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PAGERANK ALGORITHM
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PageRank
• Consider the graph at the right

– These could be webpages with links shown in the 
corresponding direction

– These could be neighboring cities

• PageRank generally tries to answer the question:

– If we let a bunch of people randomly "walk" the 
graph, what is the probability that they end up at a 
certain location (page, city, etc.) in the "steady-state"

• We could solve this problem through Monte-Carlo 
simulation (similar to CS 103 Coin-flipping or Zombie 
assignment)

– Simulate a large number of random walkers and 
record where each one ends to build up an answer of 
the probabilities for each vertex

• But there are more efficient ways of doing it
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PageRank
• Let us write out the adjacency matrix for this graph

• Now let us make a weighted version by normalizing based on 
the out-degree of each node

– Ex. If you're at node B we have a 50-50 chance of going to A or E

• From this you could write a system of linear equations (i.e. 
what are the chances you end up at vertex I at the next time 
step, given you are at some vertex J now
– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know:  pA + pB + pC + pD + pE = 1
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a b c d e

a 0 1 0 0 0

b 0 0 1 0 0

c 1 0 0 1 1

d 0 0 0 0 1

e 0 1 0 0 0

Adjacency Matrix
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Weighted Adjacency Matrix 

[Divide by (ai,j)/degree(j)]
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a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0
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PageRank
• System of Linear Equations

– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know:  pA + pB + pC + pD + pE = 1

• If you know something about linear algebra, you know we 
can write these equations in matrix form as a linear system
– Ax = y 
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Weighted Adjacency Matrix 

[Divide by (ai,j)/degree(j)]
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a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA
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pD

pE

*

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA = 0.5PB

pB = pC

pC = pA+pD+0.5*pE

pD = 0.5*pE

pE = 0.5*pB

=
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PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the 
next

• So we want a solution to:  Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just 
iterate until the solution settles down
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Iterative PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the 
next

• So we want a solution to:  Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just 
iterate until the solution settles down
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0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

.2

.2

.2

.2

.2

*

.1

.2

.5

.1

.1

=

Step 0 Sol. Step 1 Sol.

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

*

.1

.5

.25

.05

.1

=

Step 1 Sol. Step 2 Sol.

.1

.2
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.1

.1

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

?

?

?

?

?

*

.1507

.3078

.3126

.0783

.1507

=

Step 29 Sol. Step 30 Sol.

.1538

.3077

.3077

.0769

.1538

Actual PageRank Solution 

from solving linear system:
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Additional Notes
• What if we change the graph and now D has no incoming 

links…what is its PageRank?

– 0

• Most PR algorithms add a probability that someone just 
enters that URL (i.e. enters the graph at that node)

– Usually define something called the damping factor, α
(often chosen around 0.85)

– Probability of randomly starting or jumping somewhere = 
1-α

• So at each time step the next PR value for node i is given 
as:

– Pr 𝑖 =
1−𝛼

𝑁
+ 𝛼 ∗ σ𝑗∈𝑃𝑟𝑒𝑑(𝑖)

Pr(𝑗)

𝑂𝑢𝑡𝐷𝑒𝑔(𝑗)

– N is the total number of vertices

– Usually run 30 or so update steps

– Start each Pr(i) = 1/N
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In a Web Search Setting
• Given some search keywords we could find the pages that have that matching 

keywords

• We often expand that set of pages by including all successors and predecessors of 
those pages

– Include all pages that are within a radius of 1 of the pages that actually have the 
keyword

• Now consider that set of pages and the subgraph that it induces

• Run PageRank on that subgraph
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Induced Subgraph

to run PageRank
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SINGLE-SOURCE SHORTEST PATH 
(SSSP)

Dijkstra's Algorithm
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SSSP
• Let us associate a 'weight' with 

each edge

– Could be physical distance, cost of 
using the link, etc.

• Find the shortest path from a 
source node, 'a' to all other nodes
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SSSP
• What is the shortest distance from 

'a' to all other vertices?

• How would you go about 
computing those distances? 
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Dijkstra's Algorithm
• Dijkstra's algorithm is similar to a 

BFS but pulls out the smallest 
distance vertex (from the source) 
rather than pulling vertices out in 
FIFO order (as in BFS)

• Maintain a data structure that you 
can identify shortly

– We'll show it as a table of all vertices 
with their currently 'known' distance 
from the source
• Initially, a has dist=0 

• All others = infinite distance
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist) 

12. u.pred = v

13. u.dist = v.dist + w;  

14. PQ.decreaseKey(u, u.dist)
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Another Example
• Try another example of Dijkstra's
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Analysis
• What is the loop invariant?  What can I say about the 

vertex I pull out from the PQ?

– It is guaranteed that there is no shorter path to that vertex

– UNLESS: negative edge weights

• Could use induction to prove

– When I pull the first node out (it is the start node) it's 
weight has to be 0 and that is definitely the shortest path 
to itself

– I then "relax" (i.e. decrease) the distance to neighbors it 
connects to and the next node I pull out would be the 
neighbor with the shortest distance from the start

• Could there be shorter path to that node?

– No, because any other path would use some other edge 
from the start which would have to have a larger weight a
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Dijkstra's Run-time Analysis
• What is the run-time of 

Dijkstra's algorithm?

• How many times do you 
execute the while loop on 8?

• How many total times do you 
execute the for loop on 10?

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist) 

13. u.pred = v

14. u.dist = v.dist + w;  

15. PQ.decreaseKey(u, u.dist)
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Dijkstra's Run-time Analysis
• What is the run-time of Dijkstra's algorithm?

• How many times do you execute the while 
loop on 8?

– V total times because once you pull a node out 
each iteration that node's distance is 
guaranteed to be the shortest distance and 
will never be put back in the PQ

– What does each call to remove_min() cost…

– …log(V)  [at most V items in PQ]

• How many total times do you execute the for 
loop on 10?
– E total times:  Visit each vertex's neighbors

– Each iteration may call decreaseKey() which is log(V)

• Total runtime = V*log(V) + E*log(V) = 
(V+E)*log(V) 
– This is usually dominated by E*log(V)

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0;  s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;  

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist) 

13. u.pred = v

14. u.dist = v.dist + w;  

15. PQ.decreaseKey(u, u.dist)
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Tangent on Heaps/PQs
• Suppose min-heaps 

– Though everything we're about to say is true for max 
heaps but for increasing values

• We know insert/remove is log(n) for a heap

• What if we want to decrease a value already in the 
heap…

– Example: Decrease 26 to 9

– Could we find 26 easily?

• No requires a linear search through the array/heap => 
O(n)

– Once we find it could we adjust it easily?

• Yes, just promote it until it is in the right location =>  
O(log n)

• So currently decrease-key() would cost 
O(n) + O(log n) = O(n)

• Can we do better?
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Tangent on Heaps/PQs
• Can we provide a decrease-key() that runs in 

O(log n) and not O(n)
– Remember we'd have to first find then promote

• We need to know where items sit in the heap
– Essentially we want to quickly know the location 

given the key (i.e. Map key => location)

– Unfortunately storing the heap as an array does just 
the opposite (maps location => key)

• What if we maintained an alternative map 
that did provide the reverse indexing
– Then I could find where the key sits and then 

promote it

• If I keep that map as a balanced BST can I 
achieve O(log n) decreaseKey() time?
– No! each promotion swap requires update your 

location and your parents

– O(log n) swaps each requiring lookup(s) in the 
location map [O(log n)] yielding O(log2(n))
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Tangent on Heaps/PQs
• Am I out of luck then?

• No, try a hash map

– O(1) lookup
• Now each swap/promotion up the heap only 

costs O(1) and thus I have:

– Find => O(1) 

• Using the hashmap

– Promote => O(log n) 

• Bubble up at most log(n) levels 
with each level incurring O(1) 
updates of locations in the 
hashmap

• Decrease-key() is an important operation in 
the next algorithm we'll look at

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

Heap 

Array

Map of 

key to loc.
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ALGORITHM HIGHLIGHT
A* Search Algorithm
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Search Methods 

• Many systems require searching for goal states

– Path Planning

• Roomba Vacuum

• Mapquest/Google Maps

• Games!!

– Optimization Problems

• Find the optimal solution to a problem with many 
constraints
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Search Applied to 8-Tile Game
• 8-Tile Puzzle

– 3x3 grid with one blank space

– With a series of moves, get the tiles in sequential 
order

– Goal state:

1 2

3 4 5

6 7 8

HW6 Goal State

1 2 3

4 5 6

7 8

Goal State for these 

slides
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Search Methods

• Brute-Force Search: When you don’t know where 
the answer is, just search all possibilities until you 
find it.

• Heuristic Search: A heuristic is a “rule of thumb”.   An 
example is in a chess game, to decide which move to 
make, count the values of the pieces left for your 
opponent.  Use that value to “score” the possible 
moves you can make.

– Heuristics are not perfect measures, they are quick 
computations to give an approximation (e.g. may not take 
into account “delayed gratification” or “setting up an 
opponent”)
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Brute Force Search

• Brute Force Search 
Tree

– Generate all 
possible moves

– Explore each move 
despite its 
proximity to the 
goal node

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 8 2
4 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

W S

W S E
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Heuristics

• Heuristics are “scores” of how close a state is to the 
goal (usually, lower = better)

• These scores must be easy to compute 
(i.e. simpler than solving the problem)

• Heuristics can usually be developed by simplifying 
the constraints on a problem

• Heuristics for 8-tile puzzle
– # of tiles out of place

• Simplified problem: If we could just pick a tile up and put it 
in its correct place

– Total x-, y- distance of each tile from its correct location 
(Manhattan distance)

• Simplified problem if tiles could stack on top of each other / 
hop over each other

1 8 3

4 5 6

2 7

1 8 3

4 5 6

2 7

# of Tiles out of 
Place = 3

Total x-/y- distance 
= 6
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Heuristic Search

• Heuristic Search Tree

– Use total x-/y-
distance (Manhattan 
distance) heuristic

– Explore the lowest 
scored states

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5 6
7 8

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

H=6

H=7 H=5

H=6 H=6 H=4

H=3

H=2

H=1

Goal

1 2 3
4 8
7 6 5

H=5
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Caution About Heuristics

• Heuristics are just estimates and 
thus could be wrong

• Sometimes pursuing lowest 
heuristic score leads to a less-than 
optimal solution or even no 
solution

• Solution

– Take # of moves from start (depth) 
into account

H=2

Start

H=1

H=1

H=1

H=1

H=1

H=1

…

Goal

H=1
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A-Star Algorithm
• Use a new metric to decide which state to 

explore/expand

• Define
– h = heuristic score (same as always)

– g = number of moves from start it took to get 
to current state

– f = g + h

• As we explore states and their successors, 
assign each state its f-score and always 
explore the state with lowest f-score

• Heuristics should always underestimate 
the distance to the goal
– If they do, A* guarantees optimal solutions

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3
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A-Star Algorithm
• Maintain 2 lists

– Open list = Nodes to be explored (chosen 
from)

– Closed list = Nodes already explored (already 
chosen)

• General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)

1. s ← remove min. f-value state from open_list

(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list

3a. if s = goal node then trace path back to start; STOP!

3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are

not in the closed_list (so we don’t re-explore), or 

if they are already in the open list, update them if 

they have a smaller f value

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value

Closed List

Open List

**If implementing this for a programming 
assignment, please see the slide at the end about 
alternate closed-list implementation
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

Closed List

Open List
g=0,

h=6,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value

**If implementing this for a programming 
assignment, please see the slide at the end about 
alternate closed-list implementation
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=1,

h=5,

f=6

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from  
open_list (if tie in f-values, select one w/ 
larger g-value)

2. Add s to closed list
3a. if s = goal node then 

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s, 
compute their f-values, and add them to 
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if 
they have a smaller f value
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A* and BFS
• BFS explores all nodes at a shorter distance 

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List
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A* and BFS
• BFS explores all nodes at a shorter distance 

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6
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A* and BFS
• BFS is A* using just the g value to choose 

which item to select and expand

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6
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A* Analysis

• What data structure should we use for the open-list?

• What data structure should we use for the closed-list?

• What is the run time?

• Run time is similar to Dijkstra's algorithm…
– We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

– We then visit each successor which is like O(E) and perform an insert or decrease operation which is 
like E*max(O(insert), O(decrease)

– E = Number of potential successors and this depends on the problem and the possible solution space

– For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or 
if they are already in the open list, update them if 
they have a smaller f value
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Implementation Note
• When the distance to a node/state/successor (i.e. g value) is 

uniform, we can greedily add a state to the closed-list at the 
same time as we add it to the open-list

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or 
if they are already in the open list, update them if 
they have a smaller f value

open_list.push(Start State)

Closed_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 

values, and add them to open_list and closed_list
if they are not in the closed_list

Non-uniform g-values Uniform g-values

1 2
4 8 3
7 6 5

g=0,H=6

1 2
4 8 3
7 6 5

…

g=k,H=6

The first occurrence of a board 

has to be on the shortest path 

to the solution
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BETWEENESS CENTRALITY
If time allows…
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BC Algorithm Overview
• What's the most central vertex(es) in the graph 

below?

• How do we define "centrality"?

• Betweeness centrality defines "centrality" as the 
nodes that are between the most other pairs

b

a

c d

e

f

Sample Graph

j

h

i

k

m

l

Graph 1 Graph 2
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BC Algorithm Overview
• Betweeness centrality (BC) defines "centrality" as the nodes that are between 

(i.e. on the path between) the most other pairs of vertices

• BC considers betweeness on only "shortest" paths!

• To compute centrality score for each vertex we need to find shortest paths 
between all pairs…

– Use the Breadth-First Search (BFS) algorithm to do this

b

a

c d

e

f

Sample Graph

Original 1

b

a

c d

e

f

Are these gray nodes 

'between' a and e?

Original w/ 

added path

No, a-c-d-e is the 

shortest path?
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BC Algorithm Overview
• Betweeness-Centrality determines "centrality" as the number of 

shortest paths from all-pairs upon which a vertex lies

• Consider the sample graph below
– Each external vertex (a, b, e, f) lies is a member of only the shortest paths 

between itself and each other vertex

– Vertices c and d lie on greater number of shortest paths and thus will be 
scored higher 

b

a

c d

e

f

Sample Graph Image each vertex is a 

ball and each edge is a 

chain or string.  What 

would this graph look 

like if you picked it up 

by vertex c?  Vertex a?
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BC Implementation
• Based on Brandes' formulation for unweighted graphs

– Perform |V| Breadth-first traversals

– Traversals result in a subgraph consisting of shortest paths from root to all 
other vertices

– Messages are then sent back up the subgraph from "leaf" vertices to the 
root summing the percentage of shortest-paths each vertex is a member of

– Summing a vertex's score from each traversal yields overall BC result

b

a

c d

e

f

Sample Graph with 

final BC scores a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from 

selected roots 

and resulting 

partial BC scores

(in this case, the 

number of 

descendants)

5

55

5
19 19
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BC Implementation
• As you work down, track # of shortest paths running through a 

vertex and its predecessor(s)

• On your way up, sum the nodes beneath

a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from 

selected roots 

and resulting 

partial BC scores

(in this case, the 

number of 

descendants)

a

b c

d

e

2,[d]

2, [b,c]

1,[a]1,[a]

1,[-]

a

c

b d

e f

1,[-]

1,[a]

1,[c] 1,[c]

1,[d] 1,[d]

# of shortest paths thru the vertex, 

[List of predecessor]

0 0

2

4

0

5
4

0

1

.5*2

.5*2 .5*2
Score on the way back up (if 

multiple shortest paths, split the 

score appropriately)


