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Hash Tables - Insert
• To insert a key, we hash the (potential non-

integer) key to an integer and place the key (and 
value) at that index in the array

• The conversion function is known as a hash 
function, h(k)

• A hash table implements a set/map ADT
– insert(key) / insert(key,value)

– remove(key)

– lookup/find(key) => value

• Question to address:  What should we do if two 
keys ("Jill" and "Erin") hash to the same location 
(aka a COLLISION)?

• Recall: A "good" hash is one where items hash to a 
given location with probability 1/m
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A map implemented as a hash table

(key=name, value = GPA)
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Hash table parameter definitions:
n = # of keys entered (=4 above)

m = tableSize (=6 above)
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Resolving Collisions

• Collisions occur when two keys, k1 and k2, are not 
equal, but h(k1) = h(k2)

• Collisions are inevitable so we have to handle them

• Methods

– Closed Addressing (e.g. buckets or chaining):  Keys MUST live 
in the location they hash to (thus requiring multiple locations 
at each hash table index)

– Open Addressing (aka probing): Keys MAY NOT live in the 
location they hash to (only requiring a single 1D array as the 
hash table)
• Methods:  1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-

hashing
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Closed Addressing Methods
• Make each entry in the table a fixed-

size ARRAY (bucket) or LINKED LIST 
(chain) of items/entries so all keys 
that hash to a location can reside at 
that index

– Close Addressing => A key will reside 
in the location it hashes to (it's just 
that there may be many keys (and 
values) stored at that location

• Buckets

– How big should you make each array?  

– Too much wasted space

• Chaining

– Each entry is a linked list (or, 
potentially, vector)
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Probing Technique Summary

• If h(k) is occupied with another key, then probe

• Let i be number of failed probes

• Linear Probing

– h(k,i) = (h(k)+i) mod m

• Quadratic Probing

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, h(k)+22, h(k)+32, …

• Double Hashing 

– Pick a second hash function h2(k) in addition to the 
primary hash function, h1(k)

– h(k,i) = [ h1(k) + i*h2(k) ] mod m
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Expected Chain Length
• In a hash table that uses chaining, recall that loading factor, α, 

defined as:  
– (n=number of items in the table) / (m=tableSize) => α = n / m

– It is just the fraction of locations currently occupied

• For chaining, α, can be greater than 1
– This is because n > m

– For given values of n and m, let L = the length of a chain at some location = 
number of items that hashed to that location 

– What is E[L]? (Hint: Consider an item hashing to location x as a Bernoulli trial
• P(success) = P(1 key hashes to some location x) = 1/m

– E[L] = n/m = α

• Best to keep the loading factor, α, below 1
– Resize and rehash contents if load factor too large (using new hash function)
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Hash Efficiency Summary

• Suboperations

– Compute h(k) should be O(1)

– Array access of table[h(k)] = O(1)

– Probing or search of chain = O(??)

• In a hash table using chaining, the runtime of each 
operation is at most the expected length of the chain 
(i.e. α ) that the item hashes to 

– Find = O(α ) = O(1) since α should be kept constant

– Insert = O(α ) = O(1) since α should be kept constant

– Remove = O(α ) = O(1) since α should be kept constant



9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review of A Few Things Probability and 
Number Theory  Taught Us

• Quadratic probing:  If we use a prime table size, m, the first 
m/2 probes are guaranteed to go to distinct locations.

• Double hashing: If we use a prime table size, m, and limit our 
2nd hash function to a non-multiple of m, we will visit ALL m
distinct locations in our probe sequence
– Theorem: If p is prime and 0 < 𝑎 < 𝑝, then:

𝟎 ∙ 𝒂 , 𝟏 ∙ 𝒂 , 𝟐 ∙ 𝒂 , … , [(𝒑 − 𝟏) ∙ 𝒂] are all distinct (i.e. a 
permutation of 0,1,…,(p-1))

• What is the expected length, L, of a chain at some location in 
the hash table?
– E[L] = n/m = α

• What is the expected number of empty buckets?

– k ∙
𝑘−1

𝑘

𝑛
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HASH FUNCTIONS
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Possible Hash Functions

• Define n = # of entries stored, m = Table Size, k is non-negative 
integer key

• h(k) = 0 ? 

• h(k) = k mod m ?

• h(k) = rand() mod m ?

• Rules of thumb

– The hash function should examine the entire search key, not just a few  
digits or a portion of the key

– When modulo hashing is used, the base should be prime
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Hash Function Goals

• A "perfect hash function" should map each of the n
keys to a unique location in the table 

– Recall that we will size our table to be larger than the 
expected number of keys…i.e. n < m

– Perfect hash functions are not practically attainable

• A "good" hash function or Universal Hash Function

– Is easy and fast to compute

– Scatters data uniformly throughout the hash table
• P( h(k) = x ) = 1/m   (i.e. pseudorandom)
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Universal Hash Example

• Suppose we want a universal hash for words in English language
• First, we select a prime table size, m
• For any word, w made of the sequence of letters w1 w2 … wn we 

translate each letter into its position in the alphabet (0-25). 
• Example: "bad" = 1 0 3

• Suppose the length of the longest word in the English alphabet 
has length z (or we set the maximum length of a key to z)

• Choose a random number (key), R, of length z, R = r1 r2 … rz

• The random key is created once when the hash table is created and kept
• Example: say z=35 (longest word in English is 35 characters).  Pick 35 

random numbers:  28  4  15  …  71

• Hash function: ℎ 𝑤 = σ𝑖=1
𝑙𝑒𝑛(𝑤)

𝑤𝑖 ∙ 𝑟𝑖 𝑚𝑜𝑑 𝒎

• Multiply the number corresponding to each letter times the selected 
random value and sum them all up
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Universal Hash Example

• First, we select a prime table size, m
• For any word, w made of the sequence of letters w1 w2 … wn we 

translate each letter into its position in the alphabet (0-25). 
• Example: "bad" = 1 0 3

• Choose a random number (key), R, of length z, R = r1 r2 … rz

• The random key is created once when the hash table is created and kept

• Example: say z=35 (longest word in English is 35 characters).  Pick 35 random 
numbers:  28  4  15  …  71

• Hash function: ℎ 𝑤 = σ𝑖=1
𝑙𝑒𝑛(𝑤)

𝑤𝑖 ∙ 𝑟𝑖 𝑚𝑜𝑑 𝒎

• If w = "hello" then h(w) = (h*28 + e*4 + l*15 + l*18 + o*9) mod m
• Plug in alphabet position (or ASCII values in reality) for each letter being multiplied above

• Notice if w = "olleh" we will get a very different h(w)
• w = "olleh" then h(w) = (o*28 + l*4 + l*15 + e*18 + h*9) mod m
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When Collisions Occur

• How early (on which insertion) can a collision occur (if we had an adversary)? 2

• When is a collision guaranteed to occur (the latest insertion)? m+1

• If n > m, is every entry in the table used?

– No. Some may be blank?

• If n > m, is it possible we haven't had a collision?

– No. Some entries have hashed to the same location according to the Pigeon Hole 
Principle

– We can only avoid a collision when n < m

• Collisions are likely even if n < m 
(by the birthday paradox)

– Given n random values chosen from a range
of size m, we would expect a duplicate random
value in O(m1/2) trials

• For actual birthdays where m = 365, 
we expect a duplicate within the first 23 trials
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Taking a Step Back

• In most applications the UNIVERSE of possible keys >> m
– To store each of the ~40K USC students suppose we choose a table 

size of m ≈ 100K = 105 so α ≈ 0.4

– But because we use 10-digit USC ID's, there are 1010 potential keys

– That means for each of the 100K table locations there are 1010/105

keys that map to any given location (by the generalized pigeon-hole 
principle)

– What if we got REALLY unlucky, or worse, we had an adversary who 
fed us those 1010/105 keys in an attempt to degrade performance 

• How can we try to mitigate the chances of this poor 
performance?
– One option:  Switch hash functions periodically

– Second option: choose a hash function that makes engineering a 
sequence of collisions EXTREMELY hard (aka 1-way hash function)
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One-Way Hash Functions

• Why all this mention of an adversary?

• Fact of Life:  What's hard to accomplish when you actually try is even 
harder to accomplish when you do not try

• So if we have a hash function that would make it hard to find keys that 
collide (i.e. map to a given location, i) when we are trying to be an 
adversary…

• …then under normal circumstances (when we are NOT trying to be 
adversarial) it would be very rare to accidentally produce a sequence of 
keys that leads to a lot of collisions

• We call those hash functions, 1-way or cryptographic hash functions

• Main Point: If we can find a function where even though our adversary 
knows our function, they still can't find keys that will collide, then we 
would expect good performance under general operating conditions
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One-Way Hash Function
• h(k) = c = k mod 11

– What would be an adversarial sequence of keys to make my hash table perform 
poorly?

• It's easy to compute the inverse, h-1(c) => k 

– Write an expression to enumerate an adversarial sequence?

– 11*i + c   for i=0,1,2,3,…

• We want hash function, h(k), where an inverse function, 
h-1(c) is hard to compute

– Said differently, we want a function where given a location, c, in the table it 
would be hard to find a key that maps to that location

• We call these functions one-way hash functions or cryptographic hash 
functions

– Given c, it is hard to find an input, k, such that h(k) = c

– More on other properties and techniques for devising these in a future course

– Popular examples: MD5, SHA-1, SHA-2
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Uses of Cryptographic Hash Functions
• Hash functions can be used for purposes other than hash tables

• If we no longer use a hash table, the hash code can be in a much larger range
– We can make the hash code much longer (64-bits => 16E+18 options, 

128-bits => 256E+36 options) so that chances of collisions are hopefully miniscule  (more 
chance of a hard drive error than a collision)

• We can use a hash function to produce a "digest" (signature, fingerprint, 
checksum) of a longer message

– It acts as a unique "signature" of the original content 

• The hash code can be used for purposes of authentication and validation

– Send a message, m, and h(m) over a network.  

– The receiver gets the message, m', and computes h(m') which should match the 
value of h(m) that was attached

– This ensures it wasn't corrupted accidentally or changed on purpose

Transmitter
Receiver

Is M' = M? 
Check if h(M)=h(M')

M, h(M) M', h(M)

http://people.csail.mit.edu/shaih/pubs/Cryptographic-Hash-Functions.ppt
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Another Example: Passwords
• Should a company just store passwords plain text?

– No

• We could encrypt the passwords
but here's an alternative

• Don't store the passwords!

• Instead, store the hash codes of the passwords.

– What's the implication?

– Some alternative password might just hash to the same location but that 
probability can be set to be very small by choosing a "good" hash function

• Remember the idea that if its hard to do when you try, the chance that it naturally 
happens is likely smaller

– When someone logs in just hash the password they enter and see if it matches 
the hashcode.

• If someone gets into your system and gets the hash codes, does that 
benefit them? 
– No!

User, h(Pass)
ttrojan : 182938193364

Ttrojan

password

h(k)
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SOLUTIONS
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When Collisions Occur

• How early (on which insertion) can a collision occur (if we had an adversary)? 2

• When is a collision guaranteed to occur (the latest insertion)? m+1

• If n > m, is every entry in the table used?

– No. Some may be blank?

• If n > m, is it possible we haven't had a collision?

– No. Some entries have hashed to the same location according to the pigeon Hole 
Principle

– We can only avoid a collision when n < m

• Collisions are likely even if n < m 
(by the birthday paradox)

– Given n random values chosen from a range
of size m, we would expect a duplicate random
value in O(m1/2) trials

• For actual birthdays where m = 365, 
we expect a duplicate within the first 23 trials
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