
1

CSCI 104
Binary Search Trees and

Balanced Binary Search Trees
using AVL Trees

Mark Redekopp

David Kempe

Sandra Batista

2

BINARY SEARCH TREES
Properties, Insertion and Removal

3

Binary Search Tree

• Binary search tree = binary tree where all nodes meet the
property that:
– All values of nodes in left subtree are less-than or equal than the

parent’s value

– All values of nodes in right subtree are greater-than or equal than the
parent’s value

25

4718

7 20 32 56

If we wanted to print the values

in sorted order would you use an

pre-order, in-order, or post-order

traversal?

4

BST Insertion
• Important: To be efficient (useful) we need to keep the binary search tree

balanced

• Practice: Build a BST from the data values below

– To insert an item walk the tree (go left if value is less than node, right if
greater than node) until you find an empty location, at which point you insert
the new value

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

5

BST Insertion
• Important: To be efficient (useful) we need to keep the binary search tree

balanced

• Practice: Build a BST from the data values below
– To insert an item walk the tree (go left if value is less than node, right if greater than

node) until you find an empty location, at which point you insert the new value

• https://www.cs.usfca.edu/~galles/visualization/BST.html

25

4718

7 20 32 56

7

18

20

25

32

47

56

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

A major topic we will talk about is algorithms

to keep a BST balanced as we do

insertions/removals

https://www.cs.usfca.edu/~galles/visualization/BST.html

6

Successors & Predecessors
• Let's take a quick tangent that will help us understand how to

do BST Removal

• Given a node in a BST
– Its predecessor is defined as the next smallest value in the tree

– Its successor is defined as the next biggest value in the tree

• Where would you expect to find a node's successor?

• Where would find a node's predecessor?

m

7

Predecessors
• If left child exists, predecessor is the

right most node of the left subtree

• Else walk up the ancestor chain until you
traverse the first right child pointer (find
the first node who is a right child of his
parent…that parent is the predecessor)

– If you get to the root w/o finding a node
who is a right child, there is no predecessor

50

30

25

20

10

60

Pred(50)

50

30

25

20

10

60

Pred(25)

8

Predecessors
• If left child exists, predecessor is the

right most node of the left subtree

• Else walk up the ancestor chain until
you traverse the first right child
pointer (find the first node who is a
right child of his parent…that parent is
the predecessor)

– If you get to the root w/o finding a node
who is a right child, there is no
predecessor

50

30

25

20

10

60

Pred(50) = 30

50

30

25

20

10

60

Pred(25)=20

9

Successors
• If right child exists, successor is the

left most node of the right subtree

• Else walk up the ancestor chain until
you traverse the first left child pointer
(find the first node who is a left child
of his parent…that parent is the
successor)

– If you get to the root w/o finding a node
who is a left child, there is no successor

50

30

25

20

10

60

Succ(20)

50

30

25

20

10

60

Succ(30)

10

Successors
• If right child exists, successor is the

left most node of the right subtree

• Else walk up the ancestor chain until
you traverse the first left child pointer
(find the first node who is a left child
of his parent…that parent is the
successor)

– If you get to the root w/o finding a node
who is a left child, there is no successor

50

30

25

20

10

60

Succ(20) = 25

50

30

25

20

10

60

Succ(30)=50

11

BST Removal
• To remove a value from a BST…

– First find the value to remove by walking the tree

– If the value is in a leaf node, simply remove that leaf node

– If the value is in a non-leaf node, swap the value with its in-order
successor or predecessor and then remove the value

• A non-leaf node's successor or predecessor is guaranteed to be a leaf node
(which we can remove) or have 1 child which can be promoted

• We can maintain the BST properties by putting a value's successor or
predecessor in its place

50

30

25

20

10

60

50

30

25

20

10

60

Remove 25

Leaf node so

just delete it

Remove 20

20 is a non-leaf so can't delete it

where it is…swap w/ successor

or predecessor

50

30

25

10

20

60

50

30

20

25

10

60…or…

Either…

Swap w/

pred

Swap w/

succ

50

30

25

20

10

60

Remove 30

1-Child so just

promote child

12

Worst Case BST Efficiency
• Insertion

– Balanced: _________

– Unbalanced: _________

• Removal

– Balanced: ________

– Unbalanced: _________

• Find/Search

– Balanced: __________

– Unbalanced: __________

#include<iostream>

using namespace std;

// Bin. Search Tree

template <typename T>

class BST

{

public:

BTree();

~BTree();

virtual bool empty() = 0;

virtual void insert(const T& v) = 0;

virtual void remove(const T& v) = 0;

virtual T* find(const T& v) = 0;

};

13

BST Efficiency
• Insertion

– Balanced: O(log n)

– Unbalanced: O(n)

• Removal

– Balanced : O(log n)

– Unbalanced: O(n)

• Find/Search

– Balanced : O(log n)

– Unbalanced: O(n)

#include<iostream>

using namespace std;

// Bin. Search Tree

template <typename T>

class BST

{

public:

BTree();

~BTree();

virtual bool empty() = 0;

virtual void insert(const T& v) = 0;

virtual void remove(const T& v) = 0;

virtual T* find(const T& v) = 0;

};

14

Tree Traversals
• A traversal iterates over all nodes of the tree

– Usually using a depth-first, recursive approach

• Three general traversal orderings
– Pre-order [Process root then visit subtrees]

– In-order [Visit left subtree, process root, visit right subtree]

– Post-order [Visit left subtree, visit right subtree, process root]

60

80

30

25 50

20

10

Preorder(TreeNode* t)

{ if t == NULL return

process(t) // print val.

Preorder(t->left)

Preorder(t->right)

}

60 20 10 30 25 50 80

Inorder(TreeNode* t)

{ if t == NULL return

Inorder(t->left)

process(t) // print val.

Inorder(t->right)

}

Postorder(TreeNode* t)

{ if t == NULL return

Postorder(t->left)

Postorder(t->right)

process(t) // print val.

}

10 20 25 30 50 60 80

10 25 50 30 20 80 60

15

Trees & Maps/Sets
• C++ STL "maps" and "sets" use binary search trees

internally to store their keys (and values) that can grow
or contract as needed

• This allows O(log n) time to find/check membership

– BUT ONLY if we keep the tree balanced!

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object

Map::find("Greg") Map::find("Mark")

Returns iterator to

corresponding

pair<string, Student>

Returns iterator to end()

[i.e. NULL]

16

TREE ROTATIONS
The key to balancing…

17

BST Subtree Ranges
• Consider a binary search tree, what range of values could be in

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

z

y

c

d

x

a

b

y

d

z

ca

x

b
() ()

()

()

(-inf, inf)

()

()

(-inf,inf)

()

()

()()

()

()

What values

might be in

the subtree

rooted here

18

BST Subtree Ranges
• Consider a binary search tree, what range of values could be in

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

(-inf, inf)

z

y

c

d

x

a

b

y

(-inf, z)

(-inf, y) (y,z)

(z, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)

a

x

b
(-inf, x) (x,y)

19

Right Rotation
• Define a right rotation as taking a left child, making it

the parent and making the original parent the new right
child

• Where do subtrees a, b, c and d belong?

– Use their ranges to reason about it…

y

___ ___

z

Right

rotate of

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

___ ___

20

Right Rotation
• Define a right rotation as taking a left child, making it

the parent and making the original parent the new right
child

• Where do subtrees a, b, c and d belong?

– Use their ranges to reason about it…

y

c d

z

Right

rotate of

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

a b

(-inf, x) (x,y) (y,z) (z, inf)

21

Left Rotation
• Define a left rotation as taking a right child, making it

the parent and making the original parent the new left
child

• Where do subtrees a, b, c and d belong?

– Use their ranges to reason about it…

Left

rotate of

x

y

___ ___

zx

___ ___

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)

22

Left Rotation
• Define a left rotation as taking a right child, making it

the parent and making the original parent the new left
child

• Where do subtrees a, b, c and d belong?

– Use their ranges to reason about it…

Left

rotate of

x

y

c d

zx

a b

(-inf, x) (x,y) (y,z) (z, inf)

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)

23

Rotations
• Define a right rotation as taking a left child, making it

the parent and making the original parent the new right
child

• Where do subtrees a, b, and c belong?

– Use their ranges to reason about it…

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate

of x

Right rotate

of y(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

24

Rotation's Effect on Height
• When we rotate, it serves to re-balance the tree

y

z

Right rotate

of z

z

y

cx

x

h h

h

h

h+3

h+1

h+2

h h h h

Let's always specify the parent node involved in a rotation (i.e. the
node that is going to move DOWN).

25

AVL TREES
Self-balancing tree proposed by Adelson-Velsky and Landis

26

AVL Trees
• A binary search tree where the height difference between left and right subtrees

of a node is at most 1

– Binary Search Tree (BST): Left subtree keys are less than the root and right subtree keys
are greater

• Two implementations:

– Height: Just store the height of the tree rooted at that node

– Balance: Define b(n) as the balance of a node = Right – Left Subtree Height

• Legal values are -1, 0, 1

• Balances require at most 2-bits if we are trying to save memory.

• Let's use balance for this lecture.

20

3010

-1

0 -1

121 25050

30 80 150

20

3010

4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance

factors

27

Adding a New Node

• Once a new node is added, can its parent be out of
balance?

– No, assuming the tree is "in-balance" when we start.

– Thus, our parent has to have
• A balance of 0

• A balance of 1 if we are a new left child or -1 if a new right child

– Otherwise it would not be our parent or the parent would
have been out of balance already

12

10

0

0

121

200100

28

Losing Balance

• If our parent is not out of balance, is it possible our
grandparent is out of balance?

• Sure, so we need a way to re-balance it

12

10

0

0

150

120

15-1 101

-2 2

-1
-1

29

To Zig or Zag

• The rotation(s) required to
balance a tree is/are
dependent on the
grandparent, parent, child
relationships

• We can refer to these as
the zig-zig (left-left or right-
right) case and zig-zag case
(left-right or right-left)

• Zig-zig requires 1 rotation

• Zig-zag requires 2 rotations
(first converts to zig-zig)

20

12

10

-2

-1

0

10

12

20

2

1

0

120

200100

20

10

12

-2

1

0

10

20

12

2

-1

0

120

200100

Left-left or Right-right

(a.k.a. Zig-zig)

[Single left/right rotation at grandparent]

Left-right or Right-left

(a.k.a. Zig-zag)

[Left/right rotation at parent followed by rotation in

opposite direction at grandparent]

g g

g

p p

g

p p

30

Disclaimer

• There are many ways to structure an
implementation of an AVL tree…the following
slides represent just 1

– Focus on the bigger picture ideas as that will allow
you to more easily understand other
implementations

31

Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set balance
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)

12

10

0

0

121

200100

12-1

200100

-1

32

Insert-fix(p, n)

• Precondition: p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g);
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) == 0 then b(p) = 0; b(g) = 0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) = 0; b(n) = 0;

Note: If you
perform a

rotation to fix a
node that is out
of balance you
will NOT need
to recurse. You

are done!

General Idea:
Work up ancestor

chain updating
balances of the

ancestor chain or
fix a node that is
out of balance.

33

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Zig-zig =>

b(g) = b(p) = 0

Insert 15

10 violates balance

Insert 25

0 1

0

2

1

0

0

0 0

20

3010

-1

1 0

150

20

3010

0

1 -1

150 250

20

3010

0

2 -1

15-1 250

120

Insert 12

g

p

n

g

p

n

Zig-zag & b(n) = 0 =>

b(g) = b(p) = b(n) = 0

20

3012

0

0 -1

150 250100

34

Insertion
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 5
Zig-zig =>

b(g) = b(p) = 0

Insert 8 Zig-zag & b(n) = -1 =>

b(g) = 1 & b(p) = b(n) = 0

20

3012

-1

-1 -1

150 25010-1

50

Insert 3
20

3012

-1

-1 -1

150 25010-2

5-1

30

20

3012

-1

-1 -1

150 25050

30 100

20

3012

-1

-2 -1

150 2505+1

30 10-1

80

g

p

n

20

3010

-1

0 -1

121 25050

30 80 150

35

Insertion Exercise 1
• Insert key=28

20

3010

-1

0 -1

121 25050

30 80 150

36

Insertion Exercise 2
• Insert key=17

20

3010

-1

0 -1

121 25050

30 80 150

37

Insertion Exercise 3
• Insert key=2

20

3010

-1

0 -1

121 25050

30 80 150

38

Remove Operation

• Remove operations may also require rebalancing via
rotations

• The key idea is to update the balance of the nodes
on the ancestor pathway

• If an ancestor gets out of balance then perform
rotations to rebalance

– Unlike insert, performing rotations during removal does
not mean you are done, but need to continue recursing

• There are slightly more cases to worry about but not
too many more

39

Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL,

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to
balance of its parent

– diff will be the amount added to updated the balance of p

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);

40

RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1 // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) == 0 // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done!

– Case 1c: b(c) == +1 // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) was 0 then b(n) = 0, b(c) = 0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff == 0: then b(n) = 0, removeFix(p, ndiff)

Note:
p = parent of n

n = current node
c = taller child of n
g = grandchild of n

41

Remove Examples

20

3010

-1

0 -1

121 25050

30 80 150

Remove 15

n

20

3010

-1

-1 -1

120 25050

30 80 150

n

Remove 3

20

3010

-1

-1 -1

120 25051

30 80

n

42

Remove Examples
Remove 25

20

3010

-1

-1 -1

120 2505

80

1

n

20

3010

-2

-1 0

1205

80

1

n

c

g

Zig-zig & b(c) = -1 =>

b(n) = b(c) = 0

10

20

0

0

120

5

80

1

c

30

n

0

43

Remove Examples
Remove 20

20

2210

-1

1 1

12-1 2505

110

1

n

Zig-zag & b(g) = -1 =>

b(n) = +1, b(c) = 0, b(g) = 0

22

2010

-1

1 1

12-1 2505

110

1

n

succ(n)
22

2510

-2

1 0

12-15

110

1

n

c

g

12

2210

0

0 1

1105

nc

g

250 0

44

Remove Example 1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

45

Remove Example 1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

Zig-zag & b(g) = 0 =>

b(n) = -1, b(c) = 0

5

14

28

350

170

0

0 0

20

3010

-1

2 -1

15-1 2515

121

0

14

28

350

17

0

0 0

n g

g

20

30

10

-1

-1

-1

150 251

5

120

0 14 28

350

170 0 0

n cc

p

20

30

10

0

-1

-1

150 251

5

120

14 28

350

170 0 0

n

0

46

Remove Example 2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0

47

Remove Example 2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0

20

3011

-1

1 -1

15-1 2518

120

-1

5

10

28

350

170

0

0 0

n

20

3011

-1

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

20

3011

-1

0 -1

150 2518

120

-1

5 28

350

170 0 0

20

3011

0

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

n

48

Remove Example 3

Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

49

Remove Example 3

Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

20

3510

-1

1 -1

15-1 2518

121

-1

5

14

28

300

170

0

0 0

20

3510

-1

1 -2

15-1 2518

121

-1

5

14

28170

0

0 0

n

g

c

else if b(c) == 1 (zig-zag case)
• rotateLeft(c) then rotateRight(n)

• Let g = right(c), b(g) = 0

• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);

20

2810

-2

1 0

15-1 2508

121

-1

5

14

35

170

0

0

0

n

g

c

50

Remove Example 3 (cont)

Remove 30 (cont.)

15

28

10

0

0

0

25

8 121-1

5 14 35

17

0 0 0

n

201

else if b(c) == 1 (zig-zag case)
• rotateLeft(c) then rotateRight(n)

• Let g = right(c), b(g) = 0

• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);

0

0

51

Online Tool

• https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

52

FOR PRINT
Distribute these 4 to students

53

Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set balance
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)

12

10

0

0

121

200100

12-1

200100

-1

54

Insert-fix(p, n)

• Precondition: p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g);
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) == 0 then b(p) = 0; b(g) = 0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) = 0; b(n) = 0;

Note: If you
perform a

rotation to fix a
node that is out
of balance you
will NOT need
to recurse. You

are done!

General Idea:
Work up ancestor

chain updating
balances of the

ancestor chain or
fix a node that is
out of balance.

55

Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL,

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to
balance of its parent

– diff will be the amount added to updated the balance of p

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);

56

RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1 // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) == 0 // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done!

– Case 1c: b(c) == +1 // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) was 0 then b(n) = 0, b(c) = 0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff == 0: then b(n) = 0, removeFix(p, ndiff)

Note:
p = parent of n

n = current node
c = taller child of n
g = grandchild of n

57

OLD ALTERNATE METHOD

58

Insert

• Root => set balance, done!

• Insert, v, and look at its parent, p

– If b(p) = -1, then b(p) = 0. Done!

– If b(p) = +1, then b(p) = 0. Done!

– If b(p) = 0, then update b(p) and call insert-fix(p)

59

Insert-Fix

• For input node, v
– If v is root, done.

– Invariant: b(v) = {-1, +1}

• Find p = parent(v) and assume v = left(p) [i.e. left child]
– If b(p) = 1, then b(p) = 0. Done!

– If b(p) = 0, then b(p) = -1. Insert-fix(p).

– If b(p) = -1 and b(v) = -1 (zig-zig), then b(p) = 0, b(v) = 0, rightRotate(p)
Done!

– If b(p) = -1 and b(v) = 1 (zig-zag), then
• u = right(v), b(u) = 0, leftRotate(n), rightRotate(p)

• If b(u) = -1, then b(v) = 0, b(p) = 1

• If b(u) = 1, then b(v) = -1, b(p) = 0

• Done!

60

Remove

• Let n = node to remove (perform BST find)

• If n has 2 children, swap positions with in-order successor (or
predecessor) and perform the next step
– If you had to swap, let n be the node with the original value that just

swapped down to have 0 or 1 children guaranteed

• Let p = parent(n)

• If n is not in the root position (i.e. p is not NULL) determine its
relationship with its parent
– If n is a left child, let diff = +1

– if n is a right child, let diff = -1

• Delete n and "patch" the tree (update pointers including root)

• removeFix(p, diff);

61

RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before we alter the tree
– Let p = parent(n) and if p is not NULL let ndiff = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• If (n.balance + diff == -2)
– [Perform the check for the mirror case where n.balance + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– If c.balance == -1 or 0 (zig-zig case)

• rotateRight(n)

• if c.balance was -1 then n.balance = c.balance = 0, removeFix(p, ndiff)

• if c.balance was 0 then n.balance = -1, c.balance = +1, done!

– else if c.balance == 1 (zig-zag case)

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If g.balance was +1 then n.balance = 0, c.balance = -1, g.balance = 0

• If g.balance was 0 then n.balance = c.balance = 0, g.balance = 0

• If g.balance was -1 then n.balance = +1, c.balance = 0, g.balance = 0

• removeFix(p, ndiff);

• else if (n.balance + diff == -1) then n.balance = -1, done!

• else (if n.balance + diff == 0) n.balance = 0, removeFix(p, ndiff)

Note:
p = parent of n

n = current node
c = taller child of n
g = grandchild of n

