CSCI 104
Recursion & Combinations

Backtracking Search
Mark Redekopp
David Kempe
Sandra Batista

GENERATING ALL COMBINATIONS
USING RECURSION

Recursion's Power

* The power of recursion often comes when

each function instance makes multiple
recursive calls

* Asyou will see this often leads to exponential
number of "combinations" being

generated/explored in an easy fashion

Binary Combinations

 |f you are given the value, n, 91 | 90 900 9000
. . 1 01 001 0001
and a string with n o 10 010 0010

: 11 011 0011
characters could you Bin. - L~ 100 0100
generate all the Bin. 101 0101
. . . 110 0110
combinations of n-bit 111 ke
binary? 3-bit 1000
Bin. 1001
* Do so recursively! 1010
1011
: : 1100

Exercise: bin_combo_str 1101

1110

1111

4-bit

Bin.

i, TS(“Viterbi -

School of Engineering

Recursion and DFS

e Recursion forms a kind of Depth-First Search

Options | 0

. N =length
Generally: Recursion must g

perform the same code
sequence for each item. — | — | — | —
Where we need variation,
use 'if' statements.
binCombos(...,3)

Set to O; recurse;
Set to 1; recurse;
binCombos(...,3)

Set to O; recurse;
Set to 1; recurse;

11

binCombos(...,3)
Set to O; recurse;
Setto 1; recurse;

binCombos(...,3)
Base case

// user interface
void binCombos(int len)

{

binCombos (

}

, len);

// helper-function
void binCombos(string prefix,
int len)
{
if(prefix.length() == len)
cout << prefix << endl;
else {
// recurse
binCombos(prefix+"@", len);
// recurse
binCombos(prefix+"1", len);

}

USC Viterbi 9

School of Engineering

Generating All Combinations

* Recursion offers a simple way to generate all combinations of N
items from a set of options, S
— Example: Generate all 2-digit decimal numbers (N=2, S={0,1,...,9})

00
__ F/ void NDigDecCombos(string data, int n)
Iy 01 {
A= VAR if(data.size() == n)
8 -] 02 cout << data;
= 9] else {
) \ 09 for(int i=0; i < 10; i++){
3 // recurse
0] NDigDecCombos (data+(char) ('0'+i),n);
A E }
g2y 1 = }
< (A1 &
S5 g ;
O 12— T
Q| O _
SERELN E 90 0
9 1]
| 0] 91 ions |2
\ = T] Options
) L e N = length
) éiﬂ 92 9]
E - |
9] | — | —
N AN

Options | U

i, TS(“Viterbi -

School of Engineering

Another Exercise

* Generate all string
combinations of
length n from a
given list (vector)
of characters

wn

N =length

Use recursion to walk down the 'places’
At each 'place’ iterate through & try all options

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all combos(vector<char>& letters, int n) {
/] ???
}

int main() {
vector<char> letters = {'U', 'S"', 'C'};
all combos(letters, 4);

return 0;

}

i, TS(“Viterbi

School of Engineering

Recursion and Combinations

* Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
— Ex. Generate all length-n combinations of the letters in the set S={'U",'S",'C'}
(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)
* General approach:

— Need some kind of array/vector/string to store partial answer as it is being
built

— Each recursive call is only responsible for one of the n "places" (say location, i)

— The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

« Remember you are responsible for only one location
— Upon return, try another option value and recurse again
— Base case can stop when all n locations are set (i.e. recurse off the end)
— Recursive case returns after trying all options

Exercises

* bin_combos_str

* /ero_sum

* Prime_products_print
* Prime_products

* basen _combos
e all_letter combos

BACKTRACK SEARCH ALGORITHMS

Get the Code

* |n-class exercises
— nqueens-allcombos
— nhqueens

* Onyour VM

— S mkdir nqueens
— S cd nqueens

— S wget
http://ee.usc.edu/~redekopp/cs104/nqueens.tar

— S tar xvf nqueens.tar

http://ee.usc.edu/~redekopp/cs104/nqueens.tar

i, TS(“Viterbi 2

School of Engineering

Recursive Backtracking Search

Recursion allows us to "easily" enumerate all solutions/combinations to some problem

Backtracking algorithms are often used to solve constraint satisfaction problems or
optimization problems

— Find (the best) solutions/combinations that meet some constraints

Key property of backtracking search:

— Stop searching down a path at the first indication that constraints won't lead to a
solution

« Many common and important problems can be solved with backtracking approaches

Knapsack problem

— You have a set of products with a given weight and value. Suppose you have a knapsack
(suitcase) that can hold N pounds, which subset of objects can you pack that maximizes the

value.
— Example:
* Knapsack can hold 35 pounds
* Product A: 7 pounds, $12 ea. Product B: 10 pounds, $18 ea.
* Product C: 4 pounds, $7 ea. Product D: 2.4 pounds, $4 ea.

* Other examples:
— Map Coloring, Satisfiability, Sudoku, N-Queens

B ()5 C Vierbi
N-Queens Problem

* Problem: How to place N queens on
an NxN chess board such that no
gueens may attack each other

* Fact: Queens can attack at any
distance vertically, horizontally, or
diagonally

* Observation: Different queen in
each row and each column

* Backtrack search approach:

— Place 1%t queen in a viable option then,
then try to place 2" queen, etc.

— |If we reach a point where no queen can
be placed in row i or we've exhausted all
options in row i, then we return and
change row i-1

I Uscviterbi
School of Engineering

8x8 Example of N-Queens
* Now place 2"d queen

e USCViterbi 9

8x8 Example of N-Queens
 Now place others as viable

e After this configuration
here, there are no locations
in row 6 that are not under
attack from the previous5 Q)

 BACKTRACK!!!

8x8 Example of N-Queens

 Now place others as viable

e After this configuration
here, there are no locations
in row 6 that is not under
attack from the previous 5

* So go back to row 5 and
switch assignment to next
viable option and progress
back to row 6

8x8 Example of N-Queens

* Now place others as viable

e After this configuration here,
there are no locations in row 6
that is not under attack from
the previous 5

* Now go back to row 5 and ®
switch assignment to next
viable option and progress back
to row 6

e But still no location available so
return back to row 5

8x8 Example of N-Queens

* Now place others as viable

» After this configuration here, there are
no locations in row 6 that is not under
attack from the previous 5

* Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

e But still no location available so return
back to row 5

 But now no more options for row 5 so
return back to row 4

* BACKTRACK!!!!

8x8 Example of N-Queens

* Now place others as viable

» After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

* Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

e But still no location available so
return back to row 5

 But now no more options for row 5
so return back to row 4

* Move to another place in row 4 and
restart row 5 exploration

8x8 Example of N-Queens

* Now place others as viable

» After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

* Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

e But still no location available so
return back to row 5

 But now no more options for row 5
so return back to row 4

* Move to another place in row 4 and
restart row 5 exploration

e USCViterbi -«

8x8 Example of N-Queens
 Now a viable option exists

for row 6

* Keep going until you
successfully place row 8 in
which case you can return
your solution

e What if no solution exists?

8x8 Example of N-Queens
 Now a viable option exists

for row 6

* Keep going until you
successfully place row 8 in
which case you can return
your solution

e What if no solution exists?

— Row 1 queen would have
exhausted all her options
and still not find a solution

USC Viterbi

School of Engineering

Backtracking Search

* Recursion can be used to
generate all options

— 'brute force' / test all options
approach

— Test for constraint satisfaction
only at the bottom of the 'tree'
e But backtrack search
attempts to 'prune’ the search
space

— Rule out options at the partial
assignment level

Brute force enumeration might
test only when a complete
assignment is made (i.e. all 4
queens on the board)

USC Viterbi

School of Engineering

N-Queens Solution Development

Let's develop the code 0

1 queen per row 1
— Use an array where index represents the

queen (and the row) and value is the column ’
Start at row O and initiate the search [i.e. 3
SearCh(O)] Index = Queeniinrowi o 1 2 3
Base case: q[i] = columnof queeni| 2 | o | 3 | 1

— Rows range from 0 to n-1 so STOP whenrow [0) storing

== // each queens location
int n; // number of board / size

— Means we found a solution
void search(int row)

Recursive case {
if(row == n)
— Recursively try all column options for that 612212501“10”05 // solved!
queen for(q[row]=0; q[row]<n; q[row]++){
-] search(row+1);
— But haven't implemented check of viable }

configuration... }

School of Engineering

N-Queens Solution Development

* To check whether it is safe to place a queen
in a particular column, let's keep a "threat"
2-D array indicating the threat level at each
square on the board

— Threat level of 0 means SAFE

— When we place a queen we'll update squares that are
now under threat

— Let's name the array 't'

* Dynamically allocating 2D arrays in C/C++ doesn't

really work

— Instead conceive of 2D array as an "array of arrays" which
boils down to a pointer to a pointer

Allocated 0 1 2 3 Each QFOC?¢ed
on line 08 Each entry on an iteration

isint* olololo of line 10

0| 1a0 / 0o|{0|0]|oO
t | 410 7 7
1 2c0
Thus tis . t[2] = Ox1b4
nt :22, ;bg R [2][1] =0
© \ t =

0

1

2
3

USC Viterbi 2

oO(1]1
1110
110]1
1,0]|0

Index = Queeniinrowi o 1 2

g[i] = column of queeni | g

00
01
02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18

{

int *q; // pointer to array storing

// each queens location

int n; // number of board / size
int **t; // thread 2D array

int main()

g = new int[n];

t new int*[n];

for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j 0; j < n; j++){

t[i][3] = e;

¥

¥

search(@); // start search
// deallocate arrays
return 0;

USC Viterbi

School of Engineering

N-Queens Solution Development

After we place a queen in a location, let's
check that it has no threats

If it's safe then we update the threats (+1)
due to this new queen placement

Now recurse to next row

If we return, it means the problem was
either solved or more often, that no
solution existed given our placement so we
remove the threats (-1)

Then we iterate to try the next location for

this queen
t 0o 1 2 3 t o 1 2 3 t o 1 2 3
olololo]o olol1]1]1 oloflofo]o
1/ofofo]o 11100 1{oJofo]o
2lolofo]o 2/1]lofl1]o0 2lolo]o]o
3/ojo]o]o 3/1]0]0]1 3/ojo]o]o

0

1

2

3

Index = Queeniinrowi o 1 2

g[i] = column of queeni | g

Safe to place
gueen in upper left

Now add threats

Upon return,
remove threat and
iterate to next option

int *q; // pointer to array storing
// each queens location

int n; // number of board / size

int **t; // n x n threat array

void search(int row)

{
if(row == n)
printSolution(); // solved!
else {

for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == @){
// if safe place and continue
addToThreats(row, q[row], 1);
search(row+1);
// if return, remove placement
addToThreats(row, q[row], -1);

Py

B (S C Vierbi
addToThreats Code
* QObservations 0

— Already a queen in every higher row so
addToThreats only needs to deal with positions 1
lower on the board
* Iterate row+1ton-1
— Enumerate all locations further down in the 3
same column, left diagonal and right diagonal

— Can use same code to add or remove a threat Index = Queen i in row i
by passing in change - 0O 1 2 3

 Can'tjust use 2D array of booleans as a
Squa_re mlght be unde_r threat from two pIaces void addToThreats(int row, int col, int change)
and if we remove 1 piece we want to make {

for(int j = row+l; j < n; j++){

sure we still maintain the threat
// go down column

t[j][col] += change;

// go down right diagonal

if(col+(j-row) < n)
t[j][col+(j-row)] += change;

// go down left diagonal

g[i] = column of queeni | g

t 0o 1 2 3 t o 1 2 3 if(col-(j-row) >= @)
0|01 1 olof1[2]1 t[jl[col-(j-row)] += change;
1111100)o0 1111 100)o0 }

. — }
2|11l01]0 21111221
3|12(l0|0]1 3|2(0|1]1

- USCViterbi
N- Queens Solution

School of Engineering

00
o1
02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19

int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main()

qg new int[n];

t new int*[n];

for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j 0; j < n; j++){

t[i][j] = e;

}

}

// do search
if(! search(@))
cout << "No sol!" << endl;
// deallocate arrays
return 0;

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

void addToThreats(int row, int col, int change)
{
for(int j = row+l; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)
t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= @)
t[j][col-(j-row)] += change;
}
}

bool search(int row)
{
if(row == n){
printSolution(); // solved!
return true;
}
else {
for(gq[row]=0; g[rowl<n; g[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == @){
// if safe place and continue
addToThreats(row, q[row], 1);
bool status = search(row+l);
if(status) return true;
// if return, remove placement
addToThreats(row, gq[row], -1);
}
}

return false;

} o}

i, TS(“Viterbi

School of Engineering

General Backtrack Search Approach

« Select an item and set it to one of its General gl‘j'é'i)”kiosfﬁj;k”a‘:king
optlons-such that it meets current 20 | bool sedora(int *rgrid, int ro It O
constraints o1 | {

02 if(allSquaresComplete(grid))

e Recursively try to set next item o) return true;

H : 05 // iterate through all options

* If you reach a point where all items are oo [IE- TRt i ¢

1 1 o7 grid[r][c] = 1i;
assigned and meet constram'ts, o e ey 1
done...return through recursion stack 09 bool status = sudoku(...);
. . 10 if(status) return true;
with solution 11 }
. : : 12 (.
* |f noviable value for an item exists, 13 | return false;
: . 14 |}
backtrack to previous item and repeat 15
16
from the top 17
. . . 18
* |fviable options for the 1stitem are 19

exhausted, no solution exists .
Assume r,c IS current square to

* Phrase: set and grid is the 2D array of

)) values
— Assign, recurse, unassign

