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2-3 TREES
An example of B-Trees
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Definition
• 2-3 Tree is a tree where

– Non-leaf nodes have 1 value & 2 
children or  2 values and 3 children

– All leaves are at the same level

• Following the line of reasoning…

– All leaves at the same level with 
internal nodes having at least 2 
children implies a (full / complete) 
tree
• FULL (Recall complete just means the 

lower level is filled left to right but not 
full)

– A full tree with n nodes implies…
• Height that is bounded by log2(n)

2    4

3 5 0    1

a 2 Node

2    4

a 3 Node

a valid 2-3 tree

4
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Implementation of 2- & 3-Nodes
• You will see that at different 

times 2 nodes may have to be 
upgraded to 3 nodes

• To model these nodes we plan 
for the worst case…a 3 node

• This requires wasted storage for 
2 nodes

_

a 2 Node

_    _

a 3 Node

template < typename T>

struct Item23 {

T val1;

T val2;

Item23<T>* left;

Item23<T>* mid;

Item23<T>* right;

bool twoNode ;

};



5

2-3 Search Trees
• Similar properties as a BST

• 2-3 Search Tree

– If a 2 Node with value, m
• Left subtree nodes are < node value

• Right subtree nodes are > node value

– If a 3 Node with value, l and r
• Left subtree nodes are < l

• Middle subtree > l and < r

• Right subtree nodes are > r

• 2-3 Trees are almost always used 
as search trees, so from now on if 
we say 2-3 tree we mean 2-3 
search tree

m

a 2 Node

l    r

a 3 Node

<

m

>

m

<

l

>

r

> l 

&& 

< r

m = 

"median" or 

"middle"

l = left

r = right
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2-3 Search Tree

• Binary search tree compared to 2-3 tree

• Check if 55 is in the tree?

50

30

25

20

10

10 

20  30

25 50  60
60

BST 2-3 Tree
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level ("leaves always have their 

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left, 
biggest as the right, and median value promoted to the parent with smallest 
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 60, 20, 10, 30, 25, 50, 80

60 

20 

10 60 

20 

10 30  60

Empty Add 60 Add 20

20  60

Add 10

20  6010

Add 30

Key: Any time a node accumulates 3 values, 
split it into single valued nodes (i.e. 2-nodes) 

and promote the median
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level ("leaves always have their 

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2-nodes with the smallest value as the left, 
biggest as the right, and median value promoted to the parent with smallest 
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 60, 20, 10, 30, 25, 50, 80

20 

10 30  60

Add 25

25 10 

20  30

25 60 10 

20  30

25 50  60

Add 50

Key: Any time a node accumulates 3 values, 
split it into single valued nodes (i.e. 2-nodes) 

and promote the median
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level ("leaves always have their 

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left, 
biggest as the right, and median value promoted to the parent with smallest 
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 60, 20, 10, 30, 25, 50, 80

10 

20  30

25 50  60

Add 80

80 10 

20  30

25

60

50 80 10 25 50 80

20 60

30

Key: Any time a node accumulates 3 values, 
split it into single valued nodes (i.e. 2-nodes) 

and promote the median
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level ("leaves always have their 

feet on the ground"), insertion causes the tree to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left, 
biggest as the right, and median value promoted to the parent with smallest 
and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 90,91,92, 93

Add 90

10 25 50 80

20 60

30
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level, insertion causes the tree 

to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left, 
biggest as the right, and median value should be promoted to the parent with 
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 90,91,92,93

Add 90

10 25 50

20 60

30

80    90

Add 91

10 25 50

20 60

30

80    9091 10 25 50

20

30

60    90

80 91
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level, insertion causes the tree 

to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left, 
biggest as the right, and median value should be promoted to the parent with 
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 90,91,92,93

10 25 50

20

30

60    90

80

Add 92

91  92
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2-3 Insertion Algorithm
• Key:  Since all leaves must be at the same level, insertion causes the tree 

to "grow upward"

• To insert a value, 

– 1. walk the tree to a leaf using your search approach

– 2a. If the leaf is a 2-node (i.e.1 value), add the new value to that node

– 2b. Else break the 3-node into two 2 nodes with the smallest value as the left, 
biggest as the right, and median value should be promoted to the parent with 
smallest and biggest node added as children of the parent

– Repeat step 2(a or b) for the parent 

• Insert 90,91,92,93

10 25 50

20

30

60    90

80

Add 93

91  92 93 10 25 50

20

30

60    90

80

92

91 93

30    90

10 25 50

20

80 91 93

60 92
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Note

• 2-3 tree removal may be skipped due to time 
constraints



15

2-3 Tree Removal
• Key:  2-3 Trees must remain "full" (leaf nodes all at the same level)

• Remove

– 1. Find data item to remove

– 2. If data item is not in a leaf node, find in-order successor (which is in a leaf 
node) and swap values (it's safe to put successor in your location)

– 3. Remove item from the leaf node

– 4. If leaf node is now empty, call fixTree(leafNode)

• fixTree(n)

– If n is root, delete root and return

– Let p be the parent of n

– If a sibling of n has two items

• Redistribute items between n, sibling, and p and move any appropriate child from 
sibling to n

– Else

• Choose a sibling, s, of n and bring an item from p into s redistributing any children of n 
to s

• Remove node n

• If parent is empty, fixTree(p)

Another key:  Want to get item to remove 
down to a leaf and then work up the tree
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Remove Cases

S    L

P 

-

L 

P S 

S    L

P 

-

L 

P S 

a b c d a b c d

P 

-S 

a b c

S    P

a b c

L 

-S S    L

S    L

a b c

-

S    L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty rootP = parent

S = smaller

L = larger
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Remove Examples

10 25 50

20

30

60    90

80 91

Remove 80

10 25 50

20 60

30

80    90

Remove 60

10 25 50

20 80

30

60  90

10 25 50

20 80

30

90

Not a leaf node so 

swap w/ 

successor at leaf

Since 2 items at 

leaf, just 

remove 60

10 25 50

20

30

60    90

- 91

10 25

20

30

91

90

50    60

Can't just delete 

because a 3-

node would 

have only 2 

children

Rotate 60 

down into 50 to 

make a 3-node 

at the leaf and 

2-node parent

Key:  Keep all your 
feet (leaves) on the 
ground (on the 
bottom row)
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Remove Cases

S    L

P 

-

L 

P S 

S    L

P 

-

L 

P S 

a b c d a b c d

P 

-S 

a b c

S    P

a b c

P 

-S S    P

S    L

a b c

-

S    L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root
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Remove Examples

10 25 50

20 80

30

Remove 80

Internal so swap 

w/ successor at 

leaf

90

10 25 50

20 90

30

-

Rotate parent 

down and empty 

node up, then 

recurse

10 25

20 -

30

50   90

Rotate parent 

down and empty 

node up, then 

recurse

10 25

-

50   90

20   30

10 25 50   90

20   30

Remove root and 

thus height of tree 

decreases

-

10 25 50   90

20   30
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Remove Cases

S    L

P 

-

L 

P S 

S    L

P 

-

L 

P S 

a b c d a b c d

P 

-S 

a b c

S    P

a b c

P 

-S S    P

S    L

a b c

-

S    L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root
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Remove Exercise 1

10 25 50

20 80

30

Remove 30

90 10 25 30

20 80

50

90

Step 1: Not a leaf, 

so swap with 

successor

10 25

20 80

50

90

Step 2: Remove 

item from node

10 25

20

50

80 90

Step 3: Two values 

and 3 nodes, so 

merge. Must 

maintain levels.
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Remove Exercise 1 (cont.)

10 25

20

50

80 90

Start over with the 

empty parent. Do 

another merge

10 25

20 50

80 90

Step 4: Merge 

values

10 25

20 50

80 90

Step 5: Can delete 

the empty root 

node.
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Remove Exercise 2

25 50

20

30

Remove 50

7510 15 95

70  90

Step 1: It’s a leaf 

node, so no need to 

find successor. 

Remove the item 

from node.

25

20

30

70 7510 15 95

90

Step 2: Since no 3-

node children, push 

a value of parent 

into a child. 

25

20

30

70 7510 15 95

90

Step 3: Delete the 

node.
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Remove Cases

S    L

P 

-

L 

P S 

S    L

P 

-

L 

P S 

a b c d a b c d

P 

-S 

a b c

S    P

a b c

P 

-S S    P

S    L

a b c

-

S    L

a b c

Redistribute 1 Redistribute 2

Merge 1 Merge 2

Empty root
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Insertion Exercise 1

25 50

20

30

7510 15 95

70  90

Insert 12
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Insertion Exercise 2

50

20

35

7510 15 95

70  90

Insert 23

25  30
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Insertion Exercise 3

50 75 95

70  90

Insert 39

33  37

25  30

40   100

105 120

110

10 28
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Removal Exercise 4
Remove 10

50 75 95

70  90

33  37

25  30

40   100

105 120

110

10 28
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Removal Exercise 5
Remove 40

50 75 95

70  90

33  37

25  30

40   100

105 120

110

10 28
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Removal Exercise 6

25 50

20

30

Remove 30 

7510 15 95

70  90
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Other Resources

• http://www.cs.usfca.edu/~galles/visualization
/BTree.html

http://www.cs.usfca.edu/~galles/visualization/BTree.html


32

Definition
• 2-3-4 trees are very much like 2-3 trees but 

form the basis of a balanced, binary tree 
representation called Red-Black (RB) trees 
which are commonly used [used in C++ STL 
map & set]
– We study them mainly to ease understanding of 

RB trees

• 2-3-4 Tree is a tree where
– Non-leaf nodes have 1 value & 2 children or  2 

values & 3 children or 3 values & 4 children

– All leaves are at the same level

• Like 2-3 trees, 2-3-4 trees are always full 
and thus have an upper bound on their 
height of log2(n)

7 21 2    4

1

a 2 Node

2    4

a 3 Node

a valid 2-3-4 tree

5  10 20

a 4 Node

5  10 20

13
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2-, 3-, & 4-Nodes

• 4-nodes require more 
memory and can be 
inefficient when the tree 
actually has many 2 nodes

_

a 2 Node

_    _

a 3 Node

template < typename T>

struct Item234 {

T val1;

T val2;

T val3;

Item234<T>* left;

Item234<T>* midleft ;

Item234<T>* midright ;

Item234<T>* right;

int nodeType ;

};

_  _ _

a 4 Node
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2-3-4 Search Trees
• Similar properties as a 2-3 

Search Tree

• 4 Node:

– Left subtree nodes are < l

– Middle-left subtree > l and < r

– Right subtree nodes are > r

m

a 2 Node

l    r

a 3 Node

<

m

>

m

<

l

>

r

> l 

&& 

< r

a 4 Node

<

l

>

r

> l 

&& 

< m

l  m r

> m 

&& 

< r
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2-3-4 Insertion Algorithm
• Key:  Rather than search down the tree and then possibly promote and break 

up 4-nodes on the way back up, split 4 nodes on the way down

• To insert a value, 

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to 
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order 

– 2a. If node is a leaf, insert the value 

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

60 

20 

10 60 

20 

10 30  60

Empty Add 60 Add 20

20  60

Add 10

Key:  4-nodes get split 
as you walk down 

thus, a leaf will always 
have room for a value 

10  20 60

Add 30
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2-3-4 Insertion Algorithm
• Key:  Split 4 nodes on the way down

• To insert a value, 

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to 
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order 

– 2a. If node is a leaf, insert the value 

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

20 

10 25  30  60

Key:  4-nodes get split 
as you walk down 

thus, a leaf will always 
have room for a value 

Add 25

20 

10 25  30  60

Add 50

20  30

10 25 50  60
50

Split first, 

then add 50
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2-3-4 Insertion Algorithm
• Key:  Split 4 nodes on the way down

• To insert a value, 

– 1. If node is a 4-node

• Split the 3 values into a left 2-node, a right 2-node, and promote the middle element to 
the parent of the node (which definitely has room) attaching children appropriately

• Continue on to next node in search order 

– 2a. If node is a leaf, insert the value 

– 2b. Else continue on to the next node in search tree order

• Insert 60, 20, 10, 30, 25, 50, 80

Key:  4-nodes get split 
as you walk down 

thus, a leaf will always 
have room for a value 

Add 80

20  30

10 25 50  60

80

20  30

10 25 50 60 80
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2-3-4 Insertion Exercise 1
Add 55

20  30

10 25 50 60 80
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2-3-4 Insertion Exercise 2
Add 58

10 25

20 30 60

50  55 80
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2-3-4 Insertion Exercise 3
Add 57

10 25 50 55 58 80

30

20 60
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2-3-4 Insertion Exercise 3
Resulting Tree

10 25 80

30

20 55 60

50 57 58
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B-Trees

• 2-3-4 trees are just instances of a more general data 
structure known as B-Trees

• Define minimum number of children (degree) for 
non-leaf nodes, d

– Non-root nodes must have at least d-1 keys and d children

– All nodes must have at most 2d-1 keys and 2d children

– 2-3-4 Tree (d=2)

• Used for disk-based storage and indexing with 
large value of d to account for large random-
access lookup time but fast sequential access 
time of secondary storage
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B Tree Resources

• https://www.cs.usfca.edu/~galles/visualizatio
n/BTree.html

• http://ultrastudio.org/en/2-3-4_tree

https://www.cs.usfca.edu/~galles/visualization/BTree.html
http://ultrastudio.org/en/2-3-4_tree


44

RED BLACK TREES
"Balanced" Binary Search Trees
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Red Black Trees
• A red-black tree is a binary search tree

– Only 2 nodes (no 3- or 4-nodes)

– Can be built from a 2-3-4 tree directly by converting each 
3- and 4- nodes to multiple 2-nodes

• All 2-nodes means no wasted storage overheads 

• Yields a "balanced" BST

• "Balanced" means that the height of an RB-Tree is 
at MOST twice the height of a 2-3-4 tree

– Recall, height of 2-3-4 tree had an upper bound of log2(n)

– Thus height or an RB-Tree is bounded by 2*log2n which is 
still O(log2(n))
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Red Black and 2-3-4 Tree Correspondence
• Every 2-, 3-, and 4-node can be converted to…

– At least 1 black node and 1 or 2 red children of the black node

– Red nodes are always ones that would join with their parent to become a 3- or 
4-node in a 2-3-4 tree

s  m l

a 4 Node
m

ls

a b c d

S = Small

M = Median

L = Large

s    l

a 3 Node
l

s

a b

c

s

a

b c

lor

m

a 2-node

m
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Red Black Trees
• Below is a 2-3-4 tree and how it can be 

represented as a directly corresponding RB-
Tree

• Notice at most each 2-3-4 node expands to 
2 level of red/black nodes

• Q: Thus if the height of the 2-3-4 tree was 
bound by log2n, then the height of an RB-
tree is bounded by?

• A: 2*log2n = O(log2n)

20  30

10 25 50 60 80
30

20

10

25 60

50 80

Equivalent 

RB-Tree
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Red-Black Tree Properties
• Valid RB-Trees maintain the invariants that…

• 1. No path from root to leaf has two consecutive red nodes (i.e. a 
parent and its child cannot both be red)
– Since red nodes are just the extra values of a 3- or 4-node from 2-3-4 trees 

you can't have 2 consecutive red nodes

• 2. Every path from leaf to root has the same number of black 
nodes
– Recall, 2-3-4 trees are full (same height from leaf to root for all paths)

– Also remember each 2, 3-, or 4- nodes turns into a black node plus 0, 1, or 2 
red node children

• 3. At the end of an operation the root should always be black

• 4. We can imagine leaf nodes as having 2 non-existent (NULL) black 
children if it helps
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Red-Black Insertion
• Insertion Algorithm:

– 1. Insert node into normal BST location (at a leaf 
location) and color it RED

– 2a. If the node's parent is black (i.e. the leaf used 
to be a 2-node) then DONE (i.e. you now have 
what was a 3- or 4-node)

– 2b. Else perform fixTree transformations then 
repeat step 2 on the parent or grandparent 
(whoever is red)

• fixTree involves either
– recoloring or

– 1 or 2 rotations and recoloring

• Which case of fixTree you perform depends 
on the color of the new node's "aunt/uncle"

30

20

10

40

x

parent

grandparent

aunt/

uncle

Insert 10
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fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P  G  UN UN  P

G

G

P U

N

b c

a

P  G  UN UP  N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor 

Root

Note:  For insertion/removal 
algorithm we consider non-
existent leaf nodes as black 
nodes
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fixTree Cases
G

P

N

U

a b

c

P

N G

b

G

P U

N

b c

a

G

N U

P  G

UN c

Right 

rotate of 

P,G

Uca

ba

N  P  G

Ucba

a

P c

b

N

P G

b Ua c

Right 

rotate of 

N,G

& Recolor

Left rotate 

of N,P

P  G

Ua N

cb

P  N  G

Ua b c

4.

5.

1 Rotate / 

Recolor

2 Rotates / 

Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html
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Insertion 
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Case 4:  Left rotate 

and recolor

20

3010

Insert 15

Violates consec. reds

15
Case 2:  

Recolor

20

3010

15
Case 3:  

Recolor 

root

20

3010

15

Insert 25

20

3010

15 25
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Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 12

Case 5:  Right 

Rotate…

Case 5:  … 

Right Rotate 

and recolor

20

3012

15 25

20

3010

15 25

12

20

3010

12 25

15

10

Insert 5

20

3012

15 2510

5
Case 1:  

Recolor

20

3012

15 2510

5
Recursive call "fix" on 

12 but it's parent is 

black so we're done
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Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 3
20

3012

15 2510

5
Case 4: Rotate

3

20

3012

15 255

3 10
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Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 8

Case 2: Recolor

20

3012

15 255

3 10

8

20

3012

15 255

3 10

8

12

20

30

25

15

5

3 10

8

Case 4: Rotate 

12
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Insertion Exercise 1
Insert 27

12

20

30

25

15

5

3 10

8

27N

P

G
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Insertion Exercise 1
Insert 27

12

20

30

25

15

5

3 10

8

27

12

20

27

25

15

5

3 10

8 30

N

P

G

This is case 5.

1. Left rotate around P

2. Right rotate around N

3. Recolor
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Insertion Exercise 2
12

20

27

25

15

5

3 10

8

Insert 40

30

40N

P

G

A
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Insertion Exercise 2
12

20

27

25

15

5

3 10

8

Insert 40

30

40N

P

G

A

Aunt and Parent are the 

same color. So recolor aunt,

parent, and grandparent.

12

20

27

25

15

5

3 10

8 30

40
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Insertion Exercise 2
12

20

27

25

15

5

3 10

8 30

40

N

P

G

A

Aunt and Parent are the 

same color. So recolor aunt,

parent, and grandparent.

12

20

27

25

15

5

3 10

8 30

40
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Insertion Exercise 3
Insert 50 12
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Insertion Exercise 3
Insert 50 12

20

27
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5

3 10
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Remember, empty nodes are black.

Do a left rotation around P and recolor.
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Insertion Exercise 4
Insert 45
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Insertion Exercise 4
Insert 45
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Aunt and Parent are the same color.

Just recolor.
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Insertion Exercise 4
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Final Result
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Insertion Exercise 5
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Insertion Exercise 5
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RB-Tree Visualization & Links

• https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
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RB TREE IMPLEMENTATION
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Hints
• Implement private methods:

– findMyUncle()

– AmIaRightChild()

– AmIaLeftChild()

– RightRotate

– LeftRotate

• Need to change x's parent, y's parent, b's parent, x's right, y's left, x's 
parent's left or right, and maybe root

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate 

of y,x

Right rotate 

of x,y
(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)
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Hints
• You have to fix the tree after insertion if…

• Watch out for traversing NULL pointers

– node->parent->parent

– However, if you need to fix the tree your grandparent…

• Cases break down on uncle's color

– If an uncle doesn't exist (i.e. is NULL), he is (color?)…

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate 

of y,x

Right rotate 

of x,y
(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)
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FOR PRINT
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fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P  G  UN UN  P

G

G

P U

N

b c

a

P  G  UN UP  N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor 

Root

Note:  For insertion/removal 
algorithm we consider non-
existent leaf nodes as black 
nodes
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fixTree Cases
G

P

N

U

a b

c

P

N G

b

G

P U

N

b c

a

G

N U

P  G

UN c

Uca

ba

N  P  G

Ucba

a

P c

b

N

P G

b Ua c

P  G

Ua N

cb

P  N  G

Ua b c

4.

5.

1 Rotate / 

Recolor

2 Rotates / 

Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html

Right 

rotate of 

P,G

Right 

rotate of 

N,G

& Recolor

Left rotate 

of N,P


