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Introduction

• Number Theory is the study of integers and division.

• Prime numbers come into play a lot.

• Modular arithmetic is a centerpiece of Number 
Theory.

• The primary application of Number Theory is 
Cryptography, which uses divisibility, prime numbers, 
and modular arithmetic in lots of creative ways.
– Why is it safe to send your credit card information over the 

web to Amazon?  This unit will start to lay the foundations 
to answer this question!
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MODULAR ARITHMETIC AND 
CONGRUENCE CLASSES
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Congruence

• If a and b are integers, and m is a positive integer, then:
– “a is congruent to b modulo m” means

(a % m) = (b %m)

– This is written: a  b (mod m)

– Alternatively, b = a + mf, for some (possibly negative) 
integer f.

• Are 24 and 14 congruent modulo 6?
– No, they have remainders of 0 and 2 respectively.

• Are 17 and 5 congruent modulo 6?
– Yes, they both have a remainder of 5.
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Ways of Showing Congruence

• 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 if and only if:

– Method 1: 𝒂 𝒎𝒐𝒅𝒎 = 𝒃 (𝒎𝒐𝒅𝒎)
• 7 mod 4 = 3 and 15 mod 4 = 3 (i.e. 7 = 3 + 4 ∙ 1 and 15 = 3 + 4 ∙ 3)

– Method 2: There exists some integer, f, such that
𝒃 = 𝒂 +𝒎 ∙ 𝒇
• 7 and 15 are congruent mod 4 because 15 = 7 + 4 ∙ 2

– Method 3: There exists some integer, f, such that
(𝒃 − 𝒂) = 𝒎 ∙ 𝒇
• 7 and 15 are congruent mod 4 because 15-7 is a multiple of 4 

(i.e. 15-7=8=2*4)

74

1 r. 3

154

3 r. 3

7 = 4•1+3 15 = 4•1+3
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Number Theory Proofs (Solution)

• Given a  b (mod m) and c  d (mod m): 

• Prove: a+c  b + d (mod m) [or (b+d)%m = ((b%m)+(d%m))%m]

➢ b = a + mf, and d = c + mg

• Prove: ac  bd (mod m) [or (b•d)%m = ((b%m)•(d%m))%m]

➢ b = a + mf, and d = c + mg

• Also holds for subtraction a-c  b-d (mod m) 

• Does NOT hold for division a/c ≠ b/d (mod m)

– More on this later
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Number Theory Proofs (Solution)

• Given a  b (mod m) and c  d (mod m): 

• Prove: a+c  b + d (mod m)
➢b = a + mf, and d = c + mg

➢b + d = a + mf + c + mg = a + c + m(f+g).  Proven!

• Prove: ac  bd (mod m)
➢b = a + mf, and d = c + mg

➢b  d = ac + amg + cmf + m2fg    [by distribution]

➢b  d = ac + m(ag + cf + mfg).  Proven!

• Also holds for subtraction a-c  b-d (mod m) 

• Does NOT hold for division a/c ≠ b/d (mod m)
– More on this later



8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Arithmetic

• Applying these proofs, the modulo m result of a sum 
or product is equivalent to the sum or product of the 
inputs modulo m:

𝑎 + 𝑏 ∙ 𝑐 𝑚𝑜𝑑 𝑚
= 𝑎 𝑚𝑜𝑑 𝑚 + ( 𝑏 𝑚𝑜𝑑 𝑚 ∙ 𝑐 𝑚𝑜𝑑 𝑚 )

• Example:
18327 + 2642 ∙ 7985 𝑚𝑜𝑑 4 =

Or likely more easily computed as:
=
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Modular Arithmetic (Solution)

• Applying these proofs, the modulo m result of a sum 
or product is equivalent to the sum or product of the 
inputs modulo m:

𝑎 + 𝑏 ∙ 𝑐 𝑚𝑜𝑑 𝑚
= 𝑎 𝑚𝑜𝑑 𝑚 + ( 𝑏 𝑚𝑜𝑑 𝑚 ∙ 𝑐 𝑚𝑜𝑑 𝑚 )

• Example:
18327 + 2642 ∙ 7985 𝑚𝑜𝑑 4 = 21,114,697 𝑚𝑜𝑑 4 = 1

• Or likely more easily computed as:
= 18327 𝑚𝑜𝑑 4 + 2642 𝑚𝑜𝑑 𝑚 ∙ 7985 𝑚𝑜𝑑 4

= ( 3 + 2 ∙ 1 )(𝑚𝑜𝑑 𝑚)
= 1 (𝑚𝑜𝑑 𝑚)
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Alternate number bases

• In base-b, all digits must be a value between 0 
and b-1.
– If b > 10 (most commonly for b=16 known as 

hexadecimal) we typically use letters for a digit: 
10 = A, 11 = B, …, 15 = F etc.

– FACE is a number in base-16.

• To disambiguate the base, we will usually 
write it as a subscript:
– FACE16 = 6420610 = 11111010110011102
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Base Conversion (Base b to Decimal)

• Given the binary: 11011, we know this is:

➢1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 = 27 𝑑𝑒𝑐𝑖𝑚𝑎𝑙

• We could implement it as below

➢But how would pow()
be implemented and 
consider the work it 
has to do (and then re-do, 
and then re-do)?

// suppose the binary number is
// given as a vector of bits
// in reverse order (i.e. the bit
// multiplied by 2^0 is at index 0)
unsigned bin2dec(vector<int> b)
{

unsigned val = 0; 
for(int i=0; i < b.size(); i++)
{

val += b[i] * pow(2,i);
}
return val;

}
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Base Conversion (Base b to Decimal)

• If pow(r,n) simply multiplied r by itself n-1 times 
then each call would take Θ(𝑛) and to compute a 
polynomial of degree n would be Θ(𝑛2)

➢𝑎4 ∙ 𝑟
4 + 𝑎3 ∙ 𝑟

3 + 𝑎2 ∙ 𝑟
2 + 𝑎1 ∙ 𝑟

1 + 𝑎0 ∙ 𝑟
0

• We can achieve the computation in linear time by 
factoring to the following form:

➢ 𝑎4 ∙ 𝑟 + 𝑎3 ∙ 𝑟 + 𝑎2 ∙ 𝑟 + 𝑎1 ∙ 𝑟 + 𝑎0
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Base Conversion (Decimal to Base b)

Example: Convert 23 to base 2: 

• 23 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 = 𝑎4 ∙ 2
4 + 𝑎3 ∙ 2

3 + 𝑎2 ∙ 2
2 + 𝑎1 ∙ 2

1 + 𝑎0 ∙ 2
0 and we just need to 

find the coefficients a4, a3, …, a0

• =
𝑎
4
∙24+𝑎

3
∙23+𝑎

2
∙22+𝑎

1
∙21+𝑎

0
∙20

2
= 𝑎4 ∙ 2

3 + 𝑎3 ∙ 2
2 + 𝑎2 ∙ 2

1 + 𝑎1 ∙ 2
0 + 𝑎0 ∙ 2

−1

• So, we see that the remainder of dividing by 2 is a0 and then we can repeat again on 
the quotient to find a1 and so on

// n is the value to convert, b is the base to 
// convert to, res is the array to store the 
// converted result in.
void convert(int n, int b, int res[]) {

for (int k = 0; n != 0; k++) {
res[k] = n % b;
n /= b;

}
}
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Modular Exponentiation
• Suppose we want to calculate 𝑏𝑛%𝑚 (e.g. 5223%7 )

– We want to do this in Cryptography

– If b and n are large, then calculating 𝒃𝒏 may be impractical

• Our naïve approach had us multiply by b a total of n times 
(i.e. 𝑏1 ∙ 𝑏1 ∙ 𝑏1 ∙ ⋯ ∙ 𝑏1) = n multiplications

• Let us find an alternate, more efficient approach

• Convert the exponent to its binary representation and 
formulate our exponentiation as the product of the base raised 
to certain powers of 2

• If n = 23 dec = 10111 bin (16 + 8 + 4 + 2 + 1)
– Note: Any 0 in the binary number leads to 𝑏0 = 1 and can be left out of 

the product

– 𝑏23 = 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1 = 𝑏2
4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 2

0
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Modular Exponentiation
• Let's use our example of 𝑏23 = 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1 = 𝑏2

4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 2

0

• Notice we can calculate our powers with log(n) multiplications:
𝑏2 = 𝑏1 ∙ 𝑏1 which we can use to compute 𝑏4 = 𝑏2 ∙ 𝑏2 which we 
can use to compute 𝑏8 = 𝑏4 ∙ 𝑏4 which we can use to compute 
𝑏16 = 𝑏8 ∙ 𝑏8

– We can perform mod m operation anytime to ensure the value does not 
overflow our int or long int range.  

– Start by letting 𝑟0 = 𝑏%𝑚, and include that in our answer if we need 𝑏1

– Then, calculate 𝑏2 %𝑚 by calculating 𝑟1 = 𝑏%𝑚 ∙ 𝑏%𝑚 =

(𝑟0 ∙ 𝑟0)%𝑚, and include that in our answer if we need 𝑏2

– Then, calculate 𝑏4 %𝑚 by calculating 𝑟2 = 𝑏2%𝑚 ∙ 𝑏2%𝑚 %𝑚 =

𝑟1 ∙ 𝑟1 %𝑚,  and include that in our answer if we need 𝑏4

– And so on…



16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Modular Exponentiation: Example 1

I N[i] x (after iter i) r (after iter i)

initially 1 52%7=3

0 1  (a0 = LSB)

1 1

2 1

3 0

4 1  (a1 = MSB)

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {  

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if ( N[i] == true )  x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟓𝟐𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = (𝟑𝟏𝟔 ∙ 𝟑𝟒 ∙ 𝟑𝟐 ∙ 𝟑𝟏) 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟐 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟒 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟖 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏𝟔 𝒎𝒐𝒅 𝟕

3

9

81

6561

43046721

=3
9*3

=27

81*9*3

=2187
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Modular Exponentiation: Example 1 (Sol)

I N[i] x (after iter i) r (after iter i)

initially 1 52%7=3

0 1  (a0 = LSB) 1*3=3 mod 7 3*3=2 mod 7

1 1 3*2=6 mod 7 2*2=4 mod 7

2 1 6*4=3 mod 7 4*4=2 mod 7

3 0 3 (no change) 2*2=4 mod 7

4 1  (a1 = MSB) 3*4=5 mod 7 4*4=2 mod 7

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {  

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if ( N[i] == true )  x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟓𝟐𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = (𝟑𝟏𝟔 ∙ 𝟑𝟒 ∙ 𝟑𝟐 ∙ 𝟑𝟏) 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟐 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟒 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟖 𝒎𝒐𝒅 𝟕

≡ 𝟑𝟏𝟔 𝒎𝒐𝒅 𝟕

3

9

81

6561

43046721

=3
9*3

=27

81*9*3

=2187
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Modular Exponentiation: Example 2

I N[i] x (after iter i) r (after iter i)

initially 1 117%5=2

0 1  (a0 = LSB)

1 1

2 0

3 1

4 1  (a1 = MSB) 3*1=3 mod 5

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {  

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if ( N[i] == true )  x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟏𝟏𝟕𝟐𝟕𝒎𝒐𝒅 𝟓 = 𝟐𝟐𝟕𝒎𝒐𝒅 𝟓 = (𝟐𝟏𝟔 ∙ 𝟐𝟖 ∙ 𝟐𝟐 ∙ 𝟐𝟏) 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟐 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟒 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟖 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏𝟔 𝒎𝒐𝒅 𝟓
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Modular Exponentiation: Example 2 (Sol)

I N[i] x (after iter i) r (after iter i)

initially 1 117%5=2

0 1  (a0 = LSB) 1*2=2 mod 5 2*2=4 mod 5

1 1 2*4=3 mod 5 2*2=1 mod 5

2 0 3 (no change) 1*1=1 mod 5

3 1 3*1=3 mod 5 1*1=1 mod 5

4 1  (a1 = MSB) 3*1=3 mod 5

// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {  

int x = 1, r = b % m;
for (int i = 0; i < N.size(); i++) {
if ( N[i] == true )  x = (x * r) % m;
r = (r * r) % m;

}
return x;

}

𝟏𝟏𝟕𝟐𝟕𝒎𝒐𝒅 𝟓 = 𝟐𝟐𝟕𝒎𝒐𝒅 𝟓 = (𝟐𝟏𝟔 ∙ 𝟐𝟖 ∙ 𝟐𝟐 ∙ 𝟐𝟏) 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟐 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟒 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟖 𝒎𝒐𝒅 𝟓

≡ 𝟐𝟏𝟔 𝒎𝒐𝒅 𝟓
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Modular Exponentiation: Alternate 
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟑𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟏
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑𝟓)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑 ∙ (𝟑𝟐)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑 ∙ (𝟐)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟏𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟓)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟓 𝟐 𝒎𝒐𝒅 𝟕
= 𝟑 ∙ 𝟒 𝒎𝒐𝒅 𝟕 = 5 mod 7
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Modular Exponentiation: Alternate 
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟕𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟑
𝟐
𝒎𝒐𝒅 𝟕

=
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Modular Exponentiation: Alternate 
• Or alternatively:

𝑥𝑛 = ൞
𝑥
𝑛
2

2

, if n is even

𝑥 ∙ 𝑥
𝑛−1
2

2

, if n is odd

𝟑𝟐𝟕𝒎𝒐𝒅 𝟕 = 𝟑 ∙ 𝟑𝟏𝟑
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟑𝟔)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟑𝟑)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟐𝟕)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ ((𝟔)𝟐)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 ∙ (𝟏)𝟐
𝟐
𝒎𝒐𝒅 𝟕

= 𝟑 ∙ 𝟑 𝟐 𝒎𝒐𝒅 𝟕
= 𝟑 ∙ 𝟐 𝒎𝒐𝒅 𝟕 = 6 mod 7
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XKCD #953

• If you get an 11/100 on a CS 
test, but you claim it should 
be counted as a ‘C’, they’ll 
probably decide you 
deserve the upgrade.
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Applications
• When sending digital information, the probability that 

any given bit gets corrupted is not zero.  
– Even very small probabilities are significant, when 

considering the size of most transmissions: when taking a 
networking class, you may  be surprised by how frequent 
errors are.

– To counteract this, we send extra information, to help us 
identify when a transmission error occurred.

– The first and simplest method was parity checking, which 
adds a single bit to the end of the message.

– If the message contained an even number of 1s (in binary), 
the added bit is a 0.  If it contains an odd number of 1s, the 
added bit is a 1.

Transmitter Receiver1001 1011

1001,0 1011,0
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Parity Checking

• Where previously we sent the message 𝑥1𝑥2…𝑥𝑛, now we 
send 𝑥1𝑥2…𝑥𝑛𝑥𝑛+1, where
𝑥𝑛+1 = 𝑥1 + 𝑥2 +⋯+𝑥𝑛 %2

• When you receive the message, you check if there are an:
– Odd number of 1s: The message is corrupted, request the 

transmitter to send again
– Even number of 1s: Accept the message as correct (is it really 

though?), remove the parity bit and process the message

– If a single bit is corrupted, this system will catch it.
– If exactly two bits are corrupted, this system will not catch it 

(but better systems will).
– This system will catch an odd number of errors, which is more 

likely to occur than an even number of errors.
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Pseudorandom Number Generators

• Your computer’s random number generator is not truly random, it is instead 
pseudorandom.

• A common method to produce pseudorandom numbers is as follows:
– Choose the modulus m, the multiplier a, the increment c, 

and the seed 𝑥0.

– When producing the “next” random number, generate

𝒙𝒏+𝟏 = 𝒂 ∙ 𝒙𝒏 + 𝒄 %𝒎
• When using the random library, you have the option of choosing the seed 𝑥0.

– We often choose the current time so different runs of the program yield different 
sequences.

• While the sequence of numbers looks random, if you use the same seed you 
will always get the same sequence.

// gcc rand() implementation 
int rand() {  

int32_t val;
val = ((state[0] * 1103515245) + 12345) % 2147483647;
state[0] = val;
return val;

}

// gcc srand() implementation
void srand(int seed) 
{  

state[0] = seed;
}
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PRIME NUMBERS
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Primes

• An integer p > 1 is prime if its only positive 
factors are 1 and p.  

• A positive integer > 1 that is not prime is called 
composite.

• The Fundamental Theorem of Arithmetic states 
that every integer n > 1 can be factored into a 
unique product of primes (𝑛 = 𝑝1𝑝2…𝑝𝑛), 
where 𝑝𝑖 ≤ 𝑝𝑖+1.

• Prime numbers are at the center of the field of 
cryptography.
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"Divides"

• Let 𝑎|𝑏 be read as "a divides b" and mean:

– (b % a) = 0   OR

– a is a factor of b  (i.e. 𝑏 = 𝑎 ∙ 𝑓 for some integer, f)

• Examples:

– 4 | 28 (since 28 % 4 = 0   OR   28 = 4*7)

– 4 ∤ 22 (since 22 % 4 != 0 ) 
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The Sieve of Erastosthenes

• Used to find primes

– List all integers from 2 to n. (let n = 31 for our example) 

– Remove all numbers that are a multiple of the first 
number, then the second number, then the third number, 
until the next number is > 𝑛

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• Stop after crossing out multiples of 5 (since the next number 7 > sqrt(31)
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Basic Divisibility Proof 1

• Prove that if 𝑎|(𝑏 + 𝑐) and 𝑎|𝑏 then     𝑎|𝑐
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Basic Divisibility Proof 1 (Sol)

• Prove that if 𝑎|(𝑏 + 𝑐) and 𝑎|𝑏 then    𝑎|𝑐

– Solution:  

• If 𝑎|(𝑏 + 𝑐) then f ∙ 𝑎 = (𝑏 + 𝑐) for some f and 

• If 𝑎|𝑏 then 𝑔 ∙ 𝑎 = 𝑏 for some g

• Since c = 𝑏 + 𝑐 − 𝑏 = f ∙ 𝑎 − 𝑔 ∙ 𝑎 = 𝑎 ∙ (𝑓 − 𝑔)
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Basic Divisibility Proof 2

• Prove that for a prime number, p, if 𝑝|(𝑏 ∙ 𝑐)
then 𝑝|𝑏 or 𝑝|𝑐
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Basic Divisibility Proof 2 (Sol)

• Prove that for a prime number, p, if 𝑝|(𝑏 ∙ 𝑐)
then 𝑝|𝑏 or 𝑝|𝑐

– Solution: 

• By the fundamental theorem of arithmetic, both b 
and c must be the product of some primes: 

𝑏 = 𝑝𝑏1
𝑏𝑒1 ∙ ⋯ ∙ 𝑝𝑏𝑘

𝑏𝑒𝑘 and 

𝑐 = 𝑝𝑐1
𝑐𝑒1 ∙ ⋯ ∙ 𝑝𝑐𝑘

𝑐𝑒𝑘

• So 𝑏 ∙ 𝑐 = 𝑝𝑏1
𝑏𝑒1 ∙ ⋯ ∙ 𝑝𝑏𝑘

𝑏𝑒𝑘 ∙ 𝑝𝑐1
𝑐𝑒1 ∙ ⋯ ∙ 𝑝𝑐𝑘

𝑐𝑒𝑘

• Since 𝑝| 𝑏 ∙ 𝑐 and p is prime, p must appear in 

𝑝𝑏1
𝑏𝑒1…𝑝𝑏𝑘

𝑏𝑒𝑘 ∙ 𝑝𝑐1
𝑐𝑒1…𝑝𝑐𝑘

𝑐𝑒𝑘 and thus must divide either 
b or c 
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Probing Technique Summary

• If h(k) is occupied with another key, then probe

• Let i be number of failed probes

• Linear Probing

– h(k,i) = (h(k)+i) mod m

• Quadratic Probing

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, h(k)+22, h(k)+32, …

• Double Hashing 

– Pick a second hash function h2(k) in addition to the 
primary hash function, h1(k)

– h(k,i) = [ h1(k) + i*h2(k) ] mod m

0

Jill1

Tom2

Ana3

4

…

5

m-1

key, valueTom

h(k)

0

Jill1

Tom2

3

4

…

5

m-1

Ana

key, valueTom

h(k)
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Quadratic Probing Number Theory

• If your hash table has a prime size m, the first m/2 probes are 
guaranteed to go to distinct locations.

• Proof by contradiction: Suppose the i-th and j-th probe were 
to the same locations (where j < i <= m/2), then that implies

(h(k)+i2) % m = (h(k)+j2) % m

(h(k)+i2) - (h(k)+j2) = (i2 - j2) = mq (for some q) or  

m | (i2 - j2)

m | (i+j)*(i-j)

Since m is prime it must divide one of (i+j) or (i-j)

But i,j  m/2, and i  j, so 0 < i-j, and i+j < m

Since m is prime, you can’t divide m over (i+j) and (i-j)
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Modulo by Primes

• Theorem: If p is prime and 0 < 𝑎 < 𝑝, then:
𝟎 ∙ 𝒂 , 𝟏 ∙ 𝒂 , 𝟐 ∙ 𝒂 ,… , [(𝒑 − 𝟏) ∙ 𝒂] are all distinct (i.e. a 

permutation of 0,1,…,(p-1))
– Where the notation [x] mean x mod p

• Proof by contradiction:  
– Suppose this was not true and for some distinct integers i and j, 

(i.e. 0 < 𝑖 < 𝑗 < 𝑝),  𝑖 ∙ 𝑎 ≡ 𝑗 ∙ 𝑎 (𝑚𝑜𝑑 𝑝) [i.e. 𝑖 ∙ 𝑎 and 𝑗 ∙ 𝑎 yield the 
same remainder mod p] 

– Then it must be that 𝑗 ∙ 𝑎 − 𝑖 ∙ 𝑎 = 𝑎 ∙ 𝑗 − 𝑖 = 𝑓 ∙ 𝑝 (i.e. the difference 
𝑗 ∙ 𝑎 − 𝑖 ∙ 𝑎 is a multiple of p…from def. of modular congruence)

– Then 𝑝 must divide 𝑎 ∙ 𝑗 − 𝑖 which means 𝑝 must divide 𝑎 OR 𝑝 must 
divide 𝑗 − 𝑖 [since if 𝑝 | 𝑏 ∙ 𝑐 then 𝑝 | 𝑏 or 𝑝 | 𝑐 ]

– 𝑝 cannot divide 𝑎 since 0 ≤ 𝑎 < 𝑝

– But 𝑝 cannot divide 𝑗 − 𝑖 since 0 ≤ (𝑗 − 𝑖) < 𝑝

– Contradiction!
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Double Hashing

• Assume 
– m=13, 

– h1(k) = k % 13

– h2(k) = 5 – (k % 5)

• What sequence would I probe if k = 31
– h1(31) = ___, h2(31) = _______________

– Seq: ______________________________________________

– Notice we _______________________ in the table. Why? A _____ 
table size!
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Cicadas (suh-kay-duh)

• Corollary:  If p is prime and 0 < 𝑎 < 𝑝, then: 𝒑 ∙ 𝒂 is 
the first common multiple

• Cicadas are insects that make use of prime numbers.
– They spend most of their lives as grubs, but emerge 

from their burrows after a prime number of years (7, 13, 
or 17 are common, depending on the type).

• Some predators cycle through many hunting areas, 
with a cycle length of > 1 year.

• If cicadas emerged every 12 years, then any predator 
that appears every 2, 3, 4, 6, or 12 years could evolve 
to prey on them.

• The prime number intervals make it difficult for 
predators to specialize in preying on cicadas.
– Therefore, the predator that comes every 𝑎 years can 

snack on cicadas only every pth circuit, 
– And the cicadas that emerge every pth year will get 

munched on only every ath emergence

7

4

14

21

28

Suppose cicadas 

emerged every 7th

year and a predator 

visited every 4th

year
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BACKGROUND
Another example for why we choose prime table size
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Why Prime Table Size (1)?

• Simple hash function is h(k) = k mod m
– If our data is not already an integer, convert it to an integer first

• Recall m should be _____________
– PRIME!!!

• Say we didn't pick m = prime number but some power of 10 
(i.e. k mod 10d) or power of 2 (i.e. 2d)…then any clustering in 
the lower order digits would cause collisions
– Suppose h(k) = k mod 100

• Similarly in binary h(k) = k mod 2d can easily be computed by 
taking the lower d-bits of the number
– 19 dec. => 10011 bin. and thus  19 mod 22 = 11 bin. = 3 decimal



42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Prime Table Size (2)
• Let's suppose we have clustered data when we chose 

m=10d

– Assume we have a set of keys, S = {k, k', k"…} (i.e. 99, 199, 
299, 2099, etc.) that all have the same value mod 10d and 
thus the original clustering (i.e. all mapped to same place 
when m=10d)

• Say we now switch and choose m to be a prime
number (m=p)

• What is the chance these numbers hash to the same 
location (i.e. still cluster) if we now use 
h(k) = (k mod m)   [where m is prime]? 

– i.e. what is the chance (k mod 10d) = (k mod p)
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Why Prime Table Size (3)
• Suppose two keys, k* and k’, map to same location mod m=10d hash table 

=> their remainders when they were divide by m would have to be the same
=> k*-k' would have to be a multiple of m=10d

• If k* and k’ map to same place also with new prime table size, p, then

– k*-k' would have to be a multiple of 10d and p

– Recall what would the first common multiple of p and 10d be?

• So for k* and k' to map to the same place k*-k' would have to be some multiple
p*10d

– i.e. 1*p*10d, 2*p*10d, 3*p*10d, …

– For p = 11 and d=2 => k*-k' would have to be 1100, 2200, 3300, etc.

• Ex. k* = 1199 and k'=99 would map to the same place mod 11 and mod 102

• Ex. k* = 2299 and k'=99 would also map to the same place in both tables
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Here's the Point
• Here's the point…

– For the values that used to ALL map to the same place like 99, 199, 
299, 399…

– Now, only every m-th one maps to the same place (99, 1199, 2299, 
etc.)

– This means the chance of clustered data mapping to the same location 
when m is prime is 1/m

– In fact 99, 199, 299, 399, etc. map to different locations mod 11

• So by using a prime tableSize (m) and modulo hashing even 
clustered data in some other base is spread across the range 
of the table
– Recall a good hashing function scatters even clustered data uniformly

– Each k has a probability 1/m of hashing to a location
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GREATEST COMMON DIVISOR AND 
EUCLID'S ALGORITHM
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Greatest Common Divisors

• You are given two integers a,b that are not both 
zero.  The largest integer d that divides evenly 
into both a and b is the greatest common divisor 
of a and b, denoted gcd(𝑎, 𝑏).

• If gcd(𝑎, 𝑏) = 1, we say that a and b are 
relatively prime.

• What is gcd(24,36)?
– 12

• The greatest common divisor can be calculated by 
the Euclidean Algorithm.
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GCD and LCM

• What is gcd(24,36)?

– 24 = 2 ∙ 2 ∙ 2 ∙ 3 = 23 ∙ 31 and           36 = 2 ∙ 2 ∙ 3 ∙ 3 = 22 ∙ 32

• So gcd(24,36) is 12 = 2 ∙ 2 ∙ 3

• In general, given 2 numbers 

𝑎 = 𝑝1
𝑗1
∙ 𝑝2

𝑗2
∙ ⋯ ∙ 𝑝𝑛

𝑗𝑛
and 𝑏 = 𝑝1

𝑘1 ∙ 𝑝2
𝑘2 ∙ ⋯ ∙ 𝑝𝑛

𝑘𝑛

– Note: ji and ki may be 0

• Then, gcd 𝑎, 𝑏 = 𝑝1
min(𝑗1,𝑘1)

∙ 𝑝2
min(𝑗2,𝑘2)

∙ ⋯ ∙ 𝑝𝑛
min(𝑗𝑛,𝑘𝑛)

– gcd 24,36 = 2
min(3,2)

∙ 3
min 1,2

= 22 ∙ 31 = 12

• What is the LCM(24,36)?
– 72

• In general, given 2 numbers a and b with prime factors as shown above, 

then, lcm 𝑎, 𝑏 = 𝑝1
max(𝑗1,𝑘1)

∙ 𝑝2
max(𝑗2,𝑘2)

∙ ⋯ ∙ 𝑝𝑛
max(𝑗𝑛,𝑘𝑛)

– lcm 24,36 = 2
max(3,2)

∙ 3
max 1,2

= 23 ∙ 32 = 8 ∙ 9 = 72
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The Euclidean Algorithm

• Suppose we want to calculate gcd(287, 91).
• First divide the smaller by the larger to obtain 
287 = 91  3 + 14.
– If a number divides both 91 and 287, it must also divide 14

• Since if a | (b+c) and a | b, then a | c

• So, we have reduced the problem to gcd(91,14).  We 
repeat the above process.

• 91 = 146 + 7, so we have gcd(14,7).
• 14 = 27 + 0.
• If your remainder is 0, then the gcd is the smaller 

number.  In this case, 7.
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The Euclidean Algorithm

// assume: 0 <= b <= a, but a != 0
int euclid_gcd(int a, int b) 
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}

// assume: 0 <= b <= a, but a != 0
int euclid_gcd(int a, int b) 
{

if(b == 0) return a;
else {

int r = a % b;
return euclid_gcd(b, r);

}
}

Recursive Approach Non-Recursive Approach
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Euclid Example 1

• Calculate gcd(414, 248).

// assume: 0 <= b <= a, 
// but a != 0
int euclid_gcd(

int a, int b) 
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}
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Euclid Example 1 (Solution)

• Calculate gcd(414, 248).

– 414 = 248  1 + 166, so we 
have gcd(248, 166).

– 248 = 166  1 + 82, so we have 
gcd(166, 82).

– 166 = 82  2 + 2, so we have 
gcd(82, 2).

– 82 = 2  41 + 0, so 2 is the gcd.

// assume: 0 <= b <= a, 
// but a != 0
int euclid_gcd(

int a, int b) 
{

while (b != 0) {
int r = (a % b);
a = b;
b = r;

}
return a;

}
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OTHER APPLICATIONS OF EUCLID'S 
ALGORITHM
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Multiplicative Inverses  1

• Suppose you were asked to solve for x in the 
given equation:

8𝑛 + 5 ≡ 9 𝑚𝑜𝑑 11

• Algebraically, we would subtract 5 and divide 
by 8, but how does division work in modular 
arithmetic

• We've seen that modular arithmetic works for 
addition, subtraction, and multiplication

• What about division?
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Multiplicative Inverses  2

• Division may lead to non-integral results, so how do we do 
division in modular arithmetic where we must get an integer 
between 0 and m-1?
– If 𝑏 ∙ 𝑦 = 1 , what is the relationship between b and y?  

– 𝑦 = 𝑏−1 =
1

𝑏
…   So, dividing by b is the same as multiplying by y!

– If we work in a (𝑚𝑜𝑑 𝑚) system, then we just have to find a number, b, 
such that 𝒃 ∙ 𝒚 ≡ 𝟏 (𝒎𝒐𝒅𝒎), and then multiplying by y would be 
equivalent to dividing by b.

• A multiplicative inverse will exist for 𝒃 mod 𝒎 if 𝒈𝒄𝒅 𝒃,𝒎 = 𝟏
– If m is prime, then a multiplicative inverse exists for all values of x < m

• The multiplicative inverse for 8 mod 11 is 7
– Because 7 ∙ 8 = 56 ≡ 1 𝑚𝑜𝑑 11

– Examples: 
48

8
𝑚𝑜𝑑 11 ≡ 48 ∙ 7 = 336 = 6 𝑚𝑜𝑑 11
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Using Multiplicative Inverse

• To solve:
8𝑛 + 5 ≡ 9 𝑚𝑜𝑑 11

• First we subtract 5 from both sides
8𝑛 ≡ 9 − 5𝑚𝑜𝑑 11 ≡ 4 𝑚𝑜𝑑 11

• Now use the multiplicative inverse of 8 (which was stated to 
be 7)

7 ∙ 8𝑛 ≡ 7 ∙ 4 𝑚𝑜𝑑 11

𝑛 ≡ 28 𝑚𝑜𝑑 11 ≡ 6 𝑚𝑜𝑑 11

• Plug back in to check:
8 ∙ 6 + 5 = 53 ≡ 9 𝑚𝑜𝑑 11

• But how can we find that 7 was the multiplicative inverse of 8 
mod 11?  Using Euclid's algorithm.
– But to understand, let's look at another application: Diophantine 

equations which will lead us back to multiplicative inverses.
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Diophantine Eqn Example 1
• Diophantine equations take the form: 𝑎𝑥 + 𝑏𝑦 = 𝑠 where all 

unknowns are integers

• Give an integer solution to the equation: 
68𝑥 + 18𝑦 = 𝑔𝑐𝑑 68,18 and give the smallest magnitude x and 
y if possible.

• It turns out there is always a solution to this kind of problem 
(where the right side of the equation is the gcd of the coefficients 
of the two variables)

• Start by using Euclid's algorithm but keep the quotient and 
remainder:                      68 = 3 ∗ 18 + 14

18 = 1 ∗ 14 + 4
14 = 3 ∗ 4 + 2
4 = 2 ∗ 2 + 0

So gcd(18,68) = 2
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Diophantine Eqn Example  Workspace

68 = 3 ∗ 18 + 14
18 = 1 ∗ 14 + 4
14 = 3 ∗ 4 + 2
4 = 2 ∗ 2 + 0

So gcd(18,68) = 2

68x + 18y = gcd(68,18)
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Diophantine Eqn Example (Sol)
• Use that work and repeated substitution to find the solutions to the original 

equation: 68x + 18y = gcd(68,18)

• To solve 68x + 18y = gcd(68,18), start with a=r0=68 and b=r1=18, (the textbook 

uses r0 and r1, we'll use a and b) rearrange the lines from Euclid's to solve for the 
remainder instead :

68 = 3 ∗ 18 + 14 => 14 = 68 − 3 ∗ 18

18 = 1 ∗ 14 + 4 => 4 = 18 − 1 ∗ 14

14 = 3 ∗ 4 + 2 => gcd(68,18) = 2 = 14 − 3 ∗ 4

• Then put each remainder in terms of r0 and r1, substituting an earlier 
remainder's expression into later occurrences of that remainder until you 
reach an equation for the gcd in terms of a=r0=68 and b=r1=18. 

14 = 68 − 3 ∗ 18 = 1 ∙ 𝑎 − 3 ∙ 𝑏

But now substitute that expression in for 14 in the next line of Euclid's
4 = 18 − 1 ∗ 14 = 𝑏 − 1 ∗ 1 ∙ 𝑎 − 3 ∙ 𝑏 = 4 ∙ 𝑎 − 1 ∙ 𝑏

But now substitute the expressions for 14 and 4 into the next line of Euclid's
2 = 14 − 3 ∗ 4 = 1 ∙ 𝑎 − 3 ∙ 𝑏 − 3 ∗ 4 ∙ 𝑏 − 1 ∙ 𝑎 = 4 ∙ 𝑎 − 15 ∙ 𝑏

2 = gcd 68,18 = 4 ∙ 𝑎 − 15 ∙ 𝑏 = 4 ∙ 68 − 15 ∙ 18 (you can verify)

So for 68x + 18y = gcd(68,18) we have solved x=4, y=-15
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Multiplicative Inverses

• Now we can understand how to find a multiplicative inverse if 
it exists.
– Recall: A multiplicative inverse will exist for b mod m, if gcd(b,m)=1

– If m is prime, then a multiplicative inverse exists for all values of b < m

• If a multiplicative inverse exists for values of b and m, we can 
find the inverse of b using the process we just practiced of 
solving Diophantine equation: 𝒂 ∙ 𝒎 + 𝒃 ∙ 𝒚 = 𝟏(𝐦𝐨𝐝𝐦)
– We put our multiplicative inverse problem into the form of a 

Diophantine equation since we now know how to solve that form of 
problem

• Why? Because 𝒂 ∙ 𝒎 + 𝒃 ∙ 𝒚 = 𝟏 𝐦𝐨𝐝𝐦 =
𝒂 ∙ 𝒎 𝒎𝒐𝒅𝒎+ 𝒃 ∙ 𝒚 𝒎𝒐𝒅𝒎 = 𝟏(𝐦𝐨𝐝𝐦)

– 𝑎 ∙ 𝑚 ≡ 0 𝑚𝑜𝑑 𝑚 so that implies 𝑏 ∙ 𝑦 ≡ 1 𝑚𝑜𝑑 𝑚 and thus b must 
be the multiplicative inverse
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Using Euclid's Algorithm
• Find the multiplicative inverse of b=8 mod 11 (i.e. b=8, m=11)

– Note that for any b >= m, we will find its congruence such that 
0 <= b <= (m-1)

• Perform Euclid's (then rearrange solving for the remainders)
11 = 1 ∙ 8 + 3 => 3 = 11 − 1 ∙ 8

8 = 2 ∙ 3 + 2 => 2 = 8 − 2 ∙ 3

3 = 1 ∙ 2 + 1 => 1 = 3 − 1 ∙ 2
2 = 2 ∙ 1 + 0

• Now substitute back in with r0=11 and r1=8

• So 11x+8y=1 mod 11 has a solution of x=__ and y=____ mod 11

• Thus __ is the multiplicative inverse of 8 mod 11
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Using Euclid's Algorithm

• Find the multiplicative inverse of b=8 mod 11 (i.e. b=8, m=11)
– Note that for any b >= m, we will find its congruence such that 

0 <= b <= (m-1)

• Perform Euclid's (then rearrange solving for the remainders)
11 = 1 ∙ 8 + 3 => 3 = 11 − 1 ∙ 8

8 = 2 ∙ 3 + 2 => 2 = 8 − 2 ∙ 3

3 = 1 ∙ 2 + 1 => 1 = 3 − 1 ∙ 2
2 = 2 ∙ 1 + 0

• Now substitute back in with r0=11 and r1=8
3 = 𝑟0 − 1 ∙ 𝑟1
2 = 𝑟1 − 2 ∙ 3 = 𝑟1 − 2 ∙ 𝑟0 − 𝑟1 = −2 ∙ 𝑟0 + 3 ∙ 𝑟1
1 = 3 − 1 ∙ 2 = 𝑟0 − 𝑟1 − 1 ∙ −2 ∙ 𝑟0 + 3 ∙ 𝑟1 = 3 ∙ 𝑟0 − 4 ∙ 𝑟1

• So 11x+8y=1 mod 11 has a solution of x=3 and y=-4=7 mod 11

• Thus 7 is the multiplicative inverse of 8 mod 11
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OTHER INTERESTING APPLICATIONS 
ABOUT PRIMES
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Interesting Facts about Primes

• Twin Primes are pairs of primes that differ by 2.
– 3 and 5

– 5 and 7

– 11 and 13

– 17 and 19

– 4967 and 4969

– 8675309 and 8675311

– 2996863034895  21290000  1

• The Twin Prime Conjecture claims there are 
infinitely many twin primes.
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Goldbach’s Conjecture

• Goldbach’s Conjecture says that every even 
integer n > 2 is the sum of two primes.
– 4 = 2 + 2
– 6 = 3 + 3
– 8 = 3 + 5
– 10 = 3 + 7 and also 5 + 5
– 12 = 5 + 7
– 100 = 3 + 97 or 11 + 89 or 17 + 83 or 29 + 71 or 41 + 

59 or 47 + 53

• Verified by computer up to 4 x 1018, but 
unproven!
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XKCD #1310

• The weak twin primes conjecture states that there are 
infinitely many pairs of twin primes.  The tautological prime 
conjecture states that the tautological prime conjecture is 
true.
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APPLICATIONS TO CRYPTOGRAPHY
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Private Key Cryptography

• One of the earliest known uses of cryptography was by Julius 
Caesar.  He made messages secret by shifting each character 
three letters forward in the alphabet:

• 𝑓(𝑝) = (𝑝 + 3) % 26

• This way, if a message was intercepted on the battlefield, they 
would not know what information was being conveyed.

• This is an example of  a private key cryptosystem.

• UNIVERSITY OF SC would be encrypted as XQLYHUVLWB RI VF

• Knowing the encryption key allows you to easily find the 
decryption key:

• 𝑓(𝑐) = (𝑐 − 3) % 26
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Private Key Cryptography drawbacks

• Any pair of people who want to communicate secretly 
must have the same key.

• This was not a problem for Caesar, as his generals met 
up beforehand and agreed upon the encryption key.

• Today however, we will want to communicate securely 
with people we have never talked to before.  You 
shouldn’t have to go to Amazon headquarters to be 
able to securely convey your credit card number

• If you simply send the encryption key via a digital 
communication, it can be intercepted.  Then they will 
know how to decrypt your future messages!

• As you haven’t agreed on an encryption key yet, it 
cannot be sent encrypted!
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Public key cryptography

• Much more interesting is public key cryptography.
• In these systems, knowing the encryption key does not 

help you identify the decryption key.
• Therefore, you make your encryption key public and 

keep your decryption key private.
– Alice and Bob want to communicate securely.
– Alice sends her encryption key to Bob.
– Bob uses it to encrypt his message and sends it to Alice.
– Alice uses her decryption key to read the message.
– Bob sends his encryption key to Alice.
– Alice uses it to encrypt her reply and sends it to Bob.
– Bob uses his decryption key to read the message
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XKCD #1553
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RSA

• The RSA public key cryptosystem was first 
discovered in secret government research.

• It was then discovered independently, and 
introduced to the world, by Rivest, Shamir, and 
USC’s very own Leonard Adleman.

• Encryption isn’t too complicated, and it will be 
explained thoroughly in the coming slides.

• If you want to understand RSA Decryption, you’ll 
need to delve much deeper into Number Theory!
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RSA encryption

• I will select two values, 𝑒 and 𝑛, and publish them.

• These two values are specifically engineered, but we 
won’t talk about that until we get to RSA decryption.

• If you want to send me a secure message, you will 
break it up into consecutive blocks of letters (how long 
the blocks are depends on 𝑛).

• To send one block of your message, translate it into a 
number 𝑀.  This is nothing more than a base-
conversion algorithm from ASCII / Unicode / whatever 
to base 10.

• Calculate 𝐶 = 𝑀𝑒 % 𝑛, and send the message C.
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An Example

• We want to encrypt the message STOP, using the public key 
(n=2537, e=13).

• Translate STOP into base-10 using a straightforward conversion: 18-
19-14-15, so 18191415

• Break it up into 2 blocks, each of length 4 (a block must always have 
value  n): 1819-1415

• Calculate 181913 % 2537 = 2081 and 141513% 2537 = 2182.
• Send the message 2081-2182.  You’re done!
• Note that we need the Modular Exponentiation algorithm for this, 

as calculating 181913 is not a good use of time and space (it has 43 
digits!)

• We chose a relatively small n in this example, but n is usually 
around 400 digits, making the Modular Exponentiation algorithm 
essential.
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RSA Decryption

• 𝑒 and 𝑛 were engineered very carefully, they were not 
arbitrary numbers.

• 𝑛 = 𝑝 ∙ 𝑞, where p and q are prime numbers of around 
200 digits.
– In the prior example, 2537 = 43  57

• 𝑒 is chosen to be a number that is relatively prime to (𝑝 −
1) ∙ (𝑞 − 1).  A common choice of 𝑒 is 216 + 1 = 65537.

• If you know 𝑝 and 𝑞, you can decrypt the message.
• The most efficient known factorization method would 

require billions of years to factor 400-digit integers, making 
RSA quite secure…
– …We think.
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P vs NP, and one-way Functions

• We believe that multiplying large primes together is a one-
way function.  That is, it is easy to calculate 𝑓(𝑎, 𝑏) = 𝑎 ∙
𝑏, but hard to calculate 𝑓−1(𝑎 ∙ 𝑏) = {𝑎, 𝑏}.

• All modern cryptography depends on this assumption, that 
factoring large numbers is very hard.  But we’re actually 
not sure.

• If P = NP, that is, if Hamiltonian Cycle has a polynomial-time 
solution, then it follows that not only is factoring large 
numbers easy, but there is no such thing as a one-way 
function!

• If you prove that P = NP, you could crack all existing 
cryptosystems on the planet!
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XKCD #247

• I occasionally do this with mile markers on the 
freeway.
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You want more detail?

• Using e, p, and q, you can calculate decryption 
key d.

• Compute (n), which is the least common 
multiple of 𝑝 − 1 and 𝑞 − 1.

• Solve the equation 𝑑  𝑒  1 (𝑚𝑜𝑑 (𝑛))

• Now you can convert a block of letters C back 
to the original message M:

• 𝐶 ∙ 𝑑 % 𝑛 = 𝑀
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You still want more detail?
You’re sure?

• We can calculate the least common multiple of 𝑝 − 1 and 
𝑞 − 1 using the Euclidean Algorithm.

• It turns out the least common multiple of a and b is 
𝑎∙𝑏

gcd(𝑎,𝑏)

• Since we chose e to be relatively prime to (𝑝 − 1) ∙ (𝑞 −
1), we know it is also relatively prime with (n).

• It turns out that if x and y are relatively prime, then 
𝑑  𝑥  1 (𝑚𝑜𝑑 𝑦) has a unique solution for 𝑑 (𝑚𝑜𝑑 𝑦).  
The solution d is known as the modular multiplicative 
inverse.

• d can be calculated using a variant of the Euclidean 
algorithm.
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Far Too Much Detail, Cont.

• 𝐶𝑑  (𝑀𝑒)𝑑 𝑀𝑑∙𝑒𝑀1+𝑘(𝑝−1)(𝑞−1), for some k
• Since 𝑀 < 𝑝  𝑞, either gcd(𝑀, 𝑝) = 1, or 
gcd(𝑀, 𝑞) = 1 (usually both).

• We can use a result called Fermat’s Little Theorem to 
assert that, if gcd(𝑀, 𝑝) = 1, then 𝑀𝑝−11(𝑚𝑜𝑑 𝑝), 
and if gcd(𝑀, 𝑞) = 1, then 𝑀𝑞−11 𝑚𝑜𝑑 𝑞 (at least 
one is true, usually both)

• Therefore, 𝑀𝑘(𝑝−1)(𝑞−1)  1 (𝑚𝑜𝑑 𝑛)
• Finally, 𝑀1+𝑘(𝑝−1)(𝑞−1) 𝑀 (𝑚𝑜𝑑 𝑛)
• So,𝐶𝑑𝑀 (𝑚𝑜𝑑 𝑛).
• Easy, right?
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XKCD #538

• Actual actual reality: nobody cares about his 
secrets.  (Also, I would be hard-pressed to find 
that wrench for $5.)
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XKCD #1121

• Not sure why I just taught everyone to 
flawlessly impersonate me to pretty much 
anyone I know.  Just remember to constantly 
bring up how cool it is that birds are dinosaurs 
and you’ll be set.
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Modern Cryptography

• The only drawback to private-key cryptosystems is that you have to 
agree on the private key away from prying eyes.

• Most modern systems will use a public-key system such as RSA to 
securely send the private key, and then they switch to the private-key 
system.

• Alice posts in the Daily Trojan: 
“Dear Bob, lets use n=2537 and e=13.  - Alice”

• Bob uses her public key, encrypts and sends: 
“Dear Alice, let’s use the Caesar cipher for future communications.”

• All future communications then use the Caesar cipher, which they 
agreed upon privately.

• This still raises an interesting question: how is Alice sure she’s 
communicating with Bob?  How is Bob sure he is communicating with 
Alice?



83

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Digital Signatures

• Suppose Alice’s public RSA key is (n, e), and her private 
key is d.
– She sends her message as normal, but she attaches a 

signature S, which has been run through her decryption
protocol 𝑆𝑑 (𝑚𝑜𝑑 𝑛)

– Anyone can then run the resulting signature through her 
public encryption protocol to extract the signature.  Alice 
has produced a message which only she could write!

• We’ve over-simplified it, as someone could copy-paste 
her signature and re-use it.  This is why we have 
trusted 3rd party organizations that verify a specific 
signature hasn’t already been used.
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Beyond Polynomial

• In this class, we have referred to any runtime that 
is greater than polynomial as “exponential”.
– This is not actually correct, as exponential means a 

specific thing: (𝑑
𝑛

𝑓), where 
d > 1, and f > 0

– Any time greater than polynomial is called super-
polynomial

– Any time less than exponential is called sub-
exponential

– The best known algorithm to factor large numbers 
falls between polynomial and exponential.
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Zero-Knowledge Proofs

• Suppose Peggy has some information she wants to sell.
• Victor wishes to buy this information.
• Victor does not wish to hand over his money or credit 

card number until he is sure Peggy actually has this 
information and isn’t trying to scam him.

• Of course, as soon as Peggy reveals the information, 
Victor may opt to not hand over the money.

• Peggy needs to prove to Victor she has the 
information, while also giving him no additional clues 
about what the information actually is.

• Such a proof is known as a zero-knowledge proof.
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A simple zero-knowledge proof

• There is a cave which consists of two pathways 
that meet up at a magic door.

• The door has a magic password: speak it, and the 
door opens.

• Peggy wants to convince Victor that she knows 
the password, but she doesn’t want to reveal 
what that password is to Victor.

• Victor can watch Peggy go down one tunnel, and 
wait.  If Peggy then appears from the other 
tunnel, she has proven she has the information 
(and Victor has verified she has it), while 
simultaneously giving no additional information 
about what the password is to Victor.
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Probability

• Most zero-knowledge proofs are probabilistic: there is a 
low chance that Peggy will be able to fool Victor, but most 
of the time the verification process works.

• We could modify the magic door proof to make it 
probabilistic:
– Peggy chooses a tunnel (left or right) and walks down it, 

unknown to Victor.
– Victor then approaches the split, and yells out “come back via 

the right tunnel!”
– If Peggy has the password, she will be able to do so.
– If Peggy doesn’t have the password, she’ll be able to do so only 

if she originally chose the right tunnel.  50% odds.
– Victor can repeat the experiment as many times as he likes until 

he is satisfied.
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Another example

• Peggy wants to prove that a given graph G is 3-colorable, 
while not revealing to Victor how to actually do it.  You 
could have a page with the same graph mirrored on both 
sides.
– Peggy can color the graph on one side, but not reveal the 

coloring (Victor only sees the other, uncolored side). 
– Victor chooses a single edge from the uncolored side.
– Peggy cuts out that edge and its two nodes, flips it over, and 

reveals to Victor that the two nodes have different colors.
– If Peggy didn’t actually 3-color the graph, at least one edge will 

reveal the lie, so Victor has a 
1

𝑚
chance of catching the lie.

– Victor can repeat as many times as he likes, until he is satisfied.  
Peggy will keep swapping the 3 colors, so that Victor is unable to 
construct a larger solution.
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Sudoku

• How would you 
convince someone 
that a given Sudoku 
problem has a 
solution, without 
spoiling the answer?
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BACKUP



91

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Diophantine Eqn Example (Sol)
• Use that work and repeated substitution to find the solutions to the original 

equation: 68x + 18y = gcd(68,18)

• To solve 68x + 18y = gcd(68,18), start with r0=68 and r1=18, rearrange the 
lines from Euclid's to solve for the remainder instead :

68 = 3 ∗ 18 + 14 => 14 = 68 − 3 ∗ 18

18 = 1 ∗ 14 + 4 => 4 = 18 − 1 ∗ 14

14 = 3 ∗ 4 + 2 => gcd(68,18) = 2 = 14 − 3 ∗ 4

• Then put each remainder in terms of r0 and r1, substituting an earlier 
remainder's expression into later occurrences of that remainder until you 
reach an equation for the gcd in terms of r0=68 and r1=18. 

14 = 68 − 3 ∗ 18 = 1 ∙ 𝑟0 − 3 ∙ 𝑟1

But now substitute that expression in for 14 in the next line of Euclid's
4 = 18 − 1 ∗ 14 = 𝑟1 − 1 ∗ 1 ∙ 𝑟0 − 3 ∙ 𝑟1 = 4 ∙ 𝑟1 − 1 ∙ 𝑟0

But now substitute the expressions for 14 and 4 into the next line of Euclid's
2 = 14 − 3 ∗ 4 = 1 ∙ 𝑟0 − 3 ∙ 𝑟1 − 3 ∗ 4 ∙ 𝑟1 − 1 ∙ 𝑟0 = 4 ∙ 𝑟0 − 15 ∙ 𝑟1

2 = gcd 68,18 = 4 ∙ 𝑟0 − 15 ∙ 𝑟1 = 4 ∙ 68 − 15 ∙ 18 (you can verify)

So for 68x + 18y = gcd(68,18) we have solved x=4, y=-15
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Modular Exponentiation
• Suppose we want to calculate 𝑏𝑛%𝑚 (e.g. 5223%7 )

– We want to do this in Cryptography

– If b and n are large, then calculating 𝒃𝒏 may be impractical

• Let us find an alternate, more efficient approach
– Let a = n in binary (if n=23, a=10111 bin)
𝑛 = (𝑎𝑘−1𝑎𝑘−2…𝑎0)2, or 𝑎𝑘−1 ∙ 2

𝑘−1 + 𝑎𝑘−2 ∙ 2
𝑘−2 +⋯+ 𝑎0  2

0

– 𝑏𝑛 = 𝑏𝑎𝑘−1∙2
𝑘−1+𝑎𝑘−2∙2

𝑘−2+⋯+𝑎0  20

– 𝑏𝑛 = 𝑏𝑎𝑘−1∙2
𝑘−1

∙ 𝑏𝑎𝑘−2∙2
𝑘−2

∙ ⋯ ∙ 𝑏𝑎0  2
0

• If n = 23:

– 𝑏23 = 𝑏1∙2
4
∙ 𝑏0∙2

3
∙ 𝑏1∙2

2
∙ 𝑏1∙2

1
∙ 𝑏1  2

0
= 𝑏2

4
∙ 𝑏2

2
∙ 𝑏2

1
∙ 𝑏 20

= 𝑏16 ∙ 𝑏4 ∙ 𝑏2 ∙ 𝑏1

– Note: Any 𝑎𝑘 = 0, leads to 𝑏0 = 1 and can be left out of the product
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