
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Number Theory

Aaron Cote

Mark Redekopp'

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Introduction

• Number Theory is the study of integers and division.

• Prime numbers come into play a lot.

• Modular arithmetic is a centerpiece of Number
Theory.

• The primary application of Number Theory is
Cryptography, which uses divisibility, prime numbers,
and modular arithmetic in lots of creative ways.
– Why is it safe to send your credit card information over the

web to Amazon? This unit will start to lay the foundations
to answer this question!

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULAR ARITHMETIC AND
CONGRUENCE CLASSES

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Congruence

• If a and b are integers, and m is a positive integer, then:
– “a is congruent to b modulo m” means

(a % m) = (b %m)

– This is written: a  b (mod m)

– Alternatively, b = a + mf, for some (possibly negative)
integer f.

• Are 24 and 14 congruent modulo 6?
– No, they have remainders of 0 and 2 respectively.

• Are 17 and 5 congruent modulo 6?
– Yes, they both have a remainder of 5.

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ways of Showing Congruence

• 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 if and only if:

– Method 1: 𝒂 𝒎𝒐𝒅𝒎 = 𝒃 (𝒎𝒐𝒅𝒎)
• 7 mod 4 = 3 and 15 mod 4 = 3 (i.e. 7 = 3 + 4 ∙ 1 and 15 = 3 + 4 ∙ 3)

– Method 2: There exists some integer, f, such that
𝒃 = 𝒂 +𝒎 ∙ 𝒇
• 7 and 15 are congruent mod 4 because 15 = 7 + 4 ∙ 2

– Method 3: There exists some integer, f, such that
(𝒃 − 𝒂) = 𝒎 ∙ 𝒇
• 7 and 15 are congruent mod 4 because 15-7 is a multiple of 4

(i.e. 15-7=8=2*4)

74

1 r. 3

154

3 r. 3

7 = 4•1+3 15 = 4•1+3

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Number Theory Proofs (Solution)

• Given a  b (mod m) and c  d (mod m):

• Prove: a+c  b + d (mod m) [or (b+d)%m = ((b%m)+(d%m))%m]

➢ b = a + mf, and d = c + mg

• Prove: ac  bd (mod m) [or (b•d)%m = ((b%m)•(d%m))%m]

➢ b = a + mf, and d = c + mg

• Also holds for subtraction a-c  b-d (mod m)

• Does NOT hold for division a/c ≠ b/d (mod m)

– More on this later

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Number Theory Proofs (Solution)

• Given a  b (mod m) and c  d (mod m):

• Prove: a+c  b + d (mod m)
➢b = a + mf, and d = c + mg

➢b + d = a + mf + c + mg = a + c + m(f+g). Proven!

• Prove: ac  bd (mod m)
➢b = a + mf, and d = c + mg

➢b  d = ac + amg + cmf + m2fg [by distribution]

➢b  d = ac + m(ag + cf + mfg). Proven!

• Also holds for subtraction a-c  b-d (mod m)

• Does NOT hold for division a/c ≠ b/d (mod m)
– More on this later

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Arithmetic

• Applying these proofs, the modulo m result of a sum
or product is equivalent to the sum or product of the
inputs modulo m:

𝑎 + 𝑏 ∙ 𝑐 𝑚𝑜𝑑 𝑚
= 𝑎 𝑚𝑜𝑑 𝑚 + (𝑏 𝑚𝑜𝑑 𝑚 ∙ 𝑐 𝑚𝑜𝑑 𝑚)

• Example:
18327 + 2642 ∙ 7985 𝑚𝑜𝑑 4 =

Or likely more easily computed as:
=

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Arithmetic (Solution)

• Applying these proofs, the modulo m result of a sum
or product is equivalent to the sum or product of the
inputs modulo m:

𝑎 + 𝑏 ∙ 𝑐 𝑚𝑜𝑑 𝑚
= 𝑎 𝑚𝑜𝑑 𝑚 + (𝑏 𝑚𝑜𝑑 𝑚 ∙ 𝑐 𝑚𝑜𝑑 𝑚)

• Example:
18327 + 2642 ∙ 7985 𝑚𝑜𝑑 4 = 21,114,697 𝑚𝑜𝑑 4 = 1

• Or likely more easily computed as:
= 18327 𝑚𝑜𝑑 4 + 2642 𝑚𝑜𝑑 𝑚 ∙ 7985 𝑚𝑜𝑑 4

= (3 + 2 ∙ 1)(𝑚𝑜𝑑 𝑚)
= 1 (𝑚𝑜𝑑 𝑚)

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Alternate number bases

• In base-b, all digits must be a value between 0
and b-1.
– If b > 10 (most commonly for b=16 known as

hexadecimal) we typically use letters for a digit:
10 = A, 11 = B, …, 15 = F etc.

– FACE is a number in base-16.

• To disambiguate the base, we will usually
write it as a subscript:
– FACE16 = 6420610 = 11111010110011102

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Base Conversion (Base b to Decimal)

• Given the binary: 11011, we know this is:

➢1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 27 𝑑𝑒𝑐𝑖𝑚𝑎𝑙

• We could implement it as below

➢But how would pow()
be implemented and
consider the work it
has to do (and then re-do,
and then re-do)?

// suppose the binary number is
// given as a vector of bits
// in reverse order (i.e. the bit
// multiplied by 2^0 is at index 0)
unsigned bin2dec(vector<int> b)
{

unsigned val = 0;
for(int i=0; i < b.size(); i++)
{

val += b[i] * pow(2,i);
}
return val;

}

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Base Conversion (Base b to Decimal)

• If pow(r,n) simply multiplied r by itself n-1 times
then each call would take Θ(𝑛) and to compute a
polynomial of degree n would be Θ(𝑛2)

➢𝑎4 ∙ 𝑟
4 + 𝑎3 ∙ 𝑟

3 + 𝑎2 ∙ 𝑟
2 + 𝑎1 ∙ 𝑟

1 + 𝑎0 ∙ 𝑟
0

• We can achieve the computation in linear time by
factoring to the following form:

➢ 𝑎4 ∙ 𝑟 + 𝑎3 ∙ 𝑟 + 𝑎2 ∙ 𝑟 + 𝑎1 ∙ 𝑟 + 𝑎0

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Base Conversion (Decimal to Base b)

Example: Convert 23 to base 2:

• 23 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 = 𝑎4 ∙ 2
4 + 𝑎3 ∙ 2

3 + 𝑎2 ∙ 2
2 + 𝑎1 ∙ 2

1 + 𝑎0 ∙ 2
0 and we just need to

find the coefficients a4, a3, …, a0

• =
𝑎
4
∙24+𝑎

3
∙23+𝑎

2
∙22+𝑎

1
∙21+𝑎

0
∙20

2
= 𝑎4 ∙ 2

3 + 𝑎3 ∙ 2
2 + 𝑎2 ∙ 2

1 + 𝑎1 ∙ 2
0 + 𝑎0 ∙ 2

−1

• So, we see that the remainder of dividing by 2 is a0 and then we can repeat again on
the quotient to find a1 and so on

// n is the value to convert, b is the base to
// convert to, res is the array to store the
// converted result in.
void convert(int n, int b, int res[]) {

for (int k = 0; n != 0; k++) {
res[k] = n % b;
n /= b;

}
}

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation
• Suppose we want to calculate 𝑏𝑛%𝑚 (e.g. 5223%7)

– We want to do this in Cryptography

– If b and n are large, then calculating 𝒃𝒏 may be impractical

• Our naïve approach had us multiply by b a total of n times
(i.e. 𝑏1 ∙ 𝑏1 ∙ 𝑏1 ∙ ⋯ ∙ 𝑏1) = n multiplications

• Let us find an alternate, more efficient approach

• Convert the exponent to its binary representation and
formulate our exponentiation as the product of the base raised
to certain powers of 2

• If n = 23 dec = 10111 bin (16 + 8 + 4 + 2 + 1)
– Note: Any 0 in the binary number leads to 𝑏0 = 1 and can be left out of

the product

– 𝑏23 = 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1 = 𝑏2
4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 2

0

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation
• Let's use our example of 𝑏23 = 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1 = 𝑏2

4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 2

0

• Notice we can calculate our powers with log(n) multiplications:
𝑏2 = 𝑏1 ∙ 𝑏1 which we can use to compute 𝑏4 = 𝑏2 ∙ 𝑏2 which we
can use to compute 𝑏8 = 𝑏4 ∙ 𝑏4 which we can use to compute
𝑏16 = 𝑏8 ∙ 𝑏8

– We can perform mod m operation anytime to ensure the value does not
overflow our int or long int range.

– Start by letting 𝑟0 = 𝑏%𝑚, and include that in our answer if we need 𝑏1

– Then, calculate 𝑏2 %𝑚 by calculating 𝑟1 = 𝑏%𝑚 ∙ 𝑏%𝑚 =

(𝑟0 ∙ 𝑟0)%𝑚, and include that in our answer if we need 𝑏2

– Then, calculate 𝑏4 %𝑚 by calculating 𝑟2 = 𝑏2%𝑚 ∙ 𝑏2%𝑚 %𝑚 =

𝑟1 ∙ 𝑟1 %𝑚, and include that in our answer if we need 𝑏4

– And so on…

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Example 1

I N[i] x (after iter i) r (after iter i)

initially 1 52%7=3

0 1 (a0 = LSB)

1 1

2 1

3 0

4 1 (a1 = MSB)

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if (N[i] == true) x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟓𝟐𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = (𝟑𝟏𝟔 ∙ 𝟑𝟒 ∙ 𝟑𝟐 ∙ 𝟑𝟏) 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟐 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟒 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟖 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏𝟔 𝒎𝒐𝒅 𝟕

3

9

81

6561

43046721

=3
9*3

=27

81*9*3

=2187

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Example 1 (Sol)

I N[i] x (after iter i) r (after iter i)

initially 1 52%7=3

0 1 (a0 = LSB) 1*3=3 mod 7 3*3=2 mod 7

1 1 3*2=6 mod 7 2*2=4 mod 7

2 1 6*4=3 mod 7 4*4=2 mod 7

3 0 3 (no change) 2*2=4 mod 7

4 1 (a1 = MSB) 3*4=5 mod 7 4*4=2 mod 7

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if (N[i] == true) x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟓𝟐𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = (𝟑𝟏𝟔 ∙ 𝟑𝟒 ∙ 𝟑𝟐 ∙ 𝟑𝟏) 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟐 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟒 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟖 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏𝟔 𝒎𝒐𝒅 𝟕

3

9

81

6561

43046721

=3
9*3

=27

81*9*3

=2187

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Example 2

I N[i] x (after iter i) r (after iter i)

initially 1 117%5=2

0 1 (a0 = LSB)

1 1

2 0

3 1

4 1 (a1 = MSB) 3*1=3 mod 5

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if (N[i] == true) x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟏𝟏𝟕𝟐𝟕𝒎𝒐𝒅 𝟓 = 𝟐𝟐𝟕𝒎𝒐𝒅 𝟓 = (𝟐𝟏𝟔 ∙ 𝟐𝟖 ∙ 𝟐𝟐 ∙ 𝟐𝟏) 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟐 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟒 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟖 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏𝟔 𝒎𝒐𝒅 𝟓

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Example 2 (Sol)

I N[i] x (after iter i) r (after iter i)

initially 1 117%5=2

0 1 (a0 = LSB) 1*2=2 mod 5 2*2=4 mod 5

1 1 2*4=3 mod 5 2*2=1 mod 5

2 0 3 (no change) 1*1=1 mod 5

3 1 3*1=3 mod 5 1*1=1 mod 5

4 1 (a1 = MSB) 3*1=3 mod 5

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if (N[i] == true) x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟏𝟏𝟕𝟐𝟕𝒎𝒐𝒅 𝟓 = 𝟐𝟐𝟕𝒎𝒐𝒅 𝟓 = (𝟐𝟏𝟔 ∙ 𝟐𝟖 ∙ 𝟐𝟐 ∙ 𝟐𝟏) 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟐 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟒 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟖 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏𝟔 𝒎𝒐𝒅 𝟓

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Alternate
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟏
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑𝟓)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑 ∙ (𝟑𝟐)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑 ∙ (𝟐)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟏𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟓)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟓 𝟐 𝒎𝒐𝒅 𝟕
= 𝟑 ∙ 𝟒 𝒎𝒐𝒅 𝟕 = 5 mod 7

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Alternate
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟕𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟑
𝟐
𝒎𝒐𝒅 𝟕

=

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Alternate
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟕𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟑
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑𝟔)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟑𝟑)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟐𝟕)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟔)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟏)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 𝟐 𝒎𝒐𝒅 𝟕
= 𝟑 ∙ 𝟐 𝒎𝒐𝒅 𝟕 = 6 mod 7

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #953

• If you get an 11/100 on a CS
test, but you claim it should
be counted as a ‘C’, they’ll
probably decide you
deserve the upgrade.

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Applications
• When sending digital information, the probability that

any given bit gets corrupted is not zero.
– Even very small probabilities are significant, when

considering the size of most transmissions: when taking a
networking class, you may be surprised by how frequent
errors are.

– To counteract this, we send extra information, to help us
identify when a transmission error occurred.

– The first and simplest method was parity checking, which
adds a single bit to the end of the message.

– If the message contained an even number of 1s (in binary),
the added bit is a 0. If it contains an odd number of 1s, the
added bit is a 1.

Transmitter Receiver1001 1011

1001,0 1011,0

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Parity Checking

• Where previously we sent the message 𝑥1𝑥2…𝑥𝑛, now we
send 𝑥1𝑥2…𝑥𝑛𝑥𝑛+1, where
𝑥𝑛+1 = 𝑥1 + 𝑥2 +⋯+𝑥𝑛 %2

• When you receive the message, you check if there are an:
– Odd number of 1s: The message is corrupted, request the

transmitter to send again
– Even number of 1s: Accept the message as correct (is it really

though?), remove the parity bit and process the message

– If a single bit is corrupted, this system will catch it.
– If exactly two bits are corrupted, this system will not catch it

(but better systems will).
– This system will catch an odd number of errors, which is more

likely to occur than an even number of errors.

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pseudorandom Number Generators

• Your computer’s random number generator is not truly random, it is instead
pseudorandom.

• A common method to produce pseudorandom numbers is as follows:
– Choose the modulus m, the multiplier a, the increment c,

and the seed 𝑥0.

– When producing the “next” random number, generate

𝒙𝒏+𝟏 = 𝒂 ∙ 𝒙𝒏 + 𝒄 %𝒎
• When using the random library, you have the option of choosing the seed 𝑥0.

– We often choose the current time so different runs of the program yield different
sequences.

• While the sequence of numbers looks random, if you use the same seed you
will always get the same sequence.

// gcc rand() implementation
int rand() {

int32_t val;
val = ((state[0] * 1103515245) + 12345) % 2147483647;
state[0] = val;
return val;

}

// gcc srand() implementation
void srand(int seed)
{

state[0] = seed;
}

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

PRIME NUMBERS

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Primes

• An integer p > 1 is prime if its only positive
factors are 1 and p.

• A positive integer > 1 that is not prime is called
composite.

• The Fundamental Theorem of Arithmetic states
that every integer n > 1 can be factored into a
unique product of primes (𝑛 = 𝑝1𝑝2…𝑝𝑛),
where 𝑝𝑖 ≤ 𝑝𝑖+1.

• Prime numbers are at the center of the field of
cryptography.

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Divides"

• Let 𝑎|𝑏 be read as "a divides b" and mean:

– (b % a) = 0 OR

– a is a factor of b (i.e. 𝑏 = 𝑎 ∙ 𝑓 for some integer, f)

• Examples:

– 4 | 28 (since 28 % 4 = 0 OR 28 = 4*7)

– 4 ∤ 22 (since 22 % 4 != 0)

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Sieve of Erastosthenes

• Used to find primes

– List all integers from 2 to n. (let n = 31 for our example)

– Remove all numbers that are a multiple of the first
number, then the second number, then the third number,
until the next number is > 𝑛

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• Stop after crossing out multiples of 5 (since the next number 7 > sqrt(31)

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Divisibility Proof 1

• Prove that if 𝑎|(𝑏 + 𝑐) and 𝑎|𝑏 then 𝑎|𝑐

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Divisibility Proof 1 (Sol)

• Prove that if 𝑎|(𝑏 + 𝑐) and 𝑎|𝑏 then 𝑎|𝑐

– Solution:

• If 𝑎|(𝑏 + 𝑐) then f ∙ 𝑎 = (𝑏 + 𝑐) for some f and

• If 𝑎|𝑏 then 𝑔 ∙ 𝑎 = 𝑏 for some g

• Since c = 𝑏 + 𝑐 − 𝑏 = f ∙ 𝑎 − 𝑔 ∙ 𝑎 = 𝑎 ∙ (𝑓 − 𝑔)

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Divisibility Proof 2

• Prove that for a prime number, p, if 𝑝|(𝑏 ∙ 𝑐)
then 𝑝|𝑏 or 𝑝|𝑐

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Divisibility Proof 2 (Sol)

• Prove that for a prime number, p, if 𝑝|(𝑏 ∙ 𝑐)
then 𝑝|𝑏 or 𝑝|𝑐

– Solution:

• By the fundamental theorem of arithmetic, both b
and c must be the product of some primes:

𝑏 = 𝑝𝑏1
𝑏𝑒1 ∙ ⋯ ∙ 𝑝𝑏𝑘

𝑏𝑒𝑘 and

𝑐 = 𝑝𝑐1
𝑐𝑒1 ∙ ⋯ ∙ 𝑝𝑐𝑘

𝑐𝑒𝑘

• So 𝑏 ∙ 𝑐 = 𝑝𝑏1
𝑏𝑒1 ∙ ⋯ ∙ 𝑝𝑏𝑘

𝑏𝑒𝑘 ∙ 𝑝𝑐1
𝑐𝑒1 ∙ ⋯ ∙ 𝑝𝑐𝑘

𝑐𝑒𝑘

• Since 𝑝| 𝑏 ∙ 𝑐 and p is prime, p must appear in

𝑝𝑏1
𝑏𝑒1…𝑝𝑏𝑘

𝑏𝑒𝑘 ∙ 𝑝𝑐1
𝑐𝑒1…𝑝𝑐𝑘

𝑐𝑒𝑘 and thus must divide either
b or c

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Probing Technique Summary

• If h(k) is occupied with another key, then probe

• Let i be number of failed probes

• Linear Probing

– h(k,i) = (h(k)+i) mod m

• Quadratic Probing

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, h(k)+22, h(k)+32, …

• Double Hashing

– Pick a second hash function h2(k) in addition to the
primary hash function, h1(k)

– h(k,i) = [h1(k) + i*h2(k)] mod m

0

Jill1

Tom2

Ana3

4

…

5

m-1

key, valueTom

h(k)

0

Jill1

Tom2

3

4

…

5

m-1

Ana

key, valueTom

h(k)

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Quadratic Probing Number Theory

• If your hash table has a prime size m, the first m/2 probes are
guaranteed to go to distinct locations.

• Proof by contradiction: Suppose the i-th and j-th probe were
to the same locations (where j < i <= m/2), then that implies

(h(k)+i2) % m = (h(k)+j2) % m

(h(k)+i2) - (h(k)+j2) = (i2 - j2) = mq (for some q) or

m | (i2 - j2)

m | (i+j)*(i-j)

Since m is prime it must divide one of (i+j) or (i-j)

But i,j  m/2, and i  j, so 0 < i-j, and i+j < m

Since m is prime, you can’t divide m over (i+j) and (i-j)

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modulo by Primes

• Theorem: If p is prime and 0 < 𝑎 < 𝑝, then:
𝟎 ∙ 𝒂 , 𝟏 ∙ 𝒂 , 𝟐 ∙ 𝒂 ,… , [(𝒑 − 𝟏) ∙ 𝒂] are all distinct (i.e. a

permutation of 0,1,…,(p-1))
– Where the notation [x] mean x mod p

• Proof by contradiction:
– Suppose this was not true and for some distinct integers i and j,

(i.e. 0 < 𝑖 < 𝑗 < 𝑝), 𝑖 ∙ 𝑎 ≡ 𝑗 ∙ 𝑎 (𝑚𝑜𝑑 𝑝) [i.e. 𝑖 ∙ 𝑎 and 𝑗 ∙ 𝑎 yield the
same remainder mod p]

– Then it must be that 𝑗 ∙ 𝑎 − 𝑖 ∙ 𝑎 = 𝑎 ∙ 𝑗 − 𝑖 = 𝑓 ∙ 𝑝 (i.e. the difference
𝑗 ∙ 𝑎 − 𝑖 ∙ 𝑎 is a multiple of p…from def. of modular congruence)

– Then 𝑝 must divide 𝑎 ∙ 𝑗 − 𝑖 which means 𝑝 must divide 𝑎 OR 𝑝 must
divide 𝑗 − 𝑖 [since if 𝑝 | 𝑏 ∙ 𝑐 then 𝑝 | 𝑏 or 𝑝 | 𝑐]

– 𝑝 cannot divide 𝑎 since 0 ≤ 𝑎 < 𝑝

– But 𝑝 cannot divide 𝑗 − 𝑖 since 0 ≤ (𝑗 − 𝑖) < 𝑝

– Contradiction!

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Double Hashing

• Assume
– m=13,

– h1(k) = k % 13

– h2(k) = 5 – (k % 5)

• What sequence would I probe if k = 31
– h1(31) = ___, h2(31) = _______________

– Seq: __

– Notice we _______________________ in the table. Why? A _____
table size!

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Cicadas (suh-kay-duh)

• Corollary: If p is prime and 0 < 𝑎 < 𝑝, then: 𝒑 ∙ 𝒂 is
the first common multiple

• Cicadas are insects that make use of prime numbers.
– They spend most of their lives as grubs, but emerge

from their burrows after a prime number of years (7, 13,
or 17 are common, depending on the type).

• Some predators cycle through many hunting areas,
with a cycle length of > 1 year.

• If cicadas emerged every 12 years, then any predator
that appears every 2, 3, 4, 6, or 12 years could evolve
to prey on them.

• The prime number intervals make it difficult for
predators to specialize in preying on cicadas.
– Therefore, the predator that comes every 𝑎 years can

snack on cicadas only every pth circuit,
– And the cicadas that emerge every pth year will get

munched on only every ath emergence

7

4

14

21

28

Suppose cicadas

emerged every 7th

year and a predator

visited every 4th

year

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKGROUND
Another example for why we choose prime table size

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Prime Table Size (1)?

• Simple hash function is h(k) = k mod m
– If our data is not already an integer, convert it to an integer first

• Recall m should be _____________
– PRIME!!!

• Say we didn't pick m = prime number but some power of 10
(i.e. k mod 10d) or power of 2 (i.e. 2d)…then any clustering in
the lower order digits would cause collisions
– Suppose h(k) = k mod 100

• Similarly in binary h(k) = k mod 2d can easily be computed by
taking the lower d-bits of the number
– 19 dec. => 10011 bin. and thus 19 mod 22 = 11 bin. = 3 decimal

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Prime Table Size (2)
• Let's suppose we have clustered data when we chose

m=10d

– Assume we have a set of keys, S = {k, k', k"…} (i.e. 99, 199,
299, 2099, etc.) that all have the same value mod 10d and
thus the original clustering (i.e. all mapped to same place
when m=10d)

• Say we now switch and choose m to be a prime
number (m=p)

• What is the chance these numbers hash to the same
location (i.e. still cluster) if we now use
h(k) = (k mod m) [where m is prime]?

– i.e. what is the chance (k mod 10d) = (k mod p)

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Prime Table Size (3)
• Suppose two keys, k* and k’, map to same location mod m=10d hash table

=> their remainders when they were divide by m would have to be the same
=> k*-k' would have to be a multiple of m=10d

• If k* and k’ map to same place also with new prime table size, p, then

– k*-k' would have to be a multiple of 10d and p

– Recall what would the first common multiple of p and 10d be?

• So for k* and k' to map to the same place k*-k' would have to be some multiple
p*10d

– i.e. 1*p*10d, 2*p*10d, 3*p*10d, …

– For p = 11 and d=2 => k*-k' would have to be 1100, 2200, 3300, etc.

• Ex. k* = 1199 and k'=99 would map to the same place mod 11 and mod 102

• Ex. k* = 2299 and k'=99 would also map to the same place in both tables

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Here's the Point
• Here's the point…

– For the values that used to ALL map to the same place like 99, 199,
299, 399…

– Now, only every m-th one maps to the same place (99, 1199, 2299,
etc.)

– This means the chance of clustered data mapping to the same location
when m is prime is 1/m

– In fact 99, 199, 299, 399, etc. map to different locations mod 11

• So by using a prime tableSize (m) and modulo hashing even
clustered data in some other base is spread across the range
of the table
– Recall a good hashing function scatters even clustered data uniformly

– Each k has a probability 1/m of hashing to a location

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GREATEST COMMON DIVISOR AND
EUCLID'S ALGORITHM

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Greatest Common Divisors

• You are given two integers a,b that are not both
zero. The largest integer d that divides evenly
into both a and b is the greatest common divisor
of a and b, denoted gcd(𝑎, 𝑏).

• If gcd(𝑎, 𝑏) = 1, we say that a and b are
relatively prime.

• What is gcd(24,36)?
– 12

• The greatest common divisor can be calculated by
the Euclidean Algorithm.

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GCD and LCM

• What is gcd(24,36)?

– 24 = 2 ∙ 2 ∙ 2 ∙ 3 = 23 ∙ 31 and 36 = 2 ∙ 2 ∙ 3 ∙ 3 = 22 ∙ 32

• So gcd(24,36) is 12 = 2 ∙ 2 ∙ 3

• In general, given 2 numbers

𝑎 = 𝑝1
𝑗1
∙ 𝑝2

𝑗2
∙ ⋯ ∙ 𝑝𝑛

𝑗𝑛
and 𝑏 = 𝑝1

𝑘1 ∙ 𝑝2
𝑘2 ∙ ⋯ ∙ 𝑝𝑛

𝑘𝑛

– Note: ji and ki may be 0

• Then, gcd 𝑎, 𝑏 = 𝑝1
min(𝑗1,𝑘1)

∙ 𝑝2
min(𝑗2,𝑘2)

∙ ⋯ ∙ 𝑝𝑛
min(𝑗𝑛,𝑘𝑛)

– gcd 24,36 = 2
min(3,2)

∙ 3
min 1,2

= 22 ∙ 31 = 12

• What is the LCM(24,36)?
– 72

• In general, given 2 numbers a and b with prime factors as shown above,

then, lcm 𝑎, 𝑏 = 𝑝1
max(𝑗1,𝑘1)

∙ 𝑝2
max(𝑗2,𝑘2)

∙ ⋯ ∙ 𝑝𝑛
max(𝑗𝑛,𝑘𝑛)

– lcm 24,36 = 2
max(3,2)

∙ 3
max 1,2

= 23 ∙ 32 = 8 ∙ 9 = 72

48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Euclidean Algorithm

• Suppose we want to calculate gcd(287, 91).
• First divide the smaller by the larger to obtain
287 = 91  3 + 14.
– If a number divides both 91 and 287, it must also divide 14

• Since if a | (b+c) and a | b, then a | c

• So, we have reduced the problem to gcd(91,14). We
repeat the above process.

• 91 = 146 + 7, so we have gcd(14,7).
• 14 = 27 + 0.
• If your remainder is 0, then the gcd is the smaller

number. In this case, 7.

49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Euclidean Algorithm

// assume: 0 <= b <= a, but a != 0
int euclid_gcd(int a, int b)
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}

// assume: 0 <= b <= a, but a != 0
int euclid_gcd(int a, int b)
{

if(b == 0) return a;
else {

int r = a % b;
return euclid_gcd(b, r);

}
}

Recursive Approach Non-Recursive Approach

50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Euclid Example 1

• Calculate gcd(414, 248).

// assume: 0 <= b <= a,
// but a != 0
int euclid_gcd(

int a, int b)
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}

51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Euclid Example 1 (Solution)

• Calculate gcd(414, 248).

– 414 = 248  1 + 166, so we
have gcd(248, 166).

– 248 = 166  1 + 82, so we have
gcd(166, 82).

– 166 = 82  2 + 2, so we have
gcd(82, 2).

– 82 = 2  41 + 0, so 2 is the gcd.

// assume: 0 <= b <= a,
// but a != 0
int euclid_gcd(

int a, int b)
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}

52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OTHER APPLICATIONS OF EUCLID'S
ALGORITHM

53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiplicative Inverses 1

• Suppose you were asked to solve for x in the
given equation:

8𝑛 + 5 ≡ 9 𝑚𝑜𝑑 11

• Algebraically, we would subtract 5 and divide
by 8, but how does division work in modular
arithmetic

• We've seen that modular arithmetic works for
addition, subtraction, and multiplication

• What about division?

54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiplicative Inverses 2

• Division may lead to non-integral results, so how do we do
division in modular arithmetic where we must get an integer
between 0 and m-1?
– If 𝑏 ∙ 𝑦 = 1 , what is the relationship between b and y?

– 𝑦 = 𝑏−1 =
1

𝑏
… So, dividing by b is the same as multiplying by y!

– If we work in a (𝑚𝑜𝑑 𝑚) system, then we just have to find a number, b,
such that 𝒃 ∙ 𝒚 ≡ 𝟏 (𝒎𝒐𝒅𝒎), and then multiplying by y would be
equivalent to dividing by b.

• A multiplicative inverse will exist for 𝒃 mod 𝒎 if 𝒈𝒄𝒅 𝒃,𝒎 = 𝟏
– If m is prime, then a multiplicative inverse exists for all values of x < m

• The multiplicative inverse for 8 mod 11 is 7
– Because 7 ∙ 8 = 56 ≡ 1 𝑚𝑜𝑑 11

– Examples:
48

8
𝑚𝑜𝑑 11 ≡ 48 ∙ 7 = 336 = 6 𝑚𝑜𝑑 11

55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Multiplicative Inverse

• To solve:
8𝑛 + 5 ≡ 9 𝑚𝑜𝑑 11

• First we subtract 5 from both sides
8𝑛 ≡ 9 − 5𝑚𝑜𝑑 11 ≡ 4 𝑚𝑜𝑑 11

• Now use the multiplicative inverse of 8 (which was stated to
be 7)

7 ∙ 8𝑛 ≡ 7 ∙ 4 𝑚𝑜𝑑 11

𝑛 ≡ 28 𝑚𝑜𝑑 11 ≡ 6 𝑚𝑜𝑑 11

• Plug back in to check:
8 ∙ 6 + 5 = 53 ≡ 9 𝑚𝑜𝑑 11

• But how can we find that 7 was the multiplicative inverse of 8
mod 11? Using Euclid's algorithm.
– But to understand, let's look at another application: Diophantine

equations which will lead us back to multiplicative inverses.

56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Diophantine Eqn Example 1
• Diophantine equations take the form: 𝑎𝑥 + 𝑏𝑦 = 𝑠 where all

unknowns are integers

• Give an integer solution to the equation:
68𝑥 + 18𝑦 = 𝑔𝑐𝑑 68,18 and give the smallest magnitude x and
y if possible.

• It turns out there is always a solution to this kind of problem
(where the right side of the equation is the gcd of the coefficients
of the two variables)

• Start by using Euclid's algorithm but keep the quotient and
remainder: 68 = 3 ∗ 18 + 14

18 = 1 ∗ 14 + 4
14 = 3 ∗ 4 + 2
4 = 2 ∗ 2 + 0

So gcd(18,68) = 2

57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Diophantine Eqn Example Workspace

68 = 3 ∗ 18 + 14
18 = 1 ∗ 14 + 4
14 = 3 ∗ 4 + 2
4 = 2 ∗ 2 + 0

So gcd(18,68) = 2

68x + 18y = gcd(68,18)

58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Diophantine Eqn Example (Sol)
• Use that work and repeated substitution to find the solutions to the original

equation: 68x + 18y = gcd(68,18)

• To solve 68x + 18y = gcd(68,18), start with a=r0=68 and b=r1=18, (the textbook

uses r0 and r1, we'll use a and b) rearrange the lines from Euclid's to solve for the
remainder instead :

68 = 3 ∗ 18 + 14 => 14 = 68 − 3 ∗ 18

18 = 1 ∗ 14 + 4 => 4 = 18 − 1 ∗ 14

14 = 3 ∗ 4 + 2 => gcd(68,18) = 2 = 14 − 3 ∗ 4

• Then put each remainder in terms of r0 and r1, substituting an earlier
remainder's expression into later occurrences of that remainder until you
reach an equation for the gcd in terms of a=r0=68 and b=r1=18.

14 = 68 − 3 ∗ 18 = 1 ∙ 𝑎 − 3 ∙ 𝑏

But now substitute that expression in for 14 in the next line of Euclid's
4 = 18 − 1 ∗ 14 = 𝑏 − 1 ∗ 1 ∙ 𝑎 − 3 ∙ 𝑏 = 4 ∙ 𝑎 − 1 ∙ 𝑏

But now substitute the expressions for 14 and 4 into the next line of Euclid's
2 = 14 − 3 ∗ 4 = 1 ∙ 𝑎 − 3 ∙ 𝑏 − 3 ∗ 4 ∙ 𝑏 − 1 ∙ 𝑎 = 4 ∙ 𝑎 − 15 ∙ 𝑏

2 = gcd 68,18 = 4 ∙ 𝑎 − 15 ∙ 𝑏 = 4 ∙ 68 − 15 ∙ 18 (you can verify)

So for 68x + 18y = gcd(68,18) we have solved x=4, y=-15

59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiplicative Inverses

• Now we can understand how to find a multiplicative inverse if
it exists.
– Recall: A multiplicative inverse will exist for b mod m, if gcd(b,m)=1

– If m is prime, then a multiplicative inverse exists for all values of b < m

• If a multiplicative inverse exists for values of b and m, we can
find the inverse of b using the process we just practiced of
solving Diophantine equation: 𝒂 ∙ 𝒎 + 𝒃 ∙ 𝒚 = 𝟏(𝐦𝐨𝐝𝐦)
– We put our multiplicative inverse problem into the form of a

Diophantine equation since we now know how to solve that form of
problem

• Why? Because 𝒂 ∙ 𝒎 + 𝒃 ∙ 𝒚 = 𝟏 𝐦𝐨𝐝𝐦 =
𝒂 ∙ 𝒎 𝒎𝒐𝒅𝒎+ 𝒃 ∙ 𝒚 𝒎𝒐𝒅𝒎 = 𝟏(𝐦𝐨𝐝𝐦)

– 𝑎 ∙ 𝑚 ≡ 0 𝑚𝑜𝑑 𝑚 so that implies 𝑏 ∙ 𝑦 ≡ 1 𝑚𝑜𝑑 𝑚 and thus b must
be the multiplicative inverse

60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Euclid's Algorithm
• Find the multiplicative inverse of b=8 mod 11 (i.e. b=8, m=11)

– Note that for any b >= m, we will find its congruence such that
0 <= b <= (m-1)

• Perform Euclid's (then rearrange solving for the remainders)
11 = 1 ∙ 8 + 3 => 3 = 11 − 1 ∙ 8

8 = 2 ∙ 3 + 2 => 2 = 8 − 2 ∙ 3

3 = 1 ∙ 2 + 1 => 1 = 3 − 1 ∙ 2
2 = 2 ∙ 1 + 0

• Now substitute back in with r0=11 and r1=8

• So 11x+8y=1 mod 11 has a solution of x=__ and y=____ mod 11

• Thus __ is the multiplicative inverse of 8 mod 11

61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Euclid's Algorithm

• Find the multiplicative inverse of b=8 mod 11 (i.e. b=8, m=11)
– Note that for any b >= m, we will find its congruence such that

0 <= b <= (m-1)

• Perform Euclid's (then rearrange solving for the remainders)
11 = 1 ∙ 8 + 3 => 3 = 11 − 1 ∙ 8

8 = 2 ∙ 3 + 2 => 2 = 8 − 2 ∙ 3

3 = 1 ∙ 2 + 1 => 1 = 3 − 1 ∙ 2
2 = 2 ∙ 1 + 0

• Now substitute back in with r0=11 and r1=8
3 = 𝑟0 − 1 ∙ 𝑟1
2 = 𝑟1 − 2 ∙ 3 = 𝑟1 − 2 ∙ 𝑟0 − 𝑟1 = −2 ∙ 𝑟0 + 3 ∙ 𝑟1
1 = 3 − 1 ∙ 2 = 𝑟0 − 𝑟1 − 1 ∙ −2 ∙ 𝑟0 + 3 ∙ 𝑟1 = 3 ∙ 𝑟0 − 4 ∙ 𝑟1

• So 11x+8y=1 mod 11 has a solution of x=3 and y=-4=7 mod 11

• Thus 7 is the multiplicative inverse of 8 mod 11

62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OTHER INTERESTING APPLICATIONS
ABOUT PRIMES

63

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Interesting Facts about Primes

• Twin Primes are pairs of primes that differ by 2.
– 3 and 5

– 5 and 7

– 11 and 13

– 17 and 19

– 4967 and 4969

– 8675309 and 8675311

– 2996863034895  21290000  1

• The Twin Prime Conjecture claims there are
infinitely many twin primes.

64

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Goldbach’s Conjecture

• Goldbach’s Conjecture says that every even
integer n > 2 is the sum of two primes.
– 4 = 2 + 2
– 6 = 3 + 3
– 8 = 3 + 5
– 10 = 3 + 7 and also 5 + 5
– 12 = 5 + 7
– 100 = 3 + 97 or 11 + 89 or 17 + 83 or 29 + 71 or 41 +

59 or 47 + 53

• Verified by computer up to 4 x 1018, but
unproven!

65

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #1310

• The weak twin primes conjecture states that there are
infinitely many pairs of twin primes. The tautological prime
conjecture states that the tautological prime conjecture is
true.

66

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

APPLICATIONS TO CRYPTOGRAPHY

67

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Private Key Cryptography

• One of the earliest known uses of cryptography was by Julius
Caesar. He made messages secret by shifting each character
three letters forward in the alphabet:

• 𝑓(𝑝) = (𝑝 + 3) % 26

• This way, if a message was intercepted on the battlefield, they
would not know what information was being conveyed.

• This is an example of a private key cryptosystem.

• UNIVERSITY OF SC would be encrypted as XQLYHUVLWB RI VF

• Knowing the encryption key allows you to easily find the
decryption key:

• 𝑓(𝑐) = (𝑐 − 3) % 26

68

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Private Key Cryptography drawbacks

• Any pair of people who want to communicate secretly
must have the same key.

• This was not a problem for Caesar, as his generals met
up beforehand and agreed upon the encryption key.

• Today however, we will want to communicate securely
with people we have never talked to before. You
shouldn’t have to go to Amazon headquarters to be
able to securely convey your credit card number

• If you simply send the encryption key via a digital
communication, it can be intercepted. Then they will
know how to decrypt your future messages!

• As you haven’t agreed on an encryption key yet, it
cannot be sent encrypted!

69

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Public key cryptography

• Much more interesting is public key cryptography.
• In these systems, knowing the encryption key does not

help you identify the decryption key.
• Therefore, you make your encryption key public and

keep your decryption key private.
– Alice and Bob want to communicate securely.
– Alice sends her encryption key to Bob.
– Bob uses it to encrypt his message and sends it to Alice.
– Alice uses her decryption key to read the message.
– Bob sends his encryption key to Alice.
– Alice uses it to encrypt her reply and sends it to Bob.
– Bob uses his decryption key to read the message

70

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #1553

71

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RSA

• The RSA public key cryptosystem was first
discovered in secret government research.

• It was then discovered independently, and
introduced to the world, by Rivest, Shamir, and
USC’s very own Leonard Adleman.

• Encryption isn’t too complicated, and it will be
explained thoroughly in the coming slides.

• If you want to understand RSA Decryption, you’ll
need to delve much deeper into Number Theory!

72

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RSA encryption

• I will select two values, 𝑒 and 𝑛, and publish them.

• These two values are specifically engineered, but we
won’t talk about that until we get to RSA decryption.

• If you want to send me a secure message, you will
break it up into consecutive blocks of letters (how long
the blocks are depends on 𝑛).

• To send one block of your message, translate it into a
number 𝑀. This is nothing more than a base-
conversion algorithm from ASCII / Unicode / whatever
to base 10.

• Calculate 𝐶 = 𝑀𝑒 % 𝑛, and send the message C.

73

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

An Example

• We want to encrypt the message STOP, using the public key
(n=2537, e=13).

• Translate STOP into base-10 using a straightforward conversion: 18-
19-14-15, so 18191415

• Break it up into 2 blocks, each of length 4 (a block must always have
value  n): 1819-1415

• Calculate 181913 % 2537 = 2081 and 141513% 2537 = 2182.
• Send the message 2081-2182. You’re done!
• Note that we need the Modular Exponentiation algorithm for this,

as calculating 181913 is not a good use of time and space (it has 43
digits!)

• We chose a relatively small n in this example, but n is usually
around 400 digits, making the Modular Exponentiation algorithm
essential.

74

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RSA Decryption

• 𝑒 and 𝑛 were engineered very carefully, they were not
arbitrary numbers.

• 𝑛 = 𝑝 ∙ 𝑞, where p and q are prime numbers of around
200 digits.
– In the prior example, 2537 = 43  57

• 𝑒 is chosen to be a number that is relatively prime to (𝑝 −
1) ∙ (𝑞 − 1). A common choice of 𝑒 is 216 + 1 = 65537.

• If you know 𝑝 and 𝑞, you can decrypt the message.
• The most efficient known factorization method would

require billions of years to factor 400-digit integers, making
RSA quite secure…
– …We think.

75

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

P vs NP, and one-way Functions

• We believe that multiplying large primes together is a one-
way function. That is, it is easy to calculate 𝑓(𝑎, 𝑏) = 𝑎 ∙
𝑏, but hard to calculate 𝑓−1(𝑎 ∙ 𝑏) = {𝑎, 𝑏}.

• All modern cryptography depends on this assumption, that
factoring large numbers is very hard. But we’re actually
not sure.

• If P = NP, that is, if Hamiltonian Cycle has a polynomial-time
solution, then it follows that not only is factoring large
numbers easy, but there is no such thing as a one-way
function!

• If you prove that P = NP, you could crack all existing
cryptosystems on the planet!

76

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #247

• I occasionally do this with mile markers on the
freeway.

77

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You want more detail?

• Using e, p, and q, you can calculate decryption
key d.

• Compute (n), which is the least common
multiple of 𝑝 − 1 and 𝑞 − 1.

• Solve the equation 𝑑  𝑒  1 (𝑚𝑜𝑑 (𝑛))

• Now you can convert a block of letters C back
to the original message M:

• 𝐶 ∙ 𝑑 % 𝑛 = 𝑀

78

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You still want more detail?
You’re sure?

• We can calculate the least common multiple of 𝑝 − 1 and
𝑞 − 1 using the Euclidean Algorithm.

• It turns out the least common multiple of a and b is
𝑎∙𝑏

gcd(𝑎,𝑏)

• Since we chose e to be relatively prime to (𝑝 − 1) ∙ (𝑞 −
1), we know it is also relatively prime with (n).

• It turns out that if x and y are relatively prime, then
𝑑  𝑥  1 (𝑚𝑜𝑑 𝑦) has a unique solution for 𝑑 (𝑚𝑜𝑑 𝑦).
The solution d is known as the modular multiplicative
inverse.

• d can be calculated using a variant of the Euclidean
algorithm.

79

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Far Too Much Detail, Cont.

• 𝐶𝑑  (𝑀𝑒)𝑑 𝑀𝑑∙𝑒𝑀1+𝑘(𝑝−1)(𝑞−1), for some k
• Since 𝑀 < 𝑝  𝑞, either gcd(𝑀, 𝑝) = 1, or
gcd(𝑀, 𝑞) = 1 (usually both).

• We can use a result called Fermat’s Little Theorem to
assert that, if gcd(𝑀, 𝑝) = 1, then 𝑀𝑝−11(𝑚𝑜𝑑 𝑝),
and if gcd(𝑀, 𝑞) = 1, then 𝑀𝑞−11 𝑚𝑜𝑑 𝑞 (at least
one is true, usually both)

• Therefore, 𝑀𝑘(𝑝−1)(𝑞−1)  1 (𝑚𝑜𝑑 𝑛)
• Finally, 𝑀1+𝑘(𝑝−1)(𝑞−1) 𝑀 (𝑚𝑜𝑑 𝑛)
• So,𝐶𝑑𝑀 (𝑚𝑜𝑑 𝑛).
• Easy, right?

80

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #538

• Actual actual reality: nobody cares about his
secrets. (Also, I would be hard-pressed to find
that wrench for $5.)

81

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

XKCD #1121

• Not sure why I just taught everyone to
flawlessly impersonate me to pretty much
anyone I know. Just remember to constantly
bring up how cool it is that birds are dinosaurs
and you’ll be set.

82

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modern Cryptography

• The only drawback to private-key cryptosystems is that you have to
agree on the private key away from prying eyes.

• Most modern systems will use a public-key system such as RSA to
securely send the private key, and then they switch to the private-key
system.

• Alice posts in the Daily Trojan:
“Dear Bob, lets use n=2537 and e=13. - Alice”

• Bob uses her public key, encrypts and sends:
“Dear Alice, let’s use the Caesar cipher for future communications.”

• All future communications then use the Caesar cipher, which they
agreed upon privately.

• This still raises an interesting question: how is Alice sure she’s
communicating with Bob? How is Bob sure he is communicating with
Alice?

83

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Digital Signatures

• Suppose Alice’s public RSA key is (n, e), and her private
key is d.
– She sends her message as normal, but she attaches a

signature S, which has been run through her decryption
protocol 𝑆𝑑 (𝑚𝑜𝑑 𝑛)

– Anyone can then run the resulting signature through her
public encryption protocol to extract the signature. Alice
has produced a message which only she could write!

• We’ve over-simplified it, as someone could copy-paste
her signature and re-use it. This is why we have
trusted 3rd party organizations that verify a specific
signature hasn’t already been used.

84

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Beyond Polynomial

• In this class, we have referred to any runtime that
is greater than polynomial as “exponential”.
– This is not actually correct, as exponential means a

specific thing: (𝑑
𝑛

𝑓), where
d > 1, and f > 0

– Any time greater than polynomial is called super-
polynomial

– Any time less than exponential is called sub-
exponential

– The best known algorithm to factor large numbers
falls between polynomial and exponential.

85

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Zero-Knowledge Proofs

• Suppose Peggy has some information she wants to sell.
• Victor wishes to buy this information.
• Victor does not wish to hand over his money or credit

card number until he is sure Peggy actually has this
information and isn’t trying to scam him.

• Of course, as soon as Peggy reveals the information,
Victor may opt to not hand over the money.

• Peggy needs to prove to Victor she has the
information, while also giving him no additional clues
about what the information actually is.

• Such a proof is known as a zero-knowledge proof.

86

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A simple zero-knowledge proof

• There is a cave which consists of two pathways
that meet up at a magic door.

• The door has a magic password: speak it, and the
door opens.

• Peggy wants to convince Victor that she knows
the password, but she doesn’t want to reveal
what that password is to Victor.

• Victor can watch Peggy go down one tunnel, and
wait. If Peggy then appears from the other
tunnel, she has proven she has the information
(and Victor has verified she has it), while
simultaneously giving no additional information
about what the password is to Victor.

87

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Probability

• Most zero-knowledge proofs are probabilistic: there is a
low chance that Peggy will be able to fool Victor, but most
of the time the verification process works.

• We could modify the magic door proof to make it
probabilistic:
– Peggy chooses a tunnel (left or right) and walks down it,

unknown to Victor.
– Victor then approaches the split, and yells out “come back via

the right tunnel!”
– If Peggy has the password, she will be able to do so.
– If Peggy doesn’t have the password, she’ll be able to do so only

if she originally chose the right tunnel. 50% odds.
– Victor can repeat the experiment as many times as he likes until

he is satisfied.

88

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another example

• Peggy wants to prove that a given graph G is 3-colorable,
while not revealing to Victor how to actually do it. You
could have a page with the same graph mirrored on both
sides.
– Peggy can color the graph on one side, but not reveal the

coloring (Victor only sees the other, uncolored side).
– Victor chooses a single edge from the uncolored side.
– Peggy cuts out that edge and its two nodes, flips it over, and

reveals to Victor that the two nodes have different colors.
– If Peggy didn’t actually 3-color the graph, at least one edge will

reveal the lie, so Victor has a
1

𝑚
chance of catching the lie.

– Victor can repeat as many times as he likes, until he is satisfied.
Peggy will keep swapping the 3 colors, so that Victor is unable to
construct a larger solution.

89

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Sudoku

• How would you
convince someone
that a given Sudoku
problem has a
solution, without
spoiling the answer?

90

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKUP

91

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Diophantine Eqn Example (Sol)
• Use that work and repeated substitution to find the solutions to the original

equation: 68x + 18y = gcd(68,18)

• To solve 68x + 18y = gcd(68,18), start with r0=68 and r1=18, rearrange the
lines from Euclid's to solve for the remainder instead :

68 = 3 ∗ 18 + 14 => 14 = 68 − 3 ∗ 18

18 = 1 ∗ 14 + 4 => 4 = 18 − 1 ∗ 14

14 = 3 ∗ 4 + 2 => gcd(68,18) = 2 = 14 − 3 ∗ 4

• Then put each remainder in terms of r0 and r1, substituting an earlier
remainder's expression into later occurrences of that remainder until you
reach an equation for the gcd in terms of r0=68 and r1=18.

14 = 68 − 3 ∗ 18 = 1 ∙ 𝑟0 − 3 ∙ 𝑟1

But now substitute that expression in for 14 in the next line of Euclid's
4 = 18 − 1 ∗ 14 = 𝑟1 − 1 ∗ 1 ∙ 𝑟0 − 3 ∙ 𝑟1 = 4 ∙ 𝑟1 − 1 ∙ 𝑟0

But now substitute the expressions for 14 and 4 into the next line of Euclid's
2 = 14 − 3 ∗ 4 = 1 ∙ 𝑟0 − 3 ∙ 𝑟1 − 3 ∗ 4 ∙ 𝑟1 − 1 ∙ 𝑟0 = 4 ∙ 𝑟0 − 15 ∙ 𝑟1

2 = gcd 68,18 = 4 ∙ 𝑟0 − 15 ∙ 𝑟1 = 4 ∙ 68 − 15 ∙ 18 (you can verify)

So for 68x + 18y = gcd(68,18) we have solved x=4, y=-15

92

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation
• Suppose we want to calculate 𝑏𝑛%𝑚 (e.g. 5223%7)

– We want to do this in Cryptography

– If b and n are large, then calculating 𝒃𝒏 may be impractical

• Let us find an alternate, more efficient approach
– Let a = n in binary (if n=23, a=10111 bin)
𝑛 = (𝑎𝑘−1𝑎𝑘−2…𝑎0)2, or 𝑎𝑘−1 ∙ 2

𝑘−1 + 𝑎𝑘−2 ∙ 2
𝑘−2 +⋯+ 𝑎0  2

0

– 𝑏𝑛 = 𝑏𝑎𝑘−1∙2
𝑘−1+𝑎𝑘−2∙2

𝑘−2+⋯+𝑎0  20

– 𝑏𝑛 = 𝑏𝑎𝑘−1∙2
𝑘−1

∙ 𝑏𝑎𝑘−2∙2
𝑘−2

∙ ⋯ ∙ 𝑏𝑎0  2
0

• If n = 23:

– 𝑏23 = 𝑏1∙2
4
∙ 𝑏0∙2

3
∙ 𝑏1∙2

2
∙ 𝑏1∙2

1
∙ 𝑏1  2

0
= 𝑏2

4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 20

= 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1

– Note: Any 𝑎𝑘 = 0, leads to 𝑏0 = 1 and can be left out of the product

	Slide 1: CSCI 104 Number Theory
	Slide 2: Introduction
	Slide 3: Modular arithmetic and congruence classes
	Slide 4: Congruence
	Slide 5: Ways of Showing Congruence
	Slide 6: Number Theory Proofs (Solution)
	Slide 7: Number Theory Proofs (Solution)
	Slide 8: Modular Arithmetic
	Slide 9: Modular Arithmetic (Solution)
	Slide 10: Alternate number bases
	Slide 11: Base Conversion (Base b to Decimal)
	Slide 12: Base Conversion (Base b to Decimal)
	Slide 13: Base Conversion (Decimal to Base b)
	Slide 14: Modular Exponentiation
	Slide 15: Modular Exponentiation
	Slide 16: Modular Exponentiation: Example 1
	Slide 17: Modular Exponentiation: Example 1 (Sol)
	Slide 18: Modular Exponentiation: Example 2
	Slide 19: Modular Exponentiation: Example 2 (Sol)
	Slide 20: Modular Exponentiation: Alternate
	Slide 21: Modular Exponentiation: Alternate
	Slide 22: Modular Exponentiation: Alternate
	Slide 23: XKCD #953
	Slide 24: Applications
	Slide 25: Parity Checking
	Slide 26: Pseudorandom Number Generators
	Slide 27: Prime Numbers
	Slide 28: Primes
	Slide 29: "Divides"
	Slide 30: The Sieve of Erastosthenes
	Slide 31: Basic Divisibility Proof 1
	Slide 32: Basic Divisibility Proof 1 (Sol)
	Slide 33: Basic Divisibility Proof 2
	Slide 34: Basic Divisibility Proof 2 (Sol)
	Slide 35: Probing Technique Summary
	Slide 36: Quadratic Probing Number Theory
	Slide 37: Modulo by Primes
	Slide 38: Double Hashing
	Slide 39: Cicadas (suh-kay-duh)
	Slide 40: Background
	Slide 41: Why Prime Table Size (1)?
	Slide 42: Why Prime Table Size (2)
	Slide 43: Why Prime Table Size (3)
	Slide 44: Here's the Point
	Slide 45: Greatest Common Divisor and Euclid's Algorithm
	Slide 46: Greatest Common Divisors
	Slide 47: GCD and LCM
	Slide 48: The Euclidean Algorithm
	Slide 49: The Euclidean Algorithm
	Slide 50: Euclid Example 1
	Slide 51: Euclid Example 1 (Solution)
	Slide 52: Other Applications of Euclid's algorithm
	Slide 53: Multiplicative Inverses 1
	Slide 54: Multiplicative Inverses 2
	Slide 55: Using Multiplicative Inverse
	Slide 56: Diophantine Eqn Example 1
	Slide 57: Diophantine Eqn Example Workspace
	Slide 58: Diophantine Eqn Example (Sol)
	Slide 59: Multiplicative Inverses
	Slide 60: Using Euclid's Algorithm
	Slide 61: Using Euclid's Algorithm
	Slide 62: Other Interesting Applications about primes
	Slide 63: Interesting Facts about Primes
	Slide 64: Goldbach’s Conjecture
	Slide 65: XKCD #1310
	Slide 66: Applications To Cryptography
	Slide 67: Private Key Cryptography
	Slide 68: Private Key Cryptography drawbacks
	Slide 69: Public key cryptography
	Slide 70: XKCD #1553
	Slide 71: RSA
	Slide 72: RSA encryption
	Slide 73: An Example
	Slide 74: RSA Decryption
	Slide 75: P vs NP, and one-way Functions
	Slide 76: XKCD #247
	Slide 77: You want more detail?
	Slide 78: You still want more detail? You’re sure?
	Slide 79: Far Too Much Detail, Cont.
	Slide 80: XKCD #538
	Slide 81: XKCD #1121
	Slide 82: Modern Cryptography
	Slide 83: Digital Signatures
	Slide 84: Beyond Polynomial
	Slide 85: Zero-Knowledge Proofs
	Slide 86: A simple zero-knowledge proof
	Slide 87: Probability
	Slide 88: Another example
	Slide 89: Sudoku
	Slide 90: backup
	Slide 91: Diophantine Eqn Example (Sol)
	Slide 92: Modular Exponentiation

