CSCl 104
Hash Tables & Functions

Mark Redekopp
David Kempe

i, TS(“Viterbi -

School of Engineering

REVIEW

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (S C Viterbi (2
Hash Tables - Insert

* Toinsert a key, we hash the (potential non- insert("3ill",3.7)5
integer) key to an integer and place the key (and "3411"
value) at that index in the array

School of Engineering

Conversion /

* The conversion function is known as a hash Hash function

function, h(k)

* A hash table implements a set/map ADT j
— insert(key) / insert(key,value) 0 1 2 3 4 5
— remove(key) Bo Ann ~ [Tim
— lookup/find(key) => value 27135 K 38

* Question to address: What should we do if two A maaég@s;“rﬁgtiiliz a *(‘Sas:)tab'e
keys ("Jill" and "Erin") hash to the same location y=hAme,)
(aka a COLLISION)?

« Recall: A "good" hash is one where items hash to : Hash table parameter definitions:

given location with probability 1/m n = # of keys e'_"tered (=4 above)
m = tableSize (=6 above)

a = % = Loading factor =
(4/6 above)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Resolving Collisions

e Collisions occur when two keys, k1 and k2, are not
equal, but h(k1) = h(k2)

e Collisions are inevitable so we have to handle them

e Methods

— Closed Addressing (e.g. buckets or chaining): Keys MUST live
in the location they hash to (thus requiring multiple locations
at each hash table index)

— Open Addressing (aka probing): Keys MAY NOT live in the

location they hash to (only requiring a single 1D array as the
hash table)

* Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-
hashing

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -

School of Engineering

Closed Addressing I\/Ikgthods

* Make each entry in the table a fixed- BucketO | Tim
size ARRAY (bucket) or LINKED LIST 1
(chain) of items/entries so all keys 2 | JW] Ein
that hash to a location can reside at 3
that index 4
— Close Addressing => A key will reside
in the location it hashes to (it's just m-1 | Bo

that there may be many keys (and

values) stored at that location
Array of Linked

* Buckets Lists key, value
— How big should you make each array? 0 Tim | 3.8
— Too much wasted space 1
* Chaining 2 Jin | 3.7 Erin | 3.2
— Each entry is a linked list (or, 3
potentially, vector) 4
m-1 Bo | 2.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi C©
Probing Technique Summary

Tom key, value
* If h(k) is occupied with another key, then probe 0
* Letibe number of failed probes . GMB
2 Tom
* Linear Probing 3 Ana
— h(k,i) = (h(k)+i) mod m A
* Quadratic Probing 5
— h(k,i) = (h(k)+i?) mod m
— If h(k) occupied, then check h(k)+1?, h(k)+22, h(k)+3?, ... m-1
* Double Hashing Tom key, value
— Pick a second hash function h,(k) in addition to the 0
primary hash function, h (k) 1 ® J3ill
— h(k,i) = [hy(k) +*hy(k)] mod m 2 Tom
3
4
) Ana

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m '1

i, TS(“Viterbi -

* In a hash table that uses chaining, recall that loading factor, q,
defined as:
— (n=number of items in the table) / (m=tableSize) =>a=n/m
— Itis just the fraction of locations currently occupied

* For chaining, a, can be greater than 1

— This is because n > m

— For given values of n and m, let L = the length of a chain at some location =
number of items that hashed to that location

— What is E[L]? (Hint: Consider an item hashing to location x as a Bernoulli trial
* P(success) = P(1 key hashes to some location x) = 1/m

— E[L]=n/m =«
* Best to keep the loading factor, a, below 1

— Resize and rehash contents if load factor too large (using new hash function)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Efficiency Summary

e Suboperations
— Compute h(k) should be O(1)
— Array access of table[h(k)] = O(1)
— Probing or search of chain = O(??)

* In a hash table using chaining, the runtime of each
operation is at most the expected length of the chain
(i.e. a) that the item hashes to
— Find = O(a) = O(1) since a should be kept constant
— Insert = O(a) = O(1) since a should be kept constant
— Remove = 0(a) = O(1) since a should be kept constant

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (JSC Viterbi (2
Review of A Few Things Probability ard

Number Theory Taught Us

* Quadratic probing: If we use a prime table size, m, the first
m/2 probes are guaranteed to go to distinct locations.

* Double hashing: If we use a prime table size, m, and limit our
2nd hash function to a non-multiple of m, we will visit ALL m
distinct locations in our probe sequence

— Theorem: If pis primeand 0 < a < p, then:
0-a],[1-a],[2-a],..,[(p—1)-a] are all distinct (i.e. a
permutation of 0,1,...,(p-1))

 What is the expected length, L, of a chain at some location in
the hash table?
— E[L]=n/m =«
 What is the expected number of empty buckets?

- ()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

HASH FUNCTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Possible Hash Functions

* Define n = # of entries stored, m = Table Size, k is non-negative
integer key

e h(k)=0"7?
* h(k)=kmodm?
* h(k) =rand() mod m?

e Rules of thumb

— The hash function should examine the entire search key, not just a few
digits or a portion of the key

— When modulo hashing is used, the base should be prime

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Function Goals

* A "perfect hash function" should map each of the n
keys to a unique location in the table

— Recall that we will size our table to be larger than the
expected number of keys...i.e.n < m

— Perfect hash functions are not practically attainable
 A'"good" hash function or Universal Hash Function

— |s easy and fast to compute

— Scatters data uniformly throughout the hash table
* P(h(k)=x)=1/m (i.e. pseudorandom)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Universal Hash Example

Suppose we want a universal hash for words in English language
First, we select a prime table size, m
For any word, w made of the sequence of letters w, w, ... w_ we

translate each letter into its position in the alphabet (0-25).
 Example: "bad"=103

Suppose the length of the longest word in the English alphabet
has length z (or we set the maximum length of a key to 7)
Choose a random number (key), R, of length z, R=r,r, ... 1,

* The random key is created once when the hash table is created and kept

* Example: say z=35 (longest word in English is 35 characters). Pick 35
random numbers: 28 4 15 ... 71
. [
Hash function: h(w) = (Zie:ri(w) w; - ri) mod m
* Multiply the number corresponding to each letter times the selected
random value and sum them all up

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — 5 iterbi
Universal Hash Example

* First, we select a prime table size, m
* For any word, w made of the sequence of letters w, w, ... w we

translate each letter into its position in the alphabet (0-25).
 Example: "bad"=103

* Choose arandom number (key), R, of lengthz, R=r,r, ... 1,
 The random key is created once when the hash table is created and kept

* Example: say z=35 (longest word in English is 35 characters). Pick 35 random
numbers: 28 4 15 ... 71

* Hash function: h(w) = (Zgiﬁ(w) w; 'Ti) mod m

* Ifw="hello" then h(w) = (h*28 + e*4 + [*15 + [*18 + 0*9) mod m
* Plug in alphabet position (or ASCII values in reality) for each letter being multiplied above

* Notice if w ="olleh" we will get a very different h(w)
« w="olleh" then h(w) = (0*28 + |*4 + [*15 + €*18 + h*9) mod m

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N (5 Vierbi (>
When Collisions Occur

 How early (on which insertion) can a collision occur (if we had an adversary)?
* When is a collision guaranteed to occur (the latest insertion)? m+1

 |fn>m, isevery entry in the table used?
— No. Some may be blank?

* Ifn>m,isit possible we haven't had a collision?
— No. Some entries have hashed to the same location according to the Pigeon Hole
Principle

— We can only avoid a collision when n<m

. . . . Array of Linked
* Collisions are likely even if n <m Lists Key, value

(by the birthday paradox) 0 —> Tm | 38
. 1
— Given n random values chosen from a range) T el as
of size m, we would expect a duplicate random 3
value in O(m?/2) trials 4
* For actual birthdays where m = 365,
we expect a duplicate within the first 23 trials m-1 —> Bo | 27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Taking a Step Back

* In most applications the UNIVERSE of possible keys >>m

— To store each of the ~40K USC students suppose we choose a table
sizeof m=100K=10"soa=0.4

— But because we use 10-digit USC ID's, there are potential keys

— That means for each of the 100K table locations there are /10°
keys that map to any given location (by the generalized pigeon-hole
principle)

— What if we got REALLY unlucky, or worse, we had an adversary who
fed us those /10° keys in an attempt to degrade performance

* How can we try to mitigate the chances of this poor
performance?
— One option: Switch hash functions periodically

— Second option: choose a hash function that makes engineering a
sequence of collisions EXTREMELY hard (aka 1-way hash function)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — 5 Viterbi
One-Way Hash Functions

 Why all this mention of an adversary?

* Fact of Life: What's hard to accomplish when you actually try is even
harder to accomplish when you do not try

* So if we have a hash function that would make it hard to find keys that
collide (i.e. map to a given location, i) when we are trying to be an
adversary...

e ..then under normal circumstances (when we are NOT trying to be
adversarial) it would be very rare to accidentally produce a sequence of
keys that leads to a lot of collisions

* We call those hash functions, 1-way or cryptographic hash functions

* Main Point: If we can find a function where even though our adversary
knows our function, they still can't find keys that will collide, then we
would expect good performance under general operating conditions

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

One-Way Hash Function

* h(k)=c=kmod 11

— What would be an adversarial sequence of keys to make my hash table perform

poorly?

* It's easy to compute the inverse, h(c) => k

— Write an expression to enumerate an adversarial sequence?

— 11*i+c fori=0,1,2,3,...
 We want hash function, h(k), where an inverse function,

h-i(c) is hard to compute

— Said differently, we want a function where given a location, c, in the table it
would be hard to find a key that maps to that location

* We call these functions one-way hash functions or cryptographic hash
functions
— Given g, it is hard to find an input, k, such that h(k) = ¢
— More on other properties and techniques for devising these in a future course
— Popular examples: MD5, SHA-1, SHA-2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Uses of Cryptographic Hash Functions

* Hash functions can be used for purposes other than hash tables

* |f we no longer use a hash table, the hash code can be in a much larger range

— We can make the hash code much longer (64-bits => 16E+18 options,
128-bits => 256E+36 options) so that chances of collisions are hopefully miniscule (more
chance of a hard drive error than a collision)

 We can use a hash function to produce a "digest" (signature, fingerprint,
checksum) of a longer message
— It acts as a unique "signature" of the original content
* The hash code can be used for purposes of authentication and validation
— Send a message, m, and h(m) over a network.

— The receiver gets the message, m', and computes h(m') which should match the
value of h(m) that was attached

— This ensures it wasn't corrupted accidentally or changed on purpose
Receiver
Transmitter M, h(M) M', h(M) IsM'=M?
> Check if h(M)=h(M")

© 2022 by Mark Redekopp. This contenhg%é/ogggplrng§§<jlsméL:%we%!’mgliMS/cryptographiC_HaSh_FunCtionS' ppt

i, TS(“Viterbi

School of Engineering

Another Example: Passwords

Ttrojan

* Should a company just store passwords plain text? passpord

— No

* We could encrypt the passwords
but here's an alternative

* Don't store the passwords!

User, h(Pass)
* Instead, store the hash codes of the passwords. ttrojan : 182938193364

— What's the implication?
— Some alternative password might just hash to the same location but that
probability can be set to be very small by choosing a "good" hash function

« Remember the idea that if its hard to do when you try, the chance that it naturally
happens is likely smaller

— When someone logs in just hash the password they enter and see if it matches
the hashcode.
* |f someone gets into your system and gets the hash codes, does that
benefit them?
— No!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -«

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N (5 Vierbi (-
When Collisions Occur

 How early (on which insertion) can a collision occur (if we had an adversary)?
* When is a collision guaranteed to occur (the latest insertion)? m+1

 |fn>m, isevery entry in the table used?
— No. Some may be blank?

* Ifn>m,isit possible we haven't had a collision?
— No. Some entries have hashed to the same location according to the pigeon Hole
Principle

— We can only avoid a collision when n<m

. . . . Array of Linked
* Collisions are likely even if n <m Lists Key, value

(by the birthday paradox) 0 —> Tm | 38
. 1
— Given n random values chosen from a range) T el as
of size m, we would expect a duplicate random 3
value in O(m?/2) trials 4
* For actual birthdays where m = 365,
we expect a duplicate within the first 23 trials m-1 —> Bo | 27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

	Slide 1: CSCI 104 Hash Tables & Functions
	Slide 2: Review
	Slide 3: Hash Tables - Insert
	Slide 4: Resolving Collisions
	Slide 5: Closed Addressing Methods
	Slide 6: Probing Technique Summary
	Slide 7: Expected Chain Length
	Slide 8: Hash Efficiency Summary
	Slide 9: Review of A Few Things Probability and Number Theory Taught Us
	Slide 10: Hash Functions
	Slide 11: Possible Hash Functions
	Slide 12: Hash Function Goals
	Slide 13: Universal Hash Example
	Slide 14: Universal Hash Example
	Slide 15: When Collisions Occur
	Slide 16: Taking a Step Back
	Slide 17: One-Way Hash Functions
	Slide 18: One-Way Hash Function
	Slide 19: Uses of Cryptographic Hash Functions
	Slide 20: Another Example: Passwords
	Slide 21: Solutions
	Slide 22: When Collisions Occur

