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BINARY SEARCH TREES
Properties, Insertion and Removal
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Binary Search Tree

• Binary search tree = binary tree where all nodes meet the 
property that:
– All values of nodes in left subtree are less-than or equal than the 

parent’s value

– All values of nodes in right subtree are greater-than or equal than the 
parent’s value

25

4718

7 20 32 56

If we wanted to print the values 

in sorted order would you use an 

pre-order, in-order, or post-order 

traversal?
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BST Insertion
• Important: To be efficient (useful) we need to keep the binary search tree 

balanced

• Practice:  Build a BST from the data values below

– To insert an item walk the tree (go left if value is less than node, right if 
greater than node) until you find an empty location, at which point you insert 
the new value

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56
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BST Insertion
• Important: To be efficient (useful) we need to keep the binary search tree 

balanced

• Practice:  Build a BST from the data values below
– To insert an item walk the tree (go left if value is less than node, right if greater than 

node) until you find an empty location, at which point you insert the new value

• https://www.cs.usfca.edu/~galles/visualization/BST.html
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25
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47

56

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

A major topic we will talk about is algorithms 

to keep a BST balanced as we do 

insertions/removals

https://www.cs.usfca.edu/~galles/visualization/BST.html
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Successors & Predecessors
• Let's take a quick tangent that will help us understand how to 

do BST Removal

• Given a node in a BST
– Its predecessor is defined as the next smallest value in the tree

– Its successor is defined as the next biggest value in the tree

• Where would you expect to find a node's successor?

• Where would find a node's predecessor?

m
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Predecessors
• If left child exists, predecessor is the 

right most node of the left subtree

• Else walk up the ancestor chain until you 
traverse the first right child pointer (find 
the first node who is a right child of his 
parent…that parent is the predecessor)

– If you get to the root w/o finding a node 
who is a right child, there is no predecessor

50
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Pred(50)
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Pred(25)
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Predecessors
• If left child exists, predecessor is the 

right most node of the left subtree

• Else walk up the ancestor chain until 
you traverse the first right child 
pointer (find the first node who is a 
right child of his parent…that parent is 
the predecessor)

– If you get to the root w/o finding a node 
who is a right child, there is no 
predecessor
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Pred(50) = 30
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60

Pred(25)=20
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Successors
• If right child exists, successor is the 

left most node of the right subtree

• Else walk up the ancestor chain until 
you traverse the first left child pointer 
(find the first node who is a left child 
of his parent…that parent is the 
successor)

– If you get to the root w/o finding a node 
who is a left child, there is no successor
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Successors
• If right child exists, successor is the 

left most node of the right subtree

• Else walk up the ancestor chain until 
you traverse the first left child pointer 
(find the first node who is a left child 
of his parent…that parent is the 
successor)

– If you get to the root w/o finding a node 
who is a left child, there is no successor
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25

20

10
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Succ(20) = 25
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60

Succ(30)=50
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BST Removal
• To remove a value from a BST…

– First find the value to remove by walking the tree

– If the value is in a leaf node, simply remove that leaf node

– If the value is in a non-leaf node, swap the value with its in-order 
successor or predecessor and then remove the value

• A non-leaf node's successor or predecessor is guaranteed to be a leaf node 
(which we can remove) or have 1 child which can be promoted

• We can maintain the BST properties by putting a value's successor or 
predecessor in its place
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Remove 25

Leaf node so 

just delete it

Remove 20

20 is a non-leaf so can't delete it 

where it is…swap w/ successor 

or predecessor
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Swap w/ 
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Remove 30

1-Child so just 

promote child
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Worst Case BST Efficiency
• Insertion

– Balanced: _________

– Unbalanced: _________

• Removal

– Balanced: ________

– Unbalanced: _________

• Find/Search

– Balanced: __________

– Unbalanced: __________

#include<iostream>

using namespace std;

// Bin. Search Tree

template <typename T>

class BST

{

public:

BTree();

~BTree();

virtual bool empty() = 0;

virtual void insert(const T& v) = 0;

virtual void remove(const T& v) = 0;

virtual T* find(const T& v) = 0;

};
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BST Efficiency
• Insertion

– Balanced: O(log n)

– Unbalanced: O(n)

• Removal

– Balanced : O(log n)

– Unbalanced: O(n)

• Find/Search

– Balanced : O(log n)

– Unbalanced: O(n)

#include<iostream>

using namespace std;

// Bin. Search Tree

template <typename T>

class BST

{

public:

BTree();

~BTree();

virtual bool empty() = 0;

virtual void insert(const T& v) = 0;

virtual void remove(const T& v) = 0;

virtual T* find(const T& v) = 0;

};
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Tree Traversals
• A traversal iterates over all nodes of the tree

– Usually using a depth-first, recursive approach

• Three general traversal orderings
– Pre-order [Process root then visit subtrees]

– In-order [Visit left subtree, process root, visit right subtree]

– Post-order [Visit left subtree, visit right subtree, process root]

60

80

30

25 50

20

10

Preorder(TreeNode* t)

{  if t == NULL return   

process(t) // print val.

Preorder(t->left)

Preorder(t->right)

}

60 20 10 30 25 50 80

Inorder(TreeNode* t)

{  if t == NULL return 

Inorder(t->left)

process(t) // print val.

Inorder(t->right)

}

Postorder(TreeNode* t)

{  if t == NULL return 

Postorder(t->left)

Postorder(t->right)

process(t) // print val.

}

10 20 25 30 50 60 80

10 25 50 30 20 80 60
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Trees & Maps/Sets
• C++ STL "maps" and "sets" use binary search trees 

internally to store their keys (and values)  that can grow 
or contract as needed 

• This allows O(log n) time to find/check membership

– BUT ONLY if we keep the tree balanced!

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object

Map::find("Greg") Map::find("Mark")

Returns iterator to 

corresponding 

pair<string, Student>

Returns iterator to end() 

[i.e. NULL]
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TREE ROTATIONS
The key to balancing…
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BST Subtree Ranges
• Consider a binary search tree, what range of values could be in 

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

z

y

c

d

x

a

b

y

d

z

ca

x

b
(             ) (             )

(             )

(             )

(-inf, inf)

(             )

(             )

(-inf,inf)

(             )

(             )

(             )(             )

(             )

(             )

What values 

might be in 

the subtree

rooted here
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BST Subtree Ranges
• Consider a binary search tree, what range of values could be in 

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

(-inf, inf)

z

y

c

d

x

a

b

y

(-inf, z)

(-inf, y) (y,z)

(z, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)

a

x

b
(-inf, x) (x,y)
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Right Rotation
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

y

___ ___

z

Right 

rotate of 

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

___ ___
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Right Rotation
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

y

c d

z

Right 

rotate of 

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

a b

(-inf, x) (x,y) (y,z) (z, inf)
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Left Rotation
• Define a left rotation as taking a right child, making it 

the parent and making the original parent the new left 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

Left 

rotate of 

x

y

___ ___

zx

___ ___

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)
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Left Rotation
• Define a left rotation as taking a right child, making it 

the parent and making the original parent the new left 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

Left 

rotate of 

x

y

c d

zx

a b

(-inf, x) (x,y) (y,z) (z, inf)

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)



23

Rotations
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, and c belong? 

– Use their ranges to reason about it… 

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate 

of x

Right rotate 

of y(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)
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Rotation's Effect on Height
• When we rotate, it serves to re-balance the tree

y

z

Right rotate 

of z

z

y

cx

x

h h

h

h

h+3

h+1

h+2

h h h h

Let's always specify the parent node involved in a rotation (i.e. the 
node that is going to move DOWN).  
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AVL TREES
Self-balancing tree proposed by Adelson-Velsky and Landis
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AVL Trees
• A binary search tree where the height difference between left and right subtrees 

of a node is at most 1

– Binary Search Tree (BST): Left subtree keys are less than the root and right subtree keys 
are greater

• Two implementations:

– Height:  Just store the height of the tree rooted at that node

– Balance:  Define b(n) as the balance of a node = Right – Left Subtree Height

• Legal values are -1, 0, 1

• Balances require at most 2-bits if we are trying to save memory. 

• Let's use balance for this lecture.

20

3010

-1

0 -1

121 25050

30 80 150

20

3010

4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance 

factors
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Adding a New Node

• Once a new node is added, can its parent be out of 
balance?

– No, assuming the tree is "in-balance" when we start.  

– Thus, our parent has to have
• A balance of 0

• A balance of 1 if we are a new left child or -1 if a new right child

– Otherwise it would not be our parent or the parent would 
have been out of balance already

12

10

0

0

121

200100
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Losing Balance

• If our parent is not out of balance, is it possible our 
grandparent is out of balance?

• Sure, so we need a way to re-balance it

12

10

0

0

150

120

15-1 101

-2 2

-1
-1
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To Zig or Zag

• The rotation(s) required to 
balance a tree is/are 
dependent on the 
grandparent, parent, child 
relationships

• We can refer to these as 
the zig-zig (left-left or right-
right) case and zig-zag case 
(left-right or right-left)

• Zig-zig requires 1 rotation

• Zig-zag requires 2 rotations 
(first converts to zig-zig)

20

12

10

-2

-1

0

10

12

20

2

1

0

120

200100

20

10

12

-2

1

0

10

20

12

2

-1

0

120

200100

Left-left or Right-right

(a.k.a. Zig-zig)

[Single left/right rotation at grandparent]

Left-right or Right-left

(a.k.a. Zig-zag)

[Left/right rotation at parent followed by rotation in 

opposite direction at grandparent]

g g

g

p p

g

p p
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Disclaimer

• There are many ways to structure an 
implementation of an AVL tree…the following 
slides represent just 1

– Focus on the bigger picture ideas as that will allow 
you to more easily understand other 
implementations
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Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and 
inserting the new node as its child), set balance 
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)

12

10

0

0

121

200100

12-1

200100

-1
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Insert-fix(p, n)

• Precondition:  p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g  [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g); 
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) ==  0 then b(p) = 0; b(g) =  0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) =  0; b(n) = 0;

Note: If you 
perform a 

rotation to fix a 
node that is out 
of balance you 
will NOT need 
to recurse. You 

are done!

General Idea: 
Work up ancestor 

chain updating 
balances of the 

ancestor chain or 
fix a node that is 
out of balance.
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Insertion 
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Zig-zig => 

b(g) = b(p) = 0

Insert 15

10 violates balance

Insert 25

0 1

0

2

1

0

0

0 0

20

3010

-1

1 0

150

20

3010

0

1 -1

150 250

20

3010

0

2 -1

15-1 250

120

Insert 12

g

p

n

g

p

n

Zig-zag & b(n) = 0 => 

b(g) = b(p) = b(n) = 0

20

3012

0

0 -1

150 250100
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Insertion 
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 5
Zig-zig => 

b(g) = b(p) = 0

Insert 8 Zig-zag & b(n) = -1 => 

b(g) = 1 & b(p) = b(n) = 0

20

3012

-1

-1 -1

150 25010-1

50

Insert 3
20

3012

-1

-1 -1

150 25010-2

5-1

30

20

3012

-1

-1 -1

150 25050

30 100

20

3012

-1

-2 -1

150 2505+1

30 10-1

80

g

p

n

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 1 
• Insert key=28

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 2 
• Insert key=17

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 3 
• Insert key=2

20

3010

-1

0 -1

121 25050

30 80 150
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Remove Operation

• Remove operations may also require rebalancing via 
rotations

• The key idea is to update the balance of the nodes 
on the ancestor pathway

• If an ancestor gets out of balance then perform 
rotations to rebalance

– Unlike insert, performing rotations during removal does 
not mean you are done, but need to continue recursing

• There are slightly more cases to worry about but not 
too many more
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Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who 
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL, 

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to 
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to 
balance of its parent

– diff will be the amount added to updated the balance of p 

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1   // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) ==  0   // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done! 

– Case 1c: b(c) == +1   // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0,  b(c) = -1, b(g) = 0

• If b(g) was  0 then b(n) = 0,  b(c) =  0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) =  0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff ==  0: then b(n) = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n
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Remove Examples

20

3010

-1

0 -1

121 25050

30 80 150

Remove 15

n

20

3010

-1

-1 -1

120 25050

30 80 150

n

Remove 3

20

3010

-1

-1 -1

120 25051

30 80

n
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Remove Examples
Remove 25

20

3010

-1

-1 -1

120 2505

80

1

n

20

3010

-2

-1 0

1205

80

1

n

c

g

Zig-zig & b(c) = -1 => 

b(n) = b(c) = 0

10

20

0

0

120

5

80

1

c

30

n

0
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Remove Examples
Remove 20

20

2210

-1

1 1

12-1 2505

110

1

n

Zig-zag & b(g) = -1 => 

b(n) = +1, b(c) = 0, b(g) = 0

22

2010

-1

1 1

12-1 2505

110

1

n

succ(n)
22

2510

-2

1 0

12-15

110

1

n

c

g

12

2210

0

0 1

1105

nc

g

250 0
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Remove Example 1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0
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Remove Example 1
Remove 8

20

3010

-1

1 -1

15-1 2518

121

-1

Zig-zag & b(g) = 0 => 

b(n) = -1, b(c) = 0

5

14

28

350

170

0

0 0

20

3010

-1

2 -1

15-1 2515

121

0

14

28

350

17

0

0 0

n g

g

20

30

10

-1

-1

-1

150 251

5

120

0 14 28

350

170 0 0

n cc

p

20

30

10

0

-1

-1

150 251

5

120

14 28

350

170 0 0

n

0



46

Remove Example 2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0
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Remove Example 2
Remove 10

20

3010

-1

1 -1

15-1 2518

12-1

-1

5

11

28

350

170

0

0 0

20

3011

-1

1 -1

15-1 2518

120

-1

5

10

28

350

170

0

0 0

n

20

3011

-1

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

20

3011

-1

0 -1

150 2518

120

-1

5 28

350

170 0 0

20

3011

0

1 -1

150 2518

120

-1

5 28

350

170 0 0

n

n
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Remove Example 3

Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0
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Remove Example 3

Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0

20

3510

-1

1 -1

15-1 2518

121

-1

5

14

28

300

170

0

0 0

20

3510

-1

1 -2

15-1 2518

121

-1

5

14

28170

0

0 0

n

g

c

else if b(c) == 1  (zig-zag case)
• rotateLeft(c) then rotateRight(n)

• Let g = right(c), b(g) = 0

• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);
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1 0
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Remove Example 3 (cont)

Remove 30 (cont.)

15

28

10

0

0

0

25

8 121-1

5 14 35

17

0 0 0

n

201

else if b(c) == 1  (zig-zag case)
• rotateLeft(c) then rotateRight(n)

• Let g = right(c), b(g) = 0

• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);

0

0
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Online Tool

• https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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FOR PRINT
Distribute these 4 to students
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Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and 
inserting the new node as its child), set balance 
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)

12

10

0

0

121

200100

12-1

200100

-1
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Insert-fix(p, n)

• Precondition:  p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g  [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g); 
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) ==  0 then b(p) = 0; b(g) =  0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) =  0; b(n) = 0;

Note: If you 
perform a 

rotation to fix a 
node that is out 
of balance you 
will NOT need 
to recurse. You 

are done!

General Idea: 
Work up ancestor 

chain updating 
balances of the 

ancestor chain or 
fix a node that is 
out of balance.
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Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who 
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL, 

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to 
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to 
balance of its parent

– diff will be the amount added to updated the balance of p 

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1   // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) ==  0   // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done! 

– Case 1c: b(c) == +1   // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0,  b(c) = -1, b(g) = 0

• If b(g) was  0 then b(n) = 0,  b(c) =  0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) =  0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff ==  0: then b(n) = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n
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OLD ALTERNATE METHOD
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Insert

• Root => set balance, done!

• Insert, v, and look at its parent, p

– If b(p) = -1, then b(p) = 0. Done!

– If b(p) = +1, then b(p) = 0. Done!

– If b(p) = 0, then update b(p) and call insert-fix(p)
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Insert-Fix

• For input node, v
– If v is root, done.

– Invariant:  b(v) = {-1, +1}

• Find p = parent(v) and assume v = left(p) [i.e. left child]
– If b(p) = 1, then b(p) = 0. Done!

– If b(p) = 0, then b(p) = -1. Insert-fix(p).

– If b(p) = -1 and b(v) = -1 (zig-zig), then b(p) = 0, b(v) = 0, rightRotate(p) 
Done!

– If b(p) = -1 and b(v) = 1 (zig-zag), then 
• u = right(v), b(u) = 0, leftRotate(n), rightRotate(p)

• If b(u) = -1, then b(v) = 0, b(p) = 1

• If b(u) = 1, then b(v) = -1, b(p) = 0

• Done!
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Remove

• Let n = node to remove (perform BST find) 

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step
– If you had to swap, let n be the node with the original value that just 

swapped down to have 0 or 1 children guaranteed

• Let p = parent(n)

• If n is not in the root position (i.e. p is not NULL) determine its 
relationship with its parent
– If n is a left child, let diff = +1

– if n is a right child, let diff = -1

• Delete n and "patch" the tree (update pointers including root)

• removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before we alter the tree
– Let p = parent(n) and if p is not NULL let ndiff = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• If (n.balance + diff == -2)   
– [Perform the check for the mirror case where n.balance + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– If c.balance == -1 or 0   (zig-zig case)

• rotateRight(n)

• if c.balance was -1 then n.balance = c.balance = 0, removeFix(p, ndiff)

• if c.balance was 0 then n.balance = -1, c.balance = +1, done! 

– else if c.balance == 1  (zig-zag case)

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If g.balance was +1 then n.balance = 0, c.balance = -1, g.balance = 0

• If g.balance was 0 then n.balance = c.balance = 0, g.balance = 0

• If g.balance was -1 then n.balance = +1, c.balance = 0, g.balance = 0

• removeFix(p, ndiff);

• else if  (n.balance + diff == -1) then n.balance = -1, done!

• else (if n.balance + diff == 0) n.balance = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n


