CSCI 104
Recursion & Combinations
Backtracking Search
Mark Redekopp
David Kempe
Sandra Batista
GENERATING ALL COMBINATIONS USING RECURSION
Recursion's Power

• The power of recursion often comes when each function instance makes *multiple* recursive calls

• As you will see this often leads to exponential number of "combinations" being generated/explored in an easy fashion
Binary Combinations

• If you are given the value, n, and a string with n characters could you generate all the combinations of n-bit binary?

• Do so recursively!

Exercise: bin_combo_str
Recursion and DFS

- Recursion forms a kind of Depth-First Search

Options

0

1

Generally: Recursion must perform the same code sequence for each item. Where we need variation, use 'if' statements.

```cpp
// user interface
void binCombos(int len)
{
    binCombos("", len);
}

// helper-function
void binCombos(string prefix, int len)
{
    if(prefix.length() == len )
        cout << prefix << endl;
    else {
        // recurse
        binCombos(prefix+"0", len);
        // recurse
        binCombos(prefix+"1", len);
    }
}
```
Generating All Combinations

- Recursion offers a simple way to generate all combinations of N items from a set of options, S
 - Example: Generate all 2-digit decimal numbers (N=2, S={0,1,...,9})

```cpp
void NDigDecCombos(string data, int n)
{
    if(data.size() == n )
        cout << data;
    else {
        for(int i=0; i < 10; i++){
            // recurse
            NDigDecCombos(data+(char)('0'+i),n);
        }
    }
}
```
Another Exercise

• Generate all string combinations of length n from a given list (vector) of characters

```
#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all_combos(vector<char>& letters, int n) {
    // ???
}

int main() {
    vector<char> letters = {'U', 'S', 'C'};
    all_combos(letters, 4);
    return 0;
}
```

Options

| U | S | C |

Use recursion to walk down the 'places'
At each 'place' iterate through & try all options
Recursion and Combinations

• Recursion provides an elegant way of generating all \(n \)-length combinations of a set of values, \(S \).
 – Ex. Generate all length-\(n \) combinations of the letters in the set \(S = \{'U','S','C'\} \) (i.e. for \(n=2 \): UU, US, UC, SU, SS, SC, CU, CS, CC)

• General approach:
 – Need some kind of array/vector/string to store partial answer as it is being built
 – Each recursive call is only responsible for one of the \(n \) "places" (say location, \(i \))
 – The function will iteratively (loop) try each option in \(S \) by setting location \(i \) to the current option, then recurse to handle all remaining locations (\(i+1 \) to \(n \))
 • Remember you are responsible for only one location
 – Upon return, try another option value and recurse again
 – Base case can stop when all \(n \) locations are set (i.e. recurse off the end)
 – Recursive case returns after trying all options
Exercises

• bin_combos_str
• Zero_sum
• Prime_products_print
• Prime_products
• basen_combos
• all_letter_combos
BACKTRACK SEARCH ALGORITHMS
Get the Code

- In-class exercises
 - nqueens-allcombos
 - nqueens
- On your VM
 - $ mkdir nqueens
 - $ cd nqueens
 - $ wget http://ee.usc.edu/~redekopp/cs104/nqueens.tar
 - $ tar xvf nqueens.tar
Recursive Backtracking Search

• Recursion allows us to "easily" enumerate all solutions/combinations to some problem
• Backtracking algorithms are often used to solve constraint satisfaction problems or optimization problems
 – Find (the best) solutions/combinations that meet some constraints

• **Key property of backtracking search:**
 – Stop searching down a path at the first indication that constraints won't lead to a solution
• Many common and important problems can be solved with backtracking approaches
• Knapsack problem
 – You have a set of products with a given weight and value. Suppose you have a knapsack (suitcase) that can hold N pounds, which subset of objects can you pack that maximizes the value.
 – Example:
 • Knapsack can hold 35 pounds
 • Product A: 7 pounds, $12 ea.
 • Product B: 10 pounds, $18 ea.
 • Product C: 4 pounds, $7 ea.
 • Product D: 2.4 pounds, $4 ea.
• Other examples:
 – Map Coloring, Satisfiability, Sudoku, N-Queens
N-Queens Problem

- Problem: How to place \(N \) queens on an \(N \times N \) chess board such that no queens may attack each other
- Fact: Queens can attack at any distance vertically, horizontally, or diagonally
- Observation: Different queen in each row and each column
- Backtrack search approach:
 - Place 1\(^{st}\) queen in a viable option then, then try to place 2\(^{nd}\) queen, etc.
 - If we reach a point where no queen can be placed in row \(i \) or we've exhausted all options in row \(i \), then we return and change row \(i-1 \)
8x8 Example of N-Queens

• Now place 2nd queen
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that are not under attack from the previous 5
• BACKTRACK!!!
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
• So go back to row 5 and switch assignment to next viable option and progress back to row 6
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
- Now go back to row 5 and switch assignment to next viable option and progress back to row 6
- But still no location available so return back to row 5
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
• Now go back to row 5 and switch assignment to next viable option and progress back to row 6
• But still no location available so return back to row 5
• But now no more options for row 5 so return back to row 4
• BACKTRACK!!!!
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
- Now go back to row 5 and switch assignment to next viable option and progress back to row 6
- But still no location available so return back to row 5
- But now no more options for row 5 so return back to row 4
- Move to another place in row 4 and restart row 5 exploration
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
• Now go back to row 5 and switch assignment to next viable option and progress back to row 6
• But still no location available so return back to row 5
• But now no more options for row 5 so return back to row 4
• Move to another place in row 4 and restart row 5 exploration
8x8 Example of N-Queens

• Now a viable option exists for row 6
• Keep going until you successfully place row 8 in which case you can return your solution
• What if no solution exists?
8x8 Example of N-Queens

- Now a viable option exists for row 6
- Keep going until you successfully place row 8 in which case you can return your solution
- What if no solution exists?
 - Row 1 queen would have exhausted all her options and still not find a solution
Backtracking Search

- Recursion can be used to generate all options
 - 'brute force' / test all options approach
 - Test for constraint satisfaction only at the bottom of the 'tree'

- But backtrack search attempts to 'prune' the search space
 - Rule out options at the partial assignment level

Brute force enumeration might test only when a complete assignment is made (i.e. all 4 queens on the board)
N-Queens Solution Development

• Let's develop the code
• 1 queen per row
 – Use an array where index represents the queen (and the row) and value is the column
• Start at row 0 and initiate the search [i.e. search(0)]
• Base case:
 – Rows range from 0 to n-1 so STOP when row == n
 – Means we found a solution
• Recursive case
 – Recursively try all column options for that queen
 – But haven't implemented check of viable configuration...

```c
int *q; // pointer to array storing each queens location
int n; // number of board / size

void search(int row)
{
  if(row == n)
    printSolution(); // solved!
  else {
    for(q[row]=0; q[row]<n; q[row]++){
      search(row+1);
    }
  }
}
```
N-Queens Solution Development

- To check whether it is safe to place a queen in a particular column, let's keep a "threat" 2-D array indicating the threat level at each square on the board
 - Threat level of 0 means SAFE
 - When we place a queen we'll update squares that are now under threat
 - Let's name the array 't'

- Dynamically allocating 2D arrays in C/C++ doesn't really work
 - Instead conceive of 2D array as an "array of arrays" which boils down to a pointer to a pointer

```c
int *q;  // pointer to array storing each queens location
int n;   // number of board / size
int **t; // thread 2D array

main()
{
    q = new int[n];
    t = new int[n][n];
    for(int i=0; i < n; i++)
    {
        t[i] = new int[n];
        for(int j = 0; j < n; j++)
        {
            t[i][j] = 0;
        }
    }
    search(0); // start search
    // deallocate arrays
    return 0;
}
```

Index = Queen i in row i

```
0 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
```

Each entry is int *

- Allocated on line 08
- Each allocated on an iteration of line 10
- t[2] = 0x1b4
- t[2][1] = 0
N-Queens Solution Development

- After we place a queen in a location, let's check that it has no threats
- If it's safe then we update the threats (+1) due to this new queen placement
- Now recurse to next row
- If we return, it means the problem was either solved or more often, that no solution existed given our placement so we remove the threats (-1)
- Then we iterate to try the next location for this queen

Index = Queen \(i \) in row \(i \)

\[q[i] = \text{column of queen } i \]

```c
int *q; // pointer to array storing // each queens location
int n; // number of board / size
int **t; // n x n threat array
void search(int row)
{
    if(row == n)
        printSolution(); // solved!
    else {
        for(q[row]=0; q[row]<n; q[row]++){
            // check that col: q[row] is safe
            if(t[row][q[row]] == 0){
                // if safe place and continue
                addToThreats(row, q[row], 1);
                search(row+1);
                // if return, remove placement
                addToThreats(row, q[row], -1);
            }
        }
    }
}
```
addToThreats Code

• Observations
 – Already a queen in every higher row so addToThreats only needs to deal with positions lower on the board
 • Iterate row+1 to n-1
 – Enumerate all locations further down in the same column, left diagonal and right diagonal
 – Can use same code to add or remove a threat by passing in change

• Can't just use 2D array of booleans as a square might be under threat from two places and if we remove 1 piece we want to make sure we still maintain the threat

```java
t void addToThreats( int row, int col, int change ) {
   for( int j = row+1; j < n; j++ ) {
      // go down column
      t[j][col] += change;
      // go down right diagonal
      if( col+(j-row) < n )
         t[j][col+(j-row)] += change;
      // go down left diagonal
      if( col-(j-row) >= 0 )
         t[j][col-(j-row)] += change;
   }
}
```

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Index = Queen i in row i
q[i] = column of queen i
N-Queens Solution

```c
void addToThreats(int row, int col, int change) {
    for(int j = row+1; j < n; j++){
        // go down column
        t[j][col] += change;
        // go down right diagonal
        if( col+(j-row) < n )
            t[j][col+(j-row)] += change;
        // go down left diagonal
        if( col-(j-row) >= 0)
            t[j][col-(j-row)] += change;
    }
}

bool search(int row) {
    if( ! search(0) )
        cout << "No sol!" << endl;
    // deallocate arrays
    return false;
}
```

```c
int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main() {
    q = new int[n];
    t = new int*[n];
    for(int i=0; i < n; i++){
        t[i] = new int[n];
        for(int j = 0; j < n; j++)
            t[i][j] = 0;
    }
    // do search
    if( ! search(0) )
        cout << "No sol!" << endl;
    // deallocate arrays
    return 0;
}
```

```c
int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main() {
    q = new int[n];
    t = new int*[n];
    for(int i=0; i < n; i++){
        t[i] = new int[n];
        for(int j = 0; j < n; j++)
            t[i][j] = 0;
    }
    // do search
    if( ! search(0) )
        cout << "No sol!" << endl;
    // deallocate arrays
    return 0;
}
```
General Backtrack Search Approach

- Select an item and set it to one of its options such that it meets current constraints
- Recursively try to set next item
- If you reach a point where all items are assigned and meet constraints, done...return through recursion stack with solution
- If no viable value for an item exists, backtrack to previous item and repeat from the top
- If viable options for the 1st item are exhausted, no solution exists
- Phrase:
 - Assign, recurse, unassign

```cpp
void sudoku(int **grid, int r, int c)
{
    if( allSquaresComplete(grid) )
        return true;
    // iterate through all options
    for(int i=1; i <= 9; i++){
        grid[r][c] = i;
        if( isValid(grid) ){
            bool status = sudoku(...);
            if(status) return true;
        }
    }
    return false;
}
```

Assume r,c is current square to set and grid is the 2D array of values