
1

CSCI 104
Graph Algorithms

Mark Redekopp

David Kempe

Sandra Batista

2

PAGERANK ALGORITHM

3

PageRank
• Consider the graph at the right

– These could be webpages with links shown in the
corresponding direction

– These could be neighboring cities

• PageRank generally tries to answer the question:

– If we let a bunch of people randomly "walk" the
graph, what is the probability that they end up at a
certain location (page, city, etc.) in the "steady-state"

• We could solve this problem through Monte-Carlo
simulation (similar to CS 103 Coin-flipping or Zombie
assignment)

– Simulate a large number of random walkers and
record where each one ends to build up an answer of
the probabilities for each vertex

• But there are more efficient ways of doing it

a

b

d

c

e

4

PageRank
• Let us write out the adjacency matrix for this graph

• Now let us make a weighted version by normalizing based on
the out-degree of each node

– Ex. If you're at node B we have a 50-50 chance of going to A or E

• From this you could write a system of linear equations (i.e.
what are the chances you end up at vertex I at the next time
step, given you are at some vertex J now
– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

a

b

d

c

e

a b c d e

a 0 1 0 0 0

b 0 0 1 0 0

c 1 0 0 1 1

d 0 0 0 0 1

e 0 1 0 0 0

Adjacency Matrix

T
a

rg
e

t

Source

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

5

PageRank
• System of Linear Equations

– pA = 0.5*pB

– pB = pC

– pC = pA + pD + 0.5*pE

– pD = 0.5*pE

– pE = 0.5*pB

– We also know: pA + pB + pC + pD + pE = 1

• If you know something about linear algebra, you know we
can write these equations in matrix form as a linear system
– Ax = y

a

b

d

c

e

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA = 0.5PB

pB = pC

pC = pA+pD+0.5*pE

pD = 0.5*pE

pE = 0.5*pB

=

6

PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the
next

• So we want a solution to: Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

a

b

d

c

e

Weighted Adjacency Matrix

[Divide by (ai,j)/degree(j)]

T
a

rg
e

t=
i

Source=j

a b c d e

a 0 0.5 0 0 0

b 0 0 1 0 0

c 1 0 0 1 0.5

d 0 0 0 0 0.5

e 0 0.5 0 0 0

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

pA

pB

pC

pD

pE

*

pA

pB

pC

pD

pE

=

7

Iterative PageRank
• But remember we want the steady state solution

– The solution where the probabilities don't change from one step to the
next

• So we want a solution to: Ap = p

• We can:
– Use a linear system solver (Gaussian elimination)

– Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

a

b

d

c

e

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

.2

.2

.2

.2

.2

*

.1

.2

.5

.1

.1

=

Step 0 Sol. Step 1 Sol.

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

*

.1

.5

.25

.05

.1

=

Step 1 Sol. Step 2 Sol.

.1

.2

.5

.1

.1

0 0.5 0 0 0

0 0 1 0 0

1 0 0 1 0.5

0 0 0 0 0.5

0 0.5 0 0 0

?

?

?

?

?

*

.1507

.3078

.3126

.0783

.1507

=

Step 29 Sol. Step 30 Sol.

.1538

.3077

.3077

.0769

.1538

Actual PageRank Solution

from solving linear system:

8

Additional Notes
• What if we change the graph and now D has no incoming

links…what is its PageRank?

– 0

• Most PR algorithms add a probability that someone just
enters that URL (i.e. enters the graph at that node)

– Usually define something called the damping factor, α
(often chosen around 0.85)

– Probability of randomly starting or jumping somewhere =
1-α

• So at each time step the next PR value for node i is given
as:

– Pr 𝑖 =
1−𝛼

𝑁
+ 𝛼 ∗ σ𝑗∈𝑃𝑟𝑒𝑑(𝑖)

Pr(𝑗)

𝑂𝑢𝑡𝐷𝑒𝑔(𝑗)

– N is the total number of vertices

– Usually run 30 or so update steps

– Start each Pr(i) = 1/N

a

b

d

c

e

9

In a Web Search Setting
• Given some search keywords we could find the pages that have that matching

keywords

• We often expand that set of pages by including all successors and predecessors of
those pages

– Include all pages that are within a radius of 1 of the pages that actually have the
keyword

• Now consider that set of pages and the subgraph that it induces

• Run PageRank on that subgraph

a

b

d

c

e

f

g
a

b

d

c

e

f

g

a

b

d

c

e

f

g

a

b

d

c

e

Full WebGraph
Page Hits

(Contain keyword)

Expanded

(Preds & Succs)
Induced Subgraph

to run PageRank

10

SINGLE-SOURCE SHORTEST PATH
(SSSP)

Dijkstra's Algorithm

11

SSSP
• Let us associate a 'weight' with

each edge

– Could be physical distance, cost of
using the link, etc.

• Find the shortest path from a
source node, 'a' to all other nodes

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

(c,13),(e,4)a

b

c

d

e

f

g

h

(c,5),(h,6)

(a,13),(b,5),(d,2),(e,8),(g,7)

(c,2),(f,1)

(a,4),(c,8),(f,3)

(d,1),(e,3),(g,4)

(c,7),(f,4),(h,14)

(b,6),(g,14)

L
is

t
o
f

V
e
rt

ic
e
s

A
d
ja

c
e
n
c
y
 L

is
ts

8

Edge weights

12

SSSP
• What is the shortest distance from

'a' to all other vertices?

• How would you go about
computing those distances?

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

(c,13),(e,4)a

b

c

d

e

f

g

h

(c,5),(h,6)

(a,13),(b,5),(d,2),(e,8),(g,7)

(c,2),(f,1)

(a,4),(c,8),(f,3)

(d,1),(e,3),(g,4)

(c,7),(f,4),(h,14)

(b,6),(g,14)

L
is

t
o
f

V
e
rt

ic
e
s

A
d
ja

c
e
n
c
y
 L

is
ts

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

Vert Dist

13

Dijkstra's Algorithm
• Dijkstra's algorithm is similar to a

BFS but pulls out the smallest
distance vertex (from the source)
rather than pulling vertices out in
FIFO order (as in BFS)

• Maintain a data structure that you
can identify shortly

– We'll show it as a table of all vertices
with their currently 'known' distance
from the source
• Initially, a has dist=0

• All others = infinite distance

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

14

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h

L
is

t
o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

15

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

inf

inf

inf

inf

inf

inf

inf

Vert Dist

v=a13

4

16

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

inf

13

inf

4

inf

inf

inf

Vert Dist

v=e12

7

17

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

inf

12

inf

4

7

inf

inf

Vert Dist

v=f
8

11

18

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

inf

12

8

4

7

11

inf

Vert Dist

v=d10

19

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

inf

10

8

4

7

11

inf

Vert Dist

v=c
15

20

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

15

10

8

4

7

11

inf

Vert Dist

v=g

25

21

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

15

10

8

4

7

11

25

Vert Dist

v=b

21

22

Dijkstra's Algorithm
1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf; PQ.insert(v)

7. while PQ is not empty

8. v = min(); PQ.remove_min()

9. for u in neighbors(v)

10. w = weight(v,u)

11. if(v.dist + w < u.dist)

12. u.pred = v

13. u.dist = v.dist + w;

14. PQ.decreaseKey(u, u.dist)

a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

a

b

c

d

e

f

g

h
L

is
t

o
f
V

e
rt

ic
e
s

0

15

10

8

4

7

11

21

Vert Dist

v=h

23

Another Example
• Try another example of Dijkstra's

1

2

3

4

5

6

7

8

9

18

13

17

7

15

12

14

11

10

9

8

6

5 2

2

1

4

7

Cost

12

1

2

3

4

5

6

7

8

9

List of Vertices

0

-

-

-

-

-

-

-

-

Vert Dist

24

Analysis
• What is the loop invariant? What can I say about the

vertex I pull out from the PQ?

– It is guaranteed that there is no shorter path to that vertex

– UNLESS: negative edge weights

• Could use induction to prove

– When I pull the first node out (it is the start node) it's
weight has to be 0 and that is definitely the shortest path
to itself

– I then "relax" (i.e. decrease) the distance to neighbors it
connects to and the next node I pull out would be the
neighbor with the shortest distance from the start

• Could there be shorter path to that node?

– No, because any other path would use some other edge
from the start which would have to have a larger weight a

b

d

c

h

e
f

g

13

4

3

1

2
7

5

6

14

4

8

25

Dijkstra's Run-time Analysis
• What is the run-time of

Dijkstra's algorithm?

• How many times do you
execute the while loop on 8?

• How many total times do you
execute the for loop on 10?

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist)

13. u.pred = v

14. u.dist = v.dist + w;

15. PQ.decreaseKey(u, u.dist)

26

Dijkstra's Run-time Analysis
• What is the run-time of Dijkstra's algorithm?

• How many times do you execute the while
loop on 8?

– V total times because once you pull a node out
each iteration that node's distance is
guaranteed to be the shortest distance and
will never be put back in the PQ

– What does each call to remove_min() cost…

– …log(V) [at most V items in PQ]

• How many total times do you execute the for
loop on 10?
– E total times: Visit each vertex's neighbors

– Each iteration may call decreaseKey() which is log(V)

• Total runtime = V*log(V) + E*log(V) =
(V+E)*log(V)
– This is usually dominated by E*log(V)

1. SSSP(G, s)

2. PQ = empty PQ

3. s.dist = 0; s.pred = NULL

4. PQ.insert(s)

5. For all v in vertices

6. if v != s then v.dist = inf;

7. PQ.insert(v)

8. while PQ is not empty

9. v = min(); PQ.remove_min()

10. for u in neighbors(v)

11. w = weight(v,u)

12. if(v.dist + w < u.dist)

13. u.pred = v

14. u.dist = v.dist + w;

15. PQ.decreaseKey(u, u.dist)

27

Tangent on Heaps/PQs
• Suppose min-heaps

– Though everything we're about to say is true for max
heaps but for increasing values

• We know insert/remove is log(n) for a heap

• What if we want to decrease a value already in the
heap…

– Example: Decrease 26 to 9

– Could we find 26 easily?

• No requires a linear search through the array/heap =>
O(n)

– Once we find it could we adjust it easily?

• Yes, just promote it until it is in the right location =>
O(log n)

• So currently decrease-key() would cost
O(n) + O(log n) = O(n)

• Can we do better?

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

28

Tangent on Heaps/PQs
• Can we provide a decrease-key() that runs in

O(log n) and not O(n)
– Remember we'd have to first find then promote

• We need to know where items sit in the heap
– Essentially we want to quickly know the location

given the key (i.e. Map key => location)

– Unfortunately storing the heap as an array does just
the opposite (maps location => key)

• What if we maintained an alternative map
that did provide the reverse indexing
– Then I could find where the key sits and then

promote it

• If I keep that map as a balanced BST can I
achieve O(log n) decreaseKey() time?
– No! each promotion swap requires update your

location and your parents

– O(log n) swaps each requiring lookup(s) in the
location map [O(log n)] yielding O(log2(n))

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

Heap

Array

Map of

key to loc.

29

Tangent on Heaps/PQs
• Am I out of luck then?

• No, try a hash map

– O(1) lookup
• Now each swap/promotion up the heap only

costs O(1) and thus I have:

– Find => O(1)

• Using the hashmap

– Promote => O(log n)

• Bubble up at most log(n) levels
with each level incurring O(1)
updates of locations in the
hashmap

• Decrease-key() is an important operation in
the next algorithm we'll look at

7

21

35 26 24

50294336

18

19

3928

1

2 3

4 5 6 7

9 10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

em 7 18 21 19

0 1 2 3 4

35 26 24 28 39

5 6 7 8 9

36 43 29 50

10 11 12 13

Heap

Array

Map of

key to loc.

30

ALGORITHM HIGHLIGHT
A* Search Algorithm

31

Search Methods

• Many systems require searching for goal states

– Path Planning

• Roomba Vacuum

• Mapquest/Google Maps

• Games!!

– Optimization Problems

• Find the optimal solution to a problem with many
constraints

32

Search Applied to 8-Tile Game
• 8-Tile Puzzle

– 3x3 grid with one blank space

– With a series of moves, get the tiles in sequential
order

– Goal state:

1 2

3 4 5

6 7 8

HW6 Goal State

1 2 3

4 5 6

7 8

Goal State for these

slides

33

Search Methods

• Brute-Force Search: When you don’t know where
the answer is, just search all possibilities until you
find it.

• Heuristic Search: A heuristic is a “rule of thumb”. An
example is in a chess game, to decide which move to
make, count the values of the pieces left for your
opponent. Use that value to “score” the possible
moves you can make.

– Heuristics are not perfect measures, they are quick
computations to give an approximation (e.g. may not take
into account “delayed gratification” or “setting up an
opponent”)

34

Brute Force Search

• Brute Force Search
Tree

– Generate all
possible moves

– Explore each move
despite its
proximity to the
goal node

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 8 2
4 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

W S

W S E

35

Heuristics

• Heuristics are “scores” of how close a state is to the
goal (usually, lower = better)

• These scores must be easy to compute
(i.e. simpler than solving the problem)

• Heuristics can usually be developed by simplifying
the constraints on a problem

• Heuristics for 8-tile puzzle
– # of tiles out of place

• Simplified problem: If we could just pick a tile up and put it
in its correct place

– Total x-, y- distance of each tile from its correct location
(Manhattan distance)

• Simplified problem if tiles could stack on top of each other /
hop over each other

1 8 3

4 5 6

2 7

1 8 3

4 5 6

2 7

of Tiles out of
Place = 3

Total x-/y- distance
= 6

36

Heuristic Search

• Heuristic Search Tree

– Use total x-/y-
distance (Manhattan
distance) heuristic

– Explore the lowest
scored states

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2
4 8 3
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5 6
7 8

1 2 3
4 8
7 6 5

1 2 3
4 8
7 6 5

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

H=6

H=7 H=5

H=6 H=6 H=4

H=3

H=2

H=1

Goal

1 2 3
4 8
7 6 5

H=5

37

Caution About Heuristics

• Heuristics are just estimates and
thus could be wrong

• Sometimes pursuing lowest
heuristic score leads to a less-than
optimal solution or even no
solution

• Solution

– Take # of moves from start (depth)
into account

H=2

Start

H=1

H=1

H=1

H=1

H=1

H=1

…

Goal

H=1

38

A-Star Algorithm
• Use a new metric to decide which state to

explore/expand

• Define
– h = heuristic score (same as always)

– g = number of moves from start it took to get
to current state

– f = g + h

• As we explore states and their successors,
assign each state its f-score and always
explore the state with lowest f-score

• Heuristics should always underestimate
the distance to the goal
– If they do, A* guarantees optimal solutions

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3

39

A-Star Algorithm
• Maintain 2 lists

– Open list = Nodes to be explored (chosen
from)

– Closed list = Nodes already explored (already
chosen)

• General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)

1. s ← remove min. f-value state from open_list

(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list

3a. if s = goal node then trace path back to start; STOP!

3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are

not in the closed_list (so we don’t re-explore), or

if they are already in the open list, update them if

they have a smaller f value

g=1,h=2

f=3

Start

g=1,h=1

f=2

g=2,h=1

f=3

g=3,h=1

f=4
Goal

g=2,h=1

f=3

40

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List

Open List

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

41

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

S

G

Closed List

Open List
g=0,

h=6,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

42

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

43

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

44

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

45

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=1,

h=5,

f=6

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

46

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

47

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

48

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

49

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

50

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

51

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

52

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

53

Path-Planning w/ A* Algorithm
• Find optimal path from S to G using A*

– Use heuristic of Manhattan (x-/y-) distance

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=6,

f=8

g=2,

h=4,

f=6

g=2,

h=6,

f=8

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=3,

h=7,

f=10

g=3,

h=5,

f=8

g=4,

h=6,

f=10

g=4,

h=4,

f=8

g=5,

h=5,

f=10

g=5,

h=5,

f=10

g=5,

h=3,

f=8

g=6,

h=4,

f=10

g=6,

h=2,

f=8

g=7,

h=3,

f=10

g=7,

h=1,

f=8

g=8,

h=2,

f=10

g=8,

h=0,

f=8

g=1,

h=7,

f=8

g=1,

h=7,

f=8

g=2,

h=6,

f=8

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value)

2. Add s to closed list
3a. if s = goal node then

trace path back to start; STOP!
3b. else

Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

54

A* and BFS
• BFS explores all nodes at a shorter distance

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

55

A* and BFS
• BFS explores all nodes at a shorter distance

from the start (i.e. g value)

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6

56

A* and BFS
• BFS is A* using just the g value to choose

which item to select and expand

g=1,

h=7,

f=8

S

G

g=1,

h=5,

f=6

g=1,

h=5,

f=6

g=1,

h=7,

f=8

Closed List

Open List

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=8,

f=10

g=2,

h=6,

f=8

g=2,

h=6,

f=8

g=2,

h=4,

f=6

57

A* Analysis

• What data structure should we use for the open-list?

• What data structure should we use for the closed-list?

• What is the run time?

• Run time is similar to Dijkstra's algorithm…
– We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

– We then visit each successor which is like O(E) and perform an insert or decrease operation which is
like E*max(O(insert), O(decrease)

– E = Number of potential successors and this depends on the problem and the possible solution space

– For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value

58

Implementation Note
• When the distance to a node/state/successor (i.e. g value) is

uniform, we can greedily add a state to the closed-list at the
same time as we add it to the open-list

open_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value

open_list.push(Start State)

Closed_list.push(Start State)
while(open_list is not empty)

1. s ← remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)

3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f

values, and add them to open_list and closed_list
if they are not in the closed_list

Non-uniform g-values Uniform g-values

1 2
4 8 3
7 6 5

g=0,H=6

1 2
4 8 3
7 6 5

…

g=k,H=6

The first occurrence of a board

has to be on the shortest path

to the solution

59

BETWEENESS CENTRALITY
If time allows…

60

BC Algorithm Overview
• What's the most central vertex(es) in the graph

below?

• How do we define "centrality"?

• Betweeness centrality defines "centrality" as the
nodes that are between the most other pairs

b

a

c d

e

f

Sample Graph

j

h

i

k

m

l

Graph 1 Graph 2

61

BC Algorithm Overview
• Betweeness centrality (BC) defines "centrality" as the nodes that are between

(i.e. on the path between) the most other pairs of vertices

• BC considers betweeness on only "shortest" paths!

• To compute centrality score for each vertex we need to find shortest paths
between all pairs…

– Use the Breadth-First Search (BFS) algorithm to do this

b

a

c d

e

f

Sample Graph

Original 1

b

a

c d

e

f

Are these gray nodes

'between' a and e?

Original w/

added path

No, a-c-d-e is the

shortest path?

62

BC Algorithm Overview
• Betweeness-Centrality determines "centrality" as the number of

shortest paths from all-pairs upon which a vertex lies

• Consider the sample graph below
– Each external vertex (a, b, e, f) lies is a member of only the shortest paths

between itself and each other vertex

– Vertices c and d lie on greater number of shortest paths and thus will be
scored higher

b

a

c d

e

f

Sample Graph Image each vertex is a

ball and each edge is a

chain or string. What

would this graph look

like if you picked it up

by vertex c? Vertex a?

63

BC Implementation
• Based on Brandes' formulation for unweighted graphs

– Perform |V| Breadth-first traversals

– Traversals result in a subgraph consisting of shortest paths from root to all
other vertices

– Messages are then sent back up the subgraph from "leaf" vertices to the
root summing the percentage of shortest-paths each vertex is a member of

– Summing a vertex's score from each traversal yields overall BC result

b

a

c d

e

f

Sample Graph with

final BC scores a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from

selected roots

and resulting

partial BC scores

(in this case, the

number of

descendants)

5

55

5
19 19

64

BC Implementation
• As you work down, track # of shortest paths running through a

vertex and its predecessor(s)

• On your way up, sum the nodes beneath

a

c

b d

e f

c

a b d

e f

5

4

0 2

0 0

5

0 0 2

00

Traversals from

selected roots

and resulting

partial BC scores

(in this case, the

number of

descendants)

a

b c

d

e

2,[d]

2, [b,c]

1,[a]1,[a]

1,[-]

a

c

b d

e f

1,[-]

1,[a]

1,[c] 1,[c]

1,[d] 1,[d]

of shortest paths thru the vertex,

[List of predecessor]

0 0

2

4

0

5
4

0

1

.5*2

.5*2 .5*2
Score on the way back up (if

multiple shortest paths, split the

score appropriately)

