
1

CSCI 104
B-Trees (2-3, 2-3-4) and

Red/Black Trees
Mark Redekopp

David Kempe

2

2-3 TREES
An example of B-Trees

3

Definition
• 2-3 Tree is a tree where

– Non-leaf nodes have 1 value & 2
children or 2 values and 3 children

– All leaves are at the same level

• Following the line of reasoning…

– All leaves at the same level with
internal nodes having at least 2
children implies a (full / complete)
tree
• FULL (Recall complete just means the

lower level is filled left to right but not
full)

– A full tree with n nodes implies…
• Height that is bounded by log2(n)

2 4

3 5 0 1

a 2 Node

2 4

a 3 Node

a valid 2-3 tree

4

4

Implementation of 2- & 3-Nodes
• You will see that at different

times 2 nodes may have to be
upgraded to 3 nodes

• To model these nodes we plan
for the worst case…a 3 node

• This requires wasted storage for
2 nodes

_

a 2 Node

_ _

a 3 Node

template < typename T>

struct Item23 {

T val1;

T val2;

Item23<T>* left;

Item23<T>* mid;

Item23<T>* right;

bool twoNode ;

};

5

2-3 Search Trees
• Similar properties as a BST

• 2-3 Search Tree

– If a 2 Node with value, m
• Left subtree nodes are < node value

• Right subtree nodes are > node value

– If a 3 Node with value, l and r
• Left subtree nodes are < l

• Middle subtree > l and < r

• Right subtree nodes are > r

• 2-3 Trees are almost always used
as search trees, so from now on if
we say 2-3 tree we mean 2-3
search tree

m

a 2 Node

l r

a 3 Node

<

m

>

m

<

l

>

r

> l

&&

< r

m =

"median" or

"middle"

l = left

r = right

6

2-3 Search Tree

• Binary search tree compared to 2-3 tree

• Check if 55 is in the tree?

50

30

25

20

10

10

20 30

25 50 60
60

BST 2-3 Tree

7

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 60, 20, 10, 30, 25, 50, 80

60

20

10 60

20

10 30 60

Empty Add 60 Add 20

20 60

Add 10

20 6010

Add 30

Key: Any time a node accumulates 3 values,
split it into single valued nodes (i.e. 2-nodes)

and promote the median

8

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 60, 20, 10, 30, 25, 50, 80

20

10 30 60

Add 25

25 10

20 30

25 60 10

20 30

25 50 60

Add 50

Key: Any time a node accumulates 3 values,
split it into single valued nodes (i.e. 2-nodes)

and promote the median

9

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 60, 20, 10, 30, 25, 50, 80

10

20 30

25 50 60

Add 80

80 10

20 30

25

60

50 80 10 25 50 80

20 60

30

Key: Any time a node accumulates 3 values,
split it into single valued nodes (i.e. 2-nodes)

and promote the median

10

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level ("leaves always have their

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left,
biggest as the right, and median value promoted to the parent with smallest
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 90,91,92, 93

Add 90

10 25 50 80

20 60

30

11

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level, insertion causes the tree

to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left,
biggest as the right, and median value should be promoted to the parent with
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 90,91,92,93

Add 90

10 25 50

20 60

30

80 90

Add 91

10 25 50

20 60

30

80 9091 10 25 50

20

30

60 90

80 91

12

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level, insertion causes the tree

to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left,
biggest as the right, and median value should be promoted to the parent with
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 90,91,92,93

10 25 50

20

30

60 90

80

Add 92

91 92

13

2-3 Insertion Algorithm
• Key: Since all leaves must be at the same level, insertion causes the tree

to "grow upward"

• To insert a value,

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left,
biggest as the right, and median value should be promoted to the parent with
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent

• Insert 90,91,92,93

10 25 50

20

30

60 90

80

Add 93

91 92 93 10 25 50

20

30

60 90

80

92

91 93

30 90

10 25 50

20

80 91 93

60 92

14

Note

• 2-3 tree removal may be skipped due to time
constraints

15

2-3 Tree Removal
• Key: 2-3 Trees must remain "full" (leaf nodes all at the same level)

• Remove

– 1. Find data item to remove

– 2. If data item is not in a leaf node, find in-order successor (which is in a leaf
node) and swap values (it's safe to put successor in your location)

– 3. Remove item from the leaf node

– 4. If leaf node is now empty, call fixTree(leafNode)

• fixTree(n)

– If n is root, delete root and return

– Let p be the parent of n

– If a sibling of n has two items

• Redistribute items between n, sibling, and p and move any appropriate child from
sibling to n

– Else

• Choose a sibling, s, of n and bring an item from p into s redistributing any children of n
to s

• Remove node n

• If parent is empty, fixTree(p)

Another key: Want to get item to remove
down to a leaf and then work up the tree

16

Remove Cases

S L

P

-

L

P S

S L

P

-

L

P S

a b c d a b c d

P

-S

a b c

S P

a b c

L

-S S L

S L

a b c

-

S L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty rootP = parent

S = smaller

L = larger

17

Remove Examples

10 25 50

20

30

60 90

80 91

Remove 80

10 25 50

20 60

30

80 90

Remove 60

10 25 50

20 80

30

60 90

10 25 50

20 80

30

90

Not a leaf node so

swap w/

successor at leaf

Since 2 items at

leaf, just

remove 60

10 25 50

20

30

60 90

- 91

10 25

20

30

91

90

50 60

Can't just delete

because a 3-

node would

have only 2

children

Rotate 60

down into 50 to

make a 3-node

at the leaf and

2-node parent

Key: Keep all your
feet (leaves) on the
ground (on the
bottom row)

18

Remove Cases

S L

P

-

L

P S

S L

P

-

L

P S

a b c d a b c d

P

-S

a b c

S P

a b c

P

-S S P

S L

a b c

-

S L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root

19

Remove Examples

10 25 50

20 80

30

Remove 80

Internal so swap

w/ successor at

leaf

90

10 25 50

20 90

30

-

Rotate parent

down and empty

node up, then

recurse

10 25

20 -

30

50 90

Rotate parent

down and empty

node up, then

recurse

10 25

-

50 90

20 30

10 25 50 90

20 30

Remove root and

thus height of tree

decreases

-

10 25 50 90

20 30

20

Remove Cases

S L

P

-

L

P S

S L

P

-

L

P S

a b c d a b c d

P

-S

a b c

S P

a b c

P

-S S P

S L

a b c

-

S L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root

21

Remove Exercise 1

10 25 50

20 80

30

Remove 30

90 10 25 30

20 80

50

90

Step 1: Not a leaf,

so swap with

successor

10 25

20 80

50

90

Step 2: Remove

item from node

10 25

20

50

80 90

Step 3: Two values

and 3 nodes, so

merge. Must

maintain levels.

22

Remove Exercise 1 (cont.)

10 25

20

50

80 90

Start over with the

empty parent. Do

another merge

10 25

20 50

80 90

Step 4: Merge

values

10 25

20 50

80 90

Step 5: Can delete

the empty root

node.

23

Remove Exercise 2

25 50

20

30

Remove 50

7510 15 95

70 90

Step 1: It’s a leaf

node, so no need to

find successor.

Remove the item

from node.

25

20

30

70 7510 15 95

90

Step 2: Since no 3-

node children, push

a value of parent

into a child.

25

20

30

70 7510 15 95

90

Step 3: Delete the

node.

24

Remove Cases

S L

P

-

L

P S

S L

P

-

L

P S

a b c d a b c d

P

-S

a b c

S P

a b c

P

-S S P

S L

a b c

-

S L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root

25

Insertion Exercise 1

25 50

20

30

7510 15 95

70 90

Insert 12

26

Insertion Exercise 2

50

20

35

7510 15 95

70 90

Insert 23

25 30

27

Insertion Exercise 3

50 75 95

70 90

Insert 39

33 37

25 30

40 100

105 120

110

10 28

28

Removal Exercise 4
Remove 10

50 75 95

70 90

33 37

25 30

40 100

105 120

110

10 28

29

Removal Exercise 5
Remove 40

50 75 95

70 90

33 37

25 30

40 100

105 120

110

10 28

30

Removal Exercise 6

25 50

20

30

Remove 30

7510 15 95

70 90

31

Other Resources

• http://www.cs.usfca.edu/~galles/visualization
/BTree.html

http://www.cs.usfca.edu/~galles/visualization/BTree.html

32

Definition
• 2-3-4 trees are very much like 2-3 trees but

form the basis of a balanced, binary tree
representation called Red-Black (RB) trees
which are commonly used [used in C++ STL
map & set]
– We study them mainly to ease understanding of

RB trees

• 2-3-4 Tree is a tree where
– Non-leaf nodes have 1 value & 2 children or 2

values & 3 children or 3 values & 4 children

– All leaves are at the same level

• Like 2-3 trees, 2-3-4 trees are always full
and thus have an upper bound on their
height of log2(n)

7 21 2 4

1

a 2 Node

2 4

a 3 Node

a valid 2-3-4 tree

5 10 20

a 4 Node

5 10 20

13

33

2-, 3-, & 4-Nodes

• 4-nodes require more
memory and can be
inefficient when the tree
actually has many 2 nodes

_

a 2 Node

_ _

a 3 Node

template < typename T>

struct Item234 {

T val1;

T val2;

T val3;

Item234<T>* left;

Item234<T>* midleft ;

Item234<T>* midright ;

Item234<T>* right;

int nodeType ;

};

_ _ _

a 4 Node

34

2-3-4 Search Trees
• Similar properties as a 2-3

Search Tree

• 4 Node:

– Left subtree nodes are < l

– Middle-left subtree > l and < r

– Right subtree nodes are > r

m

a 2 Node

l r

a 3 Node

<

m

>

m

<

l

>

r

> l

&&

< r

a 4 Node

<

l

>

r

> l

&&

< m

l m r

> m

&&

< r

35

2-3-4 Insertion Algorithm
• Key: Rather than search down the tree and then possibly promote and break

up 4-nodes on the way back up, split 4 nodes on the way down

• To insert a value,

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order

– 2a. If node is a leaf, insert the value

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

60

20

10 60

20

10 30 60

Empty Add 60 Add 20

20 60

Add 10

Key: 4-nodes get split
as you walk down

thus, a leaf will always
have room for a value

10 20 60

Add 30

36

2-3-4 Insertion Algorithm
• Key: Split 4 nodes on the way down

• To insert a value,

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order

– 2a. If node is a leaf, insert the value

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

20

10 25 30 60

Key: 4-nodes get split
as you walk down

thus, a leaf will always
have room for a value

Add 25

20

10 25 30 60

Add 50

20 30

10 25 50 60
50

Split first,

then add 50

37

2-3-4 Insertion Algorithm
• Key: Split 4 nodes on the way down

• To insert a value,

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order

– 2a. If node is a leaf, insert the value

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

Key: 4-nodes get split
as you walk down

thus, a leaf will always
have room for a value

Add 80

20 30

10 25 50 60

80

20 30

10 25 50 60 80

38

2-3-4 Insertion Exercise 1
Add 55

20 30

10 25 50 60 80

39

2-3-4 Insertion Exercise 2
Add 58

10 25

20 30 60

50 55 80

40

2-3-4 Insertion Exercise 3
Add 57

10 25 50 55 58 80

30

20 60

41

2-3-4 Insertion Exercise 3
Resulting Tree

10 25 80

30

20 55 60

50 57 58

42

B-Trees

• 2-3-4 trees are just instances of a more general data
structure known as B-Trees

• Define minimum number of children (degree) for
non-leaf nodes, d

– Non-root nodes must have at least d-1 keys and d children

– All nodes must have at most 2d-1 keys and 2d children

– 2-3-4 Tree (d=2)

• Used for disk-based storage and indexing with
large value of d to account for large random-
access lookup time but fast sequential access
time of secondary storage

43

B Tree Resources

• https://www.cs.usfca.edu/~galles/visualizatio
n/BTree.html

• http://ultrastudio.org/en/2-3-4_tree

https://www.cs.usfca.edu/~galles/visualization/BTree.html
http://ultrastudio.org/en/2-3-4_tree

44

RED BLACK TREES
"Balanced" Binary Search Trees

45

Red Black Trees
• A red-black tree is a binary search tree

– Only 2 nodes (no 3- or 4-nodes)

– Can be built from a 2-3-4 tree directly by converting each
3- and 4- nodes to multiple 2-nodes

• All 2-nodes means no wasted storage overheads

• Yields a "balanced" BST

• "Balanced" means that the height of an RB-Tree is
at MOST twice the height of a 2-3-4 tree

– Recall, height of 2-3-4 tree had an upper bound of log2(n)

– Thus height or an RB-Tree is bounded by 2*log2n which is
still O(log2(n))

46

Red Black and 2-3-4 Tree Correspondence
• Every 2-, 3-, and 4-node can be converted to…

– At least 1 black node and 1 or 2 red children of the black node

– Red nodes are always ones that would join with their parent to become a 3- or
4-node in a 2-3-4 tree

s m l

a 4 Node
m

ls

a b c d

S = Small

M = Median

L = Large

s l

a 3 Node
l

s

a b

c

s

a

b c

lor

m

a 2-node

m

47

Red Black Trees
• Below is a 2-3-4 tree and how it can be

represented as a directly corresponding RB-
Tree

• Notice at most each 2-3-4 node expands to
2 level of red/black nodes

• Q: Thus if the height of the 2-3-4 tree was
bound by log2n, then the height of an RB-
tree is bounded by?

• A: 2*log2n = O(log2n)

20 30

10 25 50 60 80
30

20

10

25 60

50 80

Equivalent

RB-Tree

48

Red-Black Tree Properties
• Valid RB-Trees maintain the invariants that…

• 1. No path from root to leaf has two consecutive red nodes (i.e. a
parent and its child cannot both be red)
– Since red nodes are just the extra values of a 3- or 4-node from 2-3-4 trees

you can't have 2 consecutive red nodes

• 2. Every path from leaf to root has the same number of black
nodes
– Recall, 2-3-4 trees are full (same height from leaf to root for all paths)

– Also remember each 2, 3-, or 4- nodes turns into a black node plus 0, 1, or 2
red node children

• 3. At the end of an operation the root should always be black

• 4. We can imagine leaf nodes as having 2 non-existent (NULL) black
children if it helps

49

Red-Black Insertion
• Insertion Algorithm:

– 1. Insert node into normal BST location (at a leaf
location) and color it RED

– 2a. If the node's parent is black (i.e. the leaf used
to be a 2-node) then DONE (i.e. you now have
what was a 3- or 4-node)

– 2b. Else perform fixTree transformations then
repeat step 2 on the parent or grandparent
(whoever is red)

• fixTree involves either
– recoloring or

– 1 or 2 rotations and recoloring

• Which case of fixTree you perform depends
on the color of the new node's "aunt/uncle"

30

20

10

40

x

parent

grandparent

aunt/

uncle

Insert 10

50

fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P G UN UN P

G

G

P U

N

b c

a

P G UN UP N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor

Root

Note: For insertion/removal
algorithm we consider non-
existent leaf nodes as black
nodes

51

fixTree Cases
G

P

N

U

a b

c

P

N G

b

G

P U

N

b c

a

G

N U

P G

UN c

Right

rotate of

P,G

Uca

ba

N P G

Ucba

a

P c

b

N

P G

b Ua c

Right

rotate of

N,G

& Recolor

Left rotate

of N,P

P G

Ua N

cb

P N G

Ua b c

4.

5.

1 Rotate /

Recolor

2 Rotates /

Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html

52

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Case 4: Left rotate

and recolor

20

3010

Insert 15

Violates consec. reds

15
Case 2:

Recolor

20

3010

15
Case 3:

Recolor

root

20

3010

15

Insert 25

20

3010

15 25

53

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 12

Case 5: Right

Rotate…

Case 5: …

Right Rotate

and recolor

20

3012

15 25

20

3010

15 25

12

20

3010

12 25

15

10

Insert 5

20

3012

15 2510

5
Case 1:

Recolor

20

3012

15 2510

5
Recursive call "fix" on

12 but it's parent is

black so we're done

54

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 3
20

3012

15 2510

5
Case 4: Rotate

3

20

3012

15 255

3 10

55

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 8

Case 2: Recolor

20

3012

15 255

3 10

8

20

3012

15 255

3 10

8

12

20

30

25

15

5

3 10

8

Case 4: Rotate

12

56

Insertion Exercise 1
Insert 27

12

20

30

25

15

5

3 10

8

27N

P

G

57

Insertion Exercise 1
Insert 27

12

20

30

25

15

5

3 10

8

27

12

20

27

25

15

5

3 10

8 30

N

P

G

This is case 5.

1. Left rotate around P

2. Right rotate around N

3. Recolor

58

Insertion Exercise 2
12

20

27

25

15

5

3 10

8

Insert 40

30

40N

P

G

A

59

Insertion Exercise 2
12

20

27

25

15

5

3 10

8

Insert 40

30

40N

P

G

A

Aunt and Parent are the

same color. So recolor aunt,

parent, and grandparent.

12

20

27

25

15

5

3 10

8 30

40

60

Insertion Exercise 2
12

20

27

25

15

5

3 10

8 30

40

N

P

G

A

Aunt and Parent are the

same color. So recolor aunt,

parent, and grandparent.

12

20

27

25

15

5

3 10

8 30

40

61

Insertion Exercise 3
Insert 50 12

20

27

25

15

5

3 10

8 30

40

50
N

P

G

62

Insertion Exercise 3
Insert 50 12

20

27

25

15

5

3 10

8 30

40

50
N

P

G

Remember, empty nodes are black.

Do a left rotation around P and recolor.

12

20

27

25

15

5

3 10

8 40

5030

63

Insertion Exercise 4
Insert 45

12

20

27

25

15

5

3 10

8 40

5030

45
N

P

G

A

64

Insertion Exercise 4
Insert 45

12

20

27

25

15

5

3 10

8 40

5030

45
N

P

G

A

Aunt and Parent are the same color.

Just recolor.

12

20

27

25

15

5

3 10

8 40

5030

45

65

Insertion Exercise 4
12

20

27

25

15

5

3 10

8 40

5030

45

N

G

A P

66

Final Result
12

20

27

15

5

3 10

8

40

503025

45

67

Insertion Exercise 5
12

20

27

15

5

3 10

8

Insert 9

40

503025

459

N

G

AP

68

Insertion Exercise 5
12

20

27

15

5

3 9

8

40

503025

45

10

69

RB-Tree Visualization & Links

• https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

70

RB TREE IMPLEMENTATION

71

Hints
• Implement private methods:

– findMyUncle()

– AmIaRightChild()

– AmIaLeftChild()

– RightRotate

– LeftRotate

• Need to change x's parent, y's parent, b's parent, x's right, y's left, x's
parent's left or right, and maybe root

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate

of y,x

Right rotate

of x,y
(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

72

Hints
• You have to fix the tree after insertion if…

• Watch out for traversing NULL pointers

– node->parent->parent

– However, if you need to fix the tree your grandparent…

• Cases break down on uncle's color

– If an uncle doesn't exist (i.e. is NULL), he is (color?)…

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate

of y,x

Right rotate

of x,y
(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

73

FOR PRINT

74

fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P G UN UN P

G

G

P U

N

b c

a

P G UN UP N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor

Root

Note: For insertion/removal
algorithm we consider non-
existent leaf nodes as black
nodes

75

fixTree Cases
G

P

N

U

a b

c

P

N G

b

G

P U

N

b c

a

G

N U

P G

UN c

Uca

ba

N P G

Ucba

a

P c

b

N

P G

b Ua c

P G

Ua N

cb

P N G

Ua b c

4.

5.

1 Rotate /

Recolor

2 Rotates /

Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html

Right

rotate of

P,G

Right

rotate of

N,G

& Recolor

Left rotate

of N,P

