that hashed to that location
 - What is E[L]? (Hint: Consider an item hashing to location x as a Bernoulli trial
 - P(success) = P(1 key hashes to some location x) = 1/m
 - $E[L] = n/m = \alpha$
- Best to keep the loading factor, α , below 1
 - Resize and rehash contents if load factor too large (using new hash function)

Hash Efficiency Summary

- Suboperations
 - Compute h(k) should be O(1)
 - Array access of table[h(k)] = O(1)
 - Probing or search of chain = O(??)
- In a hash table using chaining, the runtime of each operation is at most the expected length of the chain (i.e. α) that the item hashes to
 - Find = $O(\alpha) = O(1)$ since α should be kept constant
 - Insert = $O(\alpha) = O(1)$ since α should be kept constant
 - Remove = $O(\alpha) = O(1)$ since α should be kept constant

Review of A Few Things Probability and Engineering Number Theory Taught Us

- Quadratic probing: If we use a prime table size, m, the first
 m/2 probes are guaranteed to go to distinct locations.
- Double hashing: If we use a prime table size, m, and limit our 2nd hash function to a non-multiple of m, we will visit ALL m distinct locations in our probe sequence
 - Theorem: If p is prime and 0 < a < p, then:
 [0 ⋅ a], [1 ⋅ a], [2 ⋅ a], ..., [(p − 1) ⋅ a] are all distinct (i.e. a permutation of 0,1,...,(p-1))
- What is the expected length, L, of a chain at some location in the hash table?
 - $E[L] = n/m = \alpha$
- What is the expected number of empty buckets?

$$- \mathbf{k} \cdot \left(\frac{k-1}{k}\right)^n$$

School of Engineering

HASH FUNCTIONS

Possible Hash Functions

- Define n = # of entries stored, m = Table Size, k is non-negative integer key
- h(k) = 0 ?
- h(k) = k mod m ?
- h(k) = rand() mod **m** ?
- Rules of thumb
 - The hash function should examine the entire search key, not just a few digits or a portion of the key
 - When modulo hashing is used, the base should be prime

Hash Function Goals

- A "perfect hash function" should map each of the n keys to a unique location in the table
 - Recall that we will size our table to be larger than the expected number of keys...i.e. n < m
 - Perfect hash functions are not practically attainable
- A "good" hash function or Universal Hash Function
 - Is easy and fast to compute
 - Scatters data uniformly throughout the hash table
 - P(h(k) = x) = 1/m (i.e. **pseudorandom**)

Universal Hash Example

School of Engineering

- Suppose we want a universal hash for words in English language
- First, we select a prime table size, m
- For any word, w made of the sequence of letters w₁ w₂ ... w_n we translate each letter into its position in the alphabet (0-25).
 - Example: "bad" = 1 0 3
- Suppose the length of the longest word in the English alphabet has length z (or we set the maximum length of a key to z)
- Choose a random number (key), R, of length z, R = r₁ r₂ ... r_z
 - The random key is created once when the hash table is created and kept
 - Example: say z=35 (longest word in English is 35 characters). Pick 35 random numbers: 28 4 15 ... 71
- Hash function: $h(w) = \left(\sum_{i=1}^{len(w)} w_i \cdot r_i\right) \mod m$
 - Multiply the number corresponding to each letter times the selected random value and sum them all up

Universal Hash Example

- First, we select a prime table size, m
- For any word, w made of the sequence of letters w₁ w₂ ... w_n we translate each letter into its position in the alphabet (0-25).
 - Example: "bad" = 1 0 3
- Choose a random number (key), R, of length z, R = r₁ r₂ ... r_z
 - The random key is created once when the hash table is created and kept
 - Example: say z=35 (longest word in English is 35 characters). Pick 35 random numbers: 28 4 15 ... 71
- Hash function: $h(w) = \left(\sum_{i=1}^{len(w)} w_i \cdot r_i\right) \mod m$
 - If w = "hello" then h(w) = (h*28 + e*4 + l*15 + l*18 + o*9) mod m
 - Plug in alphabet position (or ASCII values in reality) for each letter being multiplied above
 - Notice if w = "olleh" we will get a very different h(w)
 - w = "olleh" then h(w) = (o*28 + l*4 + l*15 + e*18 + h*9) mod m

When Collisions Occur

- How early (on which insertion) can a collision occur (if we had an adversary)? 2
- When is a collision guaranteed to occur (the latest insertion)? m+1
- If **n** > **m**, is every entry in the table used?
 - No. Some may be blank?
- If n > m, is it possible we haven't had a collision?
 - No. Some entries have hashed to the same location according to the Pigeon Hole
 Principle
 - We can only avoid a collision when n < m
- Collisions are likely even if n < m (by the birthday paradox)
 - Given n random values chosen from a range of size m, we would expect a duplicate random value in O(m^{1/2}) trials
 - For actual birthdays where m = 365, we expect a duplicate within the first 23 trials

15

Taking a Step Back

16

- In most applications the UNIVERSE of possible keys >> m
 - − To store each of the ~40K USC students suppose we choose a table size of m ≈ 100K = 10^5 so α ≈ 0.4
 - But because we use 10-digit USC ID's, there are 10¹⁰ potential keys
 - That means for each of the 100K table locations there are 10¹⁰/10⁵ keys that map to any given location (by the generalized pigeon-hole principle)
 - What if we got REALLY unlucky, or worse, we had an adversary who fed us those $10^{10}/10^5$ keys in an attempt to degrade performance
- How can we try to mitigate the chances of this poor performance?
 - One option: Switch hash functions periodically
 - Second option: choose a hash function that makes engineering a sequence of collisions *EXTREMELY* hard (aka 1-way hash function)

One-Way Hash Functions

School of Engineering

- Why all this mention of an adversary?
- Fact of Life: What's hard to accomplish when you actually try is even harder to accomplish when you do not try
- So if we have a hash function that would make it hard to find keys that collide (i.e. map to a given location, i) when we are *trying* to be an adversary...
- ...then under normal circumstances (when we are NOT trying to be adversarial) it would be very rare to accidentally produce a sequence of keys that leads to a lot of collisions
- We call those hash functions, **1-way or cryptographic hash functions**
- Main Point: If we can find a function where even though our adversary knows our function, they still can't find keys that will collide, then we would expect good performance under general operating conditions

One-Way Hash Function

- h(k) = c = k mod 11
 - What would be an adversarial sequence of keys to make my hash table perform poorly?
- It's easy to compute the inverse, $h^{-1}(c) => k$
 - Write an expression to enumerate an adversarial sequence?
 - 11*i + c for i=0,1,2,3,...
- We want hash function, h(k), where an inverse function, h⁻¹(c) is <u>hard</u> to compute
 - Said differently, we want a function where given a location, c, in the table it would be hard to find a key that maps to that location
- We call these functions one-way hash functions or cryptographic hash functions
 - Given c, it is hard to find an input, k, such that h(k) = c
 - More on other properties and techniques for devising these in a future course
 - Popular examples: MD5, SHA-1, SHA-2

Uses of Cryptographic Hash Functions

19

- Hash functions can be used for purposes other than hash tables
- If we no longer use a hash table, the hash code can be in a much larger range
 - We can make the hash code much longer (64-bits => 16E+18 options, 128-bits => 256E+36 options) so that chances of collisions are hopefully miniscule (more chance of a hard drive error than a collision)
- We can use a hash function to produce a "digest" (signature, fingerprint, checksum) of a longer message
 - It acts as a unique "signature" of the original content
- The hash code can be used for purposes of authentication and validation
 - Send a message, m, and h(m) over a network.
 - The receiver gets the message, m', and computes h(m') which should match the value of h(m) that was attached
 - This ensures it wasn't corrupted accidentally or changed on purpose

Another Example: Passwords

- Should a company just store passwords plain text?
 - No
- We could encrypt the passwords but here's an alternative
- Don't store the passwords!
- Instead, store the hash codes of the passwords.
 - What's the implication?
 - Some alternative password might just hash to the same location but that probability can be set to be very small by choosing a "good" hash function
 - Remember the idea that if its hard to do when you try, the chance that it naturally happens is likely smaller
 - When someone logs in just hash the password they enter and see if it matches the hashcode.
- If someone gets into your system and gets the hash codes, does that benefit them?
 - No!

School of Engineering

20

School of Engineering

SOLUTIONS

When Collisions Occur

- How early (on which insertion) can a collision occur (if we had an adversary)? 2
- When is a collision guaranteed to occur (the latest insertion)? m+1
- If **n** > **m**, is every entry in the table used?
 - No. Some may be blank?
- If n > m, is it possible we haven't had a collision?
 - No. Some entries have hashed to the same location according to the pigeon Hole
 Principle
 - We can only avoid a collision when n < m
- Collisions are likely even if n < m (by the birthday paradox)
 - Given n random values chosen from a range of size m, we would expect a duplicate random value in O(m^{1/2}) trials
 - For actual birthdays where m = 365, we expect a duplicate within the first 23 trials

22