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PAGERANK ALGORITHM
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PageRank

* Consider the graph at the right

— These could be webpages with links shown in the
corresponding direction

— These could be neighboring cities 9 @
* PageRank generally tries to answer the question: ’G‘
— If we let a bunch of people randomly "walk" the ‘

graph, what is the probability that they end up at a ﬁ
certain location (page, city, etc.) in the "steady-state"
* We could solve this problem through Monte-Carlo
simulation (similar to CS 103 Coin-flipping or Zombie
assignment)
— Simulate a large number of random walkers and

record where each one ends to build up an answer of
the probabilities for each vertex

e But there are more efficient ways of doing it
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* Let us write out the adjacency matrix for this graph

* Now let us make a weighted version by normalizing based on G‘@

the out-degree of each node

— Ex. If you're at node B we have a 50-50 chance of going to A or E

* From this you could write a system of linear equations (i.e. a
what are the chances you end up at vertex | at the nexttime  _
step, given you are at some vertex J now % c

— pA=0.5*%pB " d
— pB=pC e
— pC=pA+pD+0.5*pE
— pD=0.5*pE
— pE=0.5*pB
— We also know: pA+pB+pC+pD+pE=1 a
a 0
b 0
oLoc 1
S
g d o
e 0

Source
a b c d e
0 1 0 0 0
0 0 1 0 0
1 0 0 1 1
0 0 0 0 1
0 1 0 0 0
Adjacency Matrix
Source=j
b c d e
05 O 0 0
0 1 0 0
0 0 1 0.5
0 0 0 0.5
05 O 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree(j)]
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e System of Linear Equations

* If you know something about linear algebra, you know we
can write these equations in matrix form as a linear system

o O » O O

pA = 0.5*pB

pB =pC

pC = pA + pD + 0.5*pE
pD = 0.5*pE
pE = 0.5*pB

PageRank

We also know: pA+ pB+pC+pD+pE=1

Ax =y

o O O +» O

o O », O O

0.5
0.5

pA
pB
pC
pD
pE

0 05
0 O
1 0

Target

pA
pB
pC
pD
pE

School of Engineering

@ G
G

Source=j
a b c d e
a 0 05 O 0 0
b 0 0 1 0 0
c 1 0 0 1 0.5
d 0 0 0 0 0.5
e 0 05 O 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree(j)]

pA = 0.5PB
pB =pC
= pC = pA+pD+0.5*pE

pE =0.5*pB
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 But remember we want the steady state solution
— The solution where the probabilities don't change from one step to the

next
e Sowe want asolutionto: Ap=p 9 Q

*  We can: G
— Use alinear system solver (Gaussian elimination) ‘
— Or we can just seed the problem with some probabilities and then just G a

iterate until the solution settles down

Source=j
a b c d e
0 05 0 0 O PA pA a 0 05 0 0 0
0 O 1 0 O pB pB b 0 0 1 0 0
1 0 0 1 05| *|pC = | pcC T ¢ 1 0 0 1 05
0 0 0 0 05 pD pD % d 0 0 0 0 0.5
0O 05 0 0 O pE pE " e 0 05 0 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree())]
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Iterative PageRank

 But remember we want the steady state solution

The solution where the probabilities don't change from one step to the

next

* So we want a solutionto: Ap=p

e We can:

o O » O O

o O » O O

Use a linear system solver (Gaussian elimination)

X

Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

0.5

o O o +» O

o O o +» O

o O » O O

o O » O O

0.5
0.5

0.5
0.5

Step 0 Sol.

*
NN NN

Step 1 Sol.

R, RN R

S

S

tep 1 Sol.
A

Bk N

tep 2 Sol.
1
5
.25
.05
1

o o » O O

Step 29 Sol.
0.5 0O 0 O ?
0 1 0 O ?
0 0 1 05 * ?
0 0O 0 05 ?
0.5 0O 0 O ?
Actual PageRank Solution 1538
from solving linear system: .3077
3077
.0769
.1538

Step 30 Sol.
.1507
.3078
.3126
.0783
.1507
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Additional Notes

* What if we change the graph and now D has no incoming
links...what is its PageRank?
- 0
* Most PR algorithms add a probability that someone just
enters that URL (i.e. enters the graph at that node)

— Usually define something called the damping factor, a
(often chosen around 0.85)

— Probability of randomly starting or jumping somewhere =
1-a

* So at each time step the next PR value for node i is given
as:

o Pr(j)

— N is the total number of vertices

— Usually run 30 or so update steps
— Start each Pr(i) = 1/N
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In a Web Search Setting

* Given some search keywords we could find the pages that have that matching
keywords

* We often expand that set of pages by including all successors and predecessors of
those pages

— Include all pages that are within a radius of 1 of the pages that actually have the
keyword

* Now consider that set of pages and the subgraph that it induces
* Run PageRank on that subgraph

Page Hits Expanded Induced Subgraph

Full WebGraph (Contain keyword) (Preds & Succs) to run PageRank

®9 a¥9 ¢°9 @ @
bl 5 I



Dijkstra's Algorithm

SINGLE-SOURCE SHORTEST PATH
(SSSP)
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SSSP

e Let us associate a 'weight' with Edge weights
each edge
— Could be physical distance, cost of
using the link, etc.

* Find the shortest path from a
source node, 'a' to all other nodes

(c,13),(e,4)

(c,5),(h,6)
(a,13),(b,5),(d,2),(e,8),(9,7)
(c,2),(f,1)

(a,4),(c,8),(f,3)
(d,1).(e,3).(9.4)
(c,7),(f,4),(h,14)

(b,6).(9.14)

Adjacency Lists

List of Vertices
>Q -0 OO0 T
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SSSP

What is the shortest distance from
a' to all other vertices?

How would you go about
computing those distances?

Vert Dist

a |(c,13),(e,4) .
3 b L(c,5),(h,6) " . E
£ ¢ |(a13),(b5),d2),(e8).a7 |2 g °
Q4 Lc2).¢1) =~ §
5 e |(a4).(c8).(13) : 7 ¢
2 ¢ 1(d,1).(e,3).(a.4) 8 7 ¢
g (c,7),(f,4),(h,14) < 7 ;
h | (b,6),(g,14) X
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Dijkstra's Algorithm
* Dijkstra's algorithm is similar to a
BFS but pulls out the smallest
distance vertex (from the source)
rather than pulling vertices out in
FIFO order (as in BFS)

 Maintain a data structure that you
can identify shortly

— We'll show it as a table of all vertices
with their currently 'known' distance
from the source

* |nitially, a has dist=0

Vert Dist

 All others = infinite distance inf

Inf

List of Vertices
o0 -~ DO O O T oD
=1
—




Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

>SDKQ -~ QOO T QO

Inf
Inf




Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices
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Vert

Dist

oQ ~D® QO T QD

Inf
Inf
Inf
Inf
Inf
Inf
Inf




Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €
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Vert

Dist

oQ ~D® QO T QD

Inf
13
Inf
Inf
Inf
Inf

12

V=€



Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USCViterbi @
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Vert

Dist

oQ ~D® QO T QD

inf
12
inf

Inf
Inf

11



Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

inf
12

11
Inf

10 yv=d



Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

inf
10

11
Inf

15

V=C



Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

Inf

25

V=0
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Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty Vert  Dist

v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u) 10 v=Db
if(v.dist + w < u.dist)
u.pred=v

u.dist = v.dist + w;

List of Vertices
5>Q -0 QO 0 T W
[o0)

25 | 21

PQ.decreaseKey(u, u.dist)
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Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty Vert  Dist

v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u) 10 v=h
if(v.dist + w < u.dist)
u.pred=v

u.dist = v.dist + w;

List of Vertices
5>Q -0 QO 0 T W
[o0)

PQ.decreaseKey(u, u.dist)
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ing

Another Example
* Try another example of Dijkstra's

List of Vertices
Vert Dist

0

OO ~NOOTP,~,WNBE
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Analysis
* Whatis the loop invariant? What can | SX/ about the
vertex | pull out from the PQ?
— Itis guaranteed that there is no shorter path to that vertex
— UNLESS: negative edge weights

* Could use induction to prove

— When | pull the first node out (it is the start node) it's

weight has to be 0 and that is definitely the shortest path
to itself

— Ithen "relax" (i.e. decrease) the distance to neighbors it
connects to and the next node | pull out would be the
neighbor with the shortest distance from the start

* Could there be shorter path to that node?

— No, because any other path would use some other edge
from the start which would have to have a larger weight




Dijkstra's Run-time Analysis

 What is the run-time of
Dijkstra's algorithm?

e How many times do you
execute the while loop on 87

* How many total times do you
execute the for loop on 10?

1
2
3
4.
S
6
7
8

9.

10.
11.
12.
13.
14.
15.

SSSP(G, s)
PQ = empty PQ
s.dist = 0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v I= s then v.dist = Inf;
PQ.insert(v)
while PQ is not empty
v = min(); PQ.remove_min()
for u in neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred =v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)
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Dijkstra's Run-time Analysis

1. SSSP(G,s)
PQ = empty PQ
s.dist = 0; s.pred = NULL
PQ.insert(s)

* What is the run-time of Dijkstra's algorithm? B
3
4

— V total times because once you pull a node out | 5. For all v in vertices
6
4
8
9

* How many times do you execute the while
loop on 8?

each iteration that node's distance is if v I= s then v.dist = inf;
guaranteed to be the shortest distance and PQ.insert(v)
will never be put back in the PQ while PQ is not empty

— What does each call to remove_min() cost... v = min(); PQ.remove_min()

— ..log(V) [at most V items in PQ] — arl T nel.ghbors(v)
11. w = weight(v,u)
* How many total times do you execute the for | 12 if(v.dist + w < u.dist)
loop on 107? 13. u.pred = v
— E total times: Visit each vertex's neighbors 14. u.dist = v.dist + w;
—  Each iteration may call decreaseKey() which is log(V) | 15. PQ.decreaseKey(u, u.dist)

* Total runtime = V*log(V) + E*log(V) =
(V+E)*log(V)
— This is usually dominated by E*log(V)
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Tangent on Heaps/PQs

e Suppose min-heaps

— Though everything we're about to say is true for max
heaps but for increasing values

* We know insert/remove is log(n) for a heap
 What if we want to decrease a value already in the
heap...
— Example: Decrease 26 to 9

— Could we find 26 easily?

* No requires a linear search through the array/heap =>
O(n)

— Once we find it could we adjust it easily?

* Yes, just promote it until it is in the right location =>
O(log n)

So currently decrease-key() would cost
O(n) + O(log n) = O(n)
Can we do better?
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Tangent on Heaps/PQs

* Can we provide a decrease-key() that runs in
O(log n) and not O(n)

— Remember we'd have to first find then promote

* We need to know where items sit in the heap

— Essentially we want to quickly know the location
given the key (i.e. Map key => location)

— Unfortunately storing the heap as an array does just

the opposite (maps location => key)
01 23 45 6 7 8 9 1011 12 13

 What if we maintained an alternative map Heap [T - el o1l ol as| o6l 2alo8l a6 ] s a3l oo

that did provide the reverse indexing A

— Then | could find where the key sits and then
promote it em 7 1821 19 35 26 24 28 39 36 43 29 50

Map of
* |fl keep that map as a balanced BST can | ey to o

0l1(2|3|4(5|6|7|8|9(1011]12]13

achieve O(log n) decreaseKey() time?

— No! each promotion swap requires update your
location and your parents

— Of(log n) swaps each requiring lookup(s) in the
location map [O(log n)] yielding O(log?(n))



Tangent on Heaps/PQs

e Am | out of luck then?

* No, try a hash map

— 0O(1) lookup

* Now each swap/promotion up the heap only
costs O(1) and thus | have:

— Find => O(1)

* Using the hashmap eap :]i 128231 149355 266274 288399 :Z: : :
— Promote => O(log n)

* Bubble up at most log(n) levels = = en 7 1821103 2620 26 39 3643 20 50

0l1(2|3|4(5|6|7|8|9(1011]12]13

with each level incurring O(1) '~
updates of locations in the
hashmap

* Decrease-key() is an important operation in
the next algorithm we'll look at



A* Search Algorithm

ALGORITHM HIGHLIGHT



Search Methods

* Many systems require searching for goal states
— Path Planning

* Roomba Vacuum
* Mapquest/Google Maps
* Games!!

— Optimization Problems

* Find the optimal solution to a problem with many
constraints
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Search Applied to 8-Tile Game

e 8-Tile Puzzle
— 3x3 grid with one blank space

— With a series of moves, get the tiles in sequential
order

— Goal state:

1 2 1 2 3

3 4 5 4 5 6

6 7 8 7 8

HW6 Goal State Goal State for these
slides



Search Methods

* Brute-Force Search: When you don’t know where
the answer is, just search all possibilities until you
find it.

* Heuristic Search: A heuristic is a “rule of thumb”. An
example is in a chess game, to decide which move to
make, count the values of the pieces left for your
opponent. Use that value to “score” the possible
moves you can make.

— Heuristics are not perfect measures, they are quick
computations to give an approximation (e.g. may not take
into account “delayed gratification” or “setting up an
opponent”)
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Brute Force Search

* Brute Force Search
Tree w  DGlell s

— Generate all
possible moves

=
N

S
00
w

— Explore each move 12
despite its GE 2
proximity to the A O A T A W 111
goal node

w
o
(%)
w
o
(%)
w
o
(%)
o
(%)
(€]
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NMNEREANENE
m

|
\ \ \ \ \ \ 11213
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: Y 14 5
1
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1
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\ 1
1
e
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Heuristics

e Heuristics are “scores” of how close a state is to the
goal (usually, lower = better)

* These scores must be easy to compute S B
(i.e. simpler than solving the problem) s | s | e
* Heuristics can usually be developed by simplifying > | 7
the constraints on a problem # of Tiles out of
Place=3

e Heuristics for 8-tile puzzle

— # of tiles out of place
* Simplified problem: If we could just pick a tile up and put it 1 8 3
in its correct place
— Total x-, y- distance of each tile from its correct location
(Manhattan distance)

 Simplified problem if tiles could stack on top of each other / Total x-/y- distance
hop over each other =6

4 5 6

2 7
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Heuristic Search

e Heuristic Search Tree

@ [
— Use total x-/y- Tl
distance (Manhattan @ @
distance) heuristic HE Tels
— EXplore the lowest @ 2 123 \ 1 z@
4[8]3]| [a] [s NAE
scored states 7[6[s] []els] [7]s

= =22
5

716(5] (7 6
123®
5
71816

123E
415
2(3

71816
6

)

718

o
(%)
o
[0

(2}




Caution About Heuristics

* Heuristics are just estimates and
thus could be wrong

* Sometimes pursuing lowest
heuristic score leads to a less-than
optimal solution or even no
solution

e Solution

— Take # of moves from start (depth)
Into account




A-Star Algorithm

Use a new metric to decide which state to
explore/expand

Define
— h = heuristic score (same as always)

— g =number of moves from start it took to get
to current state

— f=g+h
As we explore states and their successors,

assign each state its f-score and always
explore the state with lowest f-score

Heuristics should always underestimate
the distance to the goal
— If they do, A* guarantees optimal solutions
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A-Star Algorithm

e Maintain 2 lists

School of Engineering

— Open list = Nodes to be explored (chosen
from)

— Closed list = Nodes already explored (already
chosen)

e General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)
1. s «— remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)
2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f
values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or

if they are already in the open list, update them if
they have a smaller f value
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

**|f implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-~ Q |\ Q |- ToQ
1R L 1 1 e R 1

OAN @O R (00N
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

9=1, | 9=2,

2. Add s to closed list '}z; *}zg‘ Open List
3a. if s = goal node then o=1, o=1,
trace path back to start; STOP! f}z; *Eg
3b. else p— —
Generate successors/neighbors of s, r::g t::g,

compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if

they have a smaller f value G
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School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

I
N

1
=
o

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

=&

T o Q
T oaQ
T
(O

1
=
o
1
=
o

larger g-value)

—_— D Q
11
® o o
—_ D Q
I 1 1l
CJES

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

=&

T o Q
T oaQ
(O
T oaQ
o
on @

1
=
o

1
=
o

1
=
o

larger g-value)

—- 0 Q
oI

® o o

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List
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|
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trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

o Q
101

=&

T oaQ
(O
T oaQ
o
on @

_...
I
=
o
1
=
o
1
=
o

larger g-value)
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g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

S Q Tl"‘j(Q
=
o

R

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)
1. s € remove min. f-value state from g=3, | 9=4, | g¢=5, Closed List
open_list (if tie in f-values, select one w/ P::fo‘ P::166 P;lso’
larger g-value) o=1, | 9=2, | 9=3, | g=4, | g=5,
2. Add s to closed list PN I B O Open List
3a. if s = goal node then g=1, 9=1, ™
trace path back to start; STOP! h=7, h=5, h=3, | h=4,
f=8 =6 f=8 | =10
3b. else g=2, 9=2, 9=6, | 9=7,
Generate successors/neighbors of s, h=6, h=4, h=2, | h=3,
compute their f-values, and add them to =8 = =8 1 0
open_list if they are not in the closed_list ﬁj
=8

(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

()
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*
— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List
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Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*
— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List
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A* and BFS

* BFS explores all nodes at a shorter distance
from the start (i.e. g value)

Closed List

Open List
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A* and BFS

* BFS explores all nodes at a shorter distance
from the start (i.e. g value)

Efg‘ Closed List
f=10
g=2, g=1, g=2,
h=8, | h=7, | h=6, :
f=10 | f=8 | f=8 Open List
g=2, g=1, g=1,
h=8, h=7, h=5,
f=10 f=8 f=6
g=2, g=2,
h=6, h=4,
=8 f=6




A* and BFS

 BFS is A* using just the g value to choose
which item to select and expand

9=2, Closed List
h=8,
=10
g=2, g=1, g=2,
h=8, h=7, h=6, .
f=10 | f=8 | f=8 Open List
9:2, g:]_, g:]_,
h=8, h=7, h=5,
f=10 f=8 f=6
9:2, 9:2,
h=6, h=4,
=8 f=6
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A* Analysis

* What data structure should we use for the open-list?
e What data structure should we use for the closed-list?
e What is the run time?

* Run time is similar to Dijkstra's algorithm...
— We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

— We then visit each successor which is like O(E) and perform an insert or decrease operation which is
like E¥*max(O(insert), O(decrease)

— E =Number of potential successors and this depends on the problem and the possible solution space
— For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)
1. s € remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)
2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f
values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value



i, TS(“Viterbi

Implementation Note

 When the distance to a node/state/successor (i.e. g value) is
uniform, we can greedily add a state to the closed-list at the
same time as we add it to the open-list

Non-uniform g-values Uniform g-values
open_list.push(Start State) open_list.push(Start State)
while(open_list is not empty) Closed_list.push(Start State)

1. s €& remove min. f-value state from open_list while(open_list is not empty)

(if tie in f-values, select one w/ larger g-value) 1. s ¢ remove min. f-value state from open_list
2. Add s to closed list (if tie in f-values, select one w/ larger g-value)
3a. if s = goal node then trace path back to start; STOP! 3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 3b. Generate successors/neighbors of s, compute their

values, and add them to open_list if they are values, and add them to open_list and closed_list
not in the closed_list (so we don’t re-explore), or if they are not in the closed_list

if they are already in the open list, update them if
they have a smaller f value

[EnY
N

0=0,=C
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[ole]
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The first occurrence of a board
T has to be on the shortest path
: to the solution
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If time allows...

BETWEENESS CENTRALITY



BC Algorithm Overview
 What's the most central vertex(es) in the graph
below?

* How do we define "centrality"?

* Betweeness centrality defines "centrality" as the
nodes that are between the most other pairs

Sample Graph
Nl o=o gase
(g
(®) O

Graph 1 Graph 2
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BC Algorithm Overview

* Betweeness centrality (BC) defines "centrality" as the nodes that are between
(i.e. on the path between) the most other pairs of vertices

 BC considers betweeness on only "shortest" paths!

* To compute centrality score for each vertex we need to find shortest paths
between all pairs...

— Use the Breadth-First Search (BFS) algorithm to do this

Are these gray nodes
'‘between' a and e?

Sample Graph

e e @ e G No, a-c-d-e Is the

Original 1 Original w/
added path
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BC Algorithm Overview

 Betweeness-Centrality determines "centrality" as the number of
shortest paths from all-pairs upon which a vertex lies

* Consider the sample graph below

— Each external vertex (a, b, e, f) lies is a member of only the shortest paths

between itself and each other vertex

— Vertices c and d lie on greater number of shortest paths and thus will be

scored higher

Sample Graph

Image each vertex is a
ball and each edgeis a
chain or string. What
would this graph look
like if you picked it up
by vertex c? Vertex a?
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BC Implementation

 Based on Brandes' formulation for unweighted graphs
— Perform |V| Breadth-first traversals

— Traversals result in a subgraph consisting of shortest paths from root to all
other vertices

— Messages are then sent back up the subgraph from "leaf" vertices to the
root summing the percentage of shortest-paths each vertex is a member of

— Summing a vertex's score from each traversal yields overall BC result

Sample Graph with Traversals from
final BC scores selected roots
and resulting

S ° partial BC scores
e 19 19 G (in this case, the
G Q number of

5 Q 5 descendants)
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BC Implementation

* Asyou work down, track # of shortest paths running through a
vertex and its predecessor(s)

 Onyour way up, sum the nodes beneath
1,[-]

# of shortest paths thru the vertex,
[List of predecessor]

Score on the way back up (if

multiple shortest paths, split the
score appropriately)

(a) °
() *
Traversals from
selected roots 2
and resulting Q Q
partial BC scores 0 0
(in this case, the e °
number of

descendants)

USC Viterbi



