
1

CSCI 104
Recursion & Combinations

Backtracking Search
Mark Redekopp

David Kempe

Sandra Batista

2

GENERATING ALL COMBINATIONS
USING RECURSION

3

Recursion's Power

• The power of recursion often comes when
each function instance makes multiple
recursive calls

• As you will see this often leads to exponential
number of "combinations" being
generated/explored in an easy fashion

4

Binary Combinations

• If you are given the value, n,
and a string with n
characters could you
generate all the
combinations of n-bit
binary?

• Do so recursively!

0
1

00
01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1-bit

Bin.
2-bit

Bin.

3-bit

Bin.

4-bit

Bin.

Exercise: bin_combo_str

5

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{

binCombos("", len);
}

// helper-function
void binCombos(string prefix,

int len)
{

if(prefix.length() == len)
cout << prefix << endl;

else {
// recurse
binCombos(prefix+"0", len);
// recurse
binCombos(prefix+"1", len);

}
}

__ __ __ __

0

1

Options

N = length
Generally: Recursion must

perform the same code
sequence for each item.

Where we need variation,
use 'if' statements.

6

Generating All Combinations
• Recursion offers a simple way to generate all combinations of N

items from a set of options, S
– Example: Generate all 2-digit decimal numbers (N=2, S={0,1,…,9})

void NDigDecCombos(string data, int n)
{

if(data.size() == n)
cout << data;

else {
for(int i=0; i < 10; i++){
// recurse
NDigDecCombos(data+(char)('0'+i),n);
}

}
}

T
D

C
(d

a
ta

)

0

…

__ __ __

0

Options
N = length

1
2
…
9

1

2

9

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

00

01

02

09

90

91

92

99

0
1
2
…
9

0
1
2
…
9

0
1
2
…
9

7

Another Exercise

• Generate all string
combinations of
length n from a
given list (vector)
of characters

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all_combos(vector<char>& letters, int n) {
// ???

}

int main() {
vector<char> letters = {'U', 'S', 'C'};

all_combos(letters, 4);

return 0;
}

__ __ __ __

U

S

C

Options

N = length

Use recursion to walk down the 'places'

At each 'place' iterate through & try all options

8

Recursion and Combinations

• Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
– Ex. Generate all length-n combinations of the letters in the set S={'U','S','C'}

(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)

• General approach:
– Need some kind of array/vector/string to store partial answer as it is being

built

– Each recursive call is only responsible for one of the n "places" (say location, i)

– The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

• Remember you are responsible for only one location

– Upon return, try another option value and recurse again

– Base case can stop when all n locations are set (i.e. recurse off the end)

– Recursive case returns after trying all options

9

Exercises

• bin_combos_str

• Zero_sum

• Prime_products_print

• Prime_products

• basen_combos

• all_letter_combos

10

BACKTRACK SEARCH ALGORITHMS

11

Get the Code

• In-class exercises

– nqueens-allcombos

– nqueens

• On your VM

– $ mkdir nqueens

– $ cd nqueens

– $ wget
http://ee.usc.edu/~redekopp/cs104/nqueens.tar

– $ tar xvf nqueens.tar

http://ee.usc.edu/~redekopp/cs104/nqueens.tar

12

Recursive Backtracking Search
• Recursion allows us to "easily" enumerate all solutions/combinations to some problem

• Backtracking algorithms are often used to solve constraint satisfaction problems or
optimization problems

– Find (the best) solutions/combinations that meet some constraints

• Key property of backtracking search:

– Stop searching down a path at the first indication that constraints won't lead to a
solution

• Many common and important problems can be solved with backtracking approaches

• Knapsack problem

– You have a set of products with a given weight and value. Suppose you have a knapsack
(suitcase) that can hold N pounds, which subset of objects can you pack that maximizes the
value.

– Example:

• Knapsack can hold 35 pounds

• Product A: 7 pounds, $12 ea. Product B: 10 pounds, $18 ea.

• Product C: 4 pounds, $7 ea. Product D: 2.4 pounds, $4 ea.

• Other examples:

– Map Coloring, Satisfiability, Sudoku, N-Queens

13

N-Queens Problem
• Problem: How to place N queens on

an NxN chess board such that no
queens may attack each other

• Fact: Queens can attack at any
distance vertically, horizontally, or
diagonally

• Observation: Different queen in
each row and each column

• Backtrack search approach:
– Place 1st queen in a viable option then,

then try to place 2nd queen, etc.

– If we reach a point where no queen can
be placed in row i or we've exhausted all
options in row i, then we return and
change row i-1

14

8x8 Example of N-Queens
• Now place 2nd queen

15

8x8 Example of N-Queens
• Now place others as viable

• After this configuration
here, there are no locations
in row 6 that are not under
attack from the previous 5

• BACKTRACK!!!

16

8x8 Example of N-Queens
• Now place others as viable

• After this configuration
here, there are no locations
in row 6 that is not under
attack from the previous 5

• So go back to row 5 and
switch assignment to next
viable option and progress
back to row 6

17

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here,
there are no locations in row 6
that is not under attack from
the previous 5

• Now go back to row 5 and
switch assignment to next
viable option and progress back
to row 6

• But still no location available so
return back to row 5

18

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there are
no locations in row 6 that is not under
attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so return
back to row 5

• But now no more options for row 5 so
return back to row 4

• BACKTRACK!!!!

19

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so
return back to row 5

• But now no more options for row 5
so return back to row 4

• Move to another place in row 4 and
restart row 5 exploration

20

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so
return back to row 5

• But now no more options for row 5
so return back to row 4

• Move to another place in row 4 and
restart row 5 exploration

21

8x8 Example of N-Queens
• Now a viable option exists

for row 6

• Keep going until you
successfully place row 8 in
which case you can return
your solution

• What if no solution exists?

22

8x8 Example of N-Queens
• Now a viable option exists

for row 6

• Keep going until you
successfully place row 8 in
which case you can return
your solution

• What if no solution exists?

– Row 1 queen would have
exhausted all her options
and still not find a solution

23

Backtracking Search
• Recursion can be used to

generate all options
– 'brute force' / test all options

approach

– Test for constraint satisfaction
only at the bottom of the 'tree'

• But backtrack search
attempts to 'prune' the search
space
– Rule out options at the partial

assignment level

Brute force enumeration might

test only when a complete

assignment is made (i.e. all 4

queens on the board)

24

N-Queens Solution Development
• Let's develop the code

• 1 queen per row

– Use an array where index represents the
queen (and the row) and value is the column

• Start at row 0 and initiate the search [i.e.
search(0)]

• Base case:

– Rows range from 0 to n-1 so STOP when row
== n

– Means we found a solution

• Recursive case

– Recursively try all column options for that
queen

– But haven't implemented check of viable
configuration…

int *q; // pointer to array storing
// each queens location

int n; // number of board / size

void search(int row)
{
if(row == n)
printSolution(); // solved!

else {
for(q[row]=0; q[row]<n; q[row]++){
search(row+1);

}
}

q[i] = column of queen i 2 0 3 1

0 1 2 3Index = Queen i in row i

i

0

1

2

3

25

N-Queens Solution Development
• To check whether it is safe to place a queen

in a particular column, let's keep a "threat"
2-D array indicating the threat level at each
square on the board
– Threat level of 0 means SAFE

– When we place a queen we'll update squares that are
now under threat

– Let's name the array 't'

• Dynamically allocating 2D arrays in C/C++ doesn't
really work
– Instead conceive of 2D array as an "array of arrays" which

boils down to a pointer to a pointer

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // thread 2D array

int main()
{
q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j = 0; j < n; j++){
t[i][j] = 0;

}
}
search(0); // start search
// deallocate arrays
return 0;

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

1a0

0 0 0

2c0

1b4

3e0

0

0 0 0 0

0 1 2 3

0

1

2

3

410

0 0 0 0

0 0 0 0

Each entry

is int *

Thus t is

int **

t

t[2] = 0x1b4

t[2][1] = 0

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Allocated

on line 08

Each allocated

on an iteration

of line 10

0 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

26

N-Queens Solution Development
• After we place a queen in a location, let's

check that it has no threats

• If it's safe then we update the threats (+1)
due to this new queen placement

• Now recurse to next row

• If we return, it means the problem was
either solved or more often, that no
solution existed given our placement so we
remove the threats (-1)

• Then we iterate to try the next location for
this queen

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // n x n threat array
void search(int row)
{
if(row == n)
printSolution(); // solved!

else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){
// if safe place and continue
addToThreats(row, q[row], 1);
search(row+1);
// if return, remove placement
addToThreats(row, q[row], -1);

} } }

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 0 0 0

0 0 0 0

0 1 2 3

0 0 0 0

0 0 0 0

t

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 0 1 0

1 0 0 1

t

0

1

2

3

0 0 0 0

0 0 0 0

0 1 2 3

0 0 0 0

0 0 0 0

t

0

1

2

3

Safe to place

queen in upper left

Now add threats Upon return,

remove threat and

iterate to next option

27

addToThreats Code
• Observations

– Already a queen in every higher row so
addToThreats only needs to deal with positions
lower on the board

• Iterate row+1 to n-1

– Enumerate all locations further down in the
same column, left diagonal and right diagonal

– Can use same code to add or remove a threat
by passing in change

• Can't just use 2D array of booleans as a
square might be under threat from two places
and if we remove 1 piece we want to make
sure we still maintain the threat

void addToThreats(int row, int col, int change)
{
for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 0 1 0

1 0 0 1

t

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 1 2 1

2 0 1 1

t

0

1

2

3

28

N-Queens Solution
void addToThreats(int row, int col, int change)
{
for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

bool search(int row)
{
if(row == n){
printSolution(); // solved!
return true;

}
else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){
// if safe place and continue
addToThreats(row, q[row], 1);
bool status = search(row+1);
if(status) return true;
// if return, remove placement
addToThreats(row, q[row], -1);

}
}
return false;

} }

int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main()
{
q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j = 0; j < n; j++){
t[i][j] = 0;

}
}
// do search
if(! search(0))

cout << "No sol!" << endl;
// deallocate arrays
return 0;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

29

General Backtrack Search Approach
• Select an item and set it to one of its

options such that it meets current
constraints

• Recursively try to set next item

• If you reach a point where all items are
assigned and meet constraints,
done…return through recursion stack
with solution

• If no viable value for an item exists,
backtrack to previous item and repeat
from the top

• If viable options for the 1st item are
exhausted, no solution exists

• Phrase:
– Assign, recurse, unassign

bool sudoku(int **grid, int r, int c)
{
if(allSquaresComplete(grid))
return true;

}
// iterate through all options
for(int i=1; i <= 9; i++){
grid[r][c] = i;
if(isValid(grid)){
bool status = sudoku(...);
if(status) return true;

}
}
return false;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

General Outline of Backtracking

Sudoku Solver

Assume r,c is current square to

set and grid is the 2D array of

values

