CSCl 104
Graph Algorithms

Mark Redekopp
David Kempe
Sandra Batista

PAGERANK ALGORITHM

i, TS(“Viterbi -

PageRank

* Consider the graph at the right

— These could be webpages with links shown in the
corresponding direction

— These could be neighboring cities 9 @
* PageRank generally tries to answer the question: ’G‘
— If we let a bunch of people randomly "walk" the ‘

graph, what is the probability that they end up at a ﬁ
certain location (page, city, etc.) in the "steady-state"
* We could solve this problem through Monte-Carlo
simulation (similar to CS 103 Coin-flipping or Zombie
assignment)
— Simulate a large number of random walkers and

record where each one ends to build up an answer of
the probabilities for each vertex

e But there are more efficient ways of doing it

i, TS(“Viterbi 9

School of Engineering

PageRank Q G

* Let us write out the adjacency matrix for this graph

* Now let us make a weighted version by normalizing based on G‘@

the out-degree of each node

— Ex. If you're at node B we have a 50-50 chance of going to A or E

* From this you could write a system of linear equations (i.e. a
what are the chances you end up at vertex | at the nexttime _
step, given you are at some vertex J now % c

— pA=0.5*%pB " d
— pB=pC e
— pC=pA+pD+0.5*pE
— pD=0.5*pE
— pE=0.5*pB
— We also know: pA+pB+pC+pD+pE=1 a
a 0
b 0
oLoc 1
S
g d o
e 0

Source
a b c d e
0 1 0 0 0
0 0 1 0 0
1 0 0 1 1
0 0 0 0 1
0 1 0 0 0
Adjacency Matrix
Source=j
b c d e
05 O 0 0
0 1 0 0
0 0 1 0.5
0 0 0 0.5
05 O 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree(j)]

i, TS(“Viterbi -

e System of Linear Equations

* If you know something about linear algebra, you know we
can write these equations in matrix form as a linear system

o O » O O

pA = 0.5*pB

pB =pC

pC = pA + pD + 0.5*pE
pD = 0.5*pE
pE = 0.5*pB

PageRank

We also know: pA+ pB+pC+pD+pE=1

Ax =y

o O O +» O

o O », O O

0.5
0.5

pA
pB
pC
pD
pE

0 05
0 O
1 0

Target

pA
pB
pC
pD
pE

School of Engineering

@ G
G

Source=j
a b c d e
a 0 05 O 0 0
b 0 0 1 0 0
c 1 0 0 1 0.5
d 0 0 0 0 0.5
e 0 05 O 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree(j)]

pA = 0.5PB
pB =pC
= pC = pA+pD+0.5*pE

pE =0.5*pB

- 00000000 USCViterbi @
PageRank

 But remember we want the steady state solution
— The solution where the probabilities don't change from one step to the

next
e Sowe want asolutionto: Ap=p 9 Q

* We can: G
— Use alinear system solver (Gaussian elimination) ‘
— Or we can just seed the problem with some probabilities and then just G a

iterate until the solution settles down

Source=j
a b c d e
0 05 0 0 O PA pA a 0 05 0 0 0
0 O 1 0 O pB pB b 0 0 1 0 0
1 0 0 1 05| *|pC = | pcC T ¢ 1 0 0 1 05
0 0 0 0 05 pD pD % d 0 0 0 0 0.5
0O 05 0 0 O pE pE " e 0 05 0 0 0

Weighted Adjacency Matrix
[Divide by (a;;)/degree())]

i, TS(“Viterbi -

School of Engineering

Iterative PageRank

 But remember we want the steady state solution

The solution where the probabilities don't change from one step to the

next

* So we want a solutionto: Ap=p

e We can:

o O » O O

o O » O O

Use a linear system solver (Gaussian elimination)

X

Or we can just seed the problem with some probabilities and then just
iterate until the solution settles down

0.5

o O o +» O

o O o +» O

o O » O O

o O » O O

0.5
0.5

0.5
0.5

Step 0 Sol.

*
NN NN

Step 1 Sol.

R, RN R

S

S

tep 1 Sol.
A

Bk N

tep 2 Sol.
1
5
.25
.05
1

o o » O O

Step 29 Sol.
0.5 0O 0 O ?
0 1 0 O ?
0 0 1 05 * ?
0 0O 0 05 ?
0.5 0O 0 O ?
Actual PageRank Solution 1538
from solving linear system: .3077
3077
.0769
.1538

Step 30 Sol.
.1507
.3078
.3126
.0783
.1507

i, TS(“Viterbi

School of Engineering

Additional Notes

* What if we change the graph and now D has no incoming
links...what is its PageRank?
- 0
* Most PR algorithms add a probability that someone just
enters that URL (i.e. enters the graph at that node)

— Usually define something called the damping factor, a
(often chosen around 0.85)

— Probability of randomly starting or jumping somewhere =
1-a

* So at each time step the next PR value for node i is given
as:

o Pr(j)

— N is the total number of vertices

— Usually run 30 or so update steps
— Start each Pr(i) = 1/N

P USCViterbi >
In a Web Search Setting

* Given some search keywords we could find the pages that have that matching
keywords

* We often expand that set of pages by including all successors and predecessors of
those pages

— Include all pages that are within a radius of 1 of the pages that actually have the
keyword

* Now consider that set of pages and the subgraph that it induces
* Run PageRank on that subgraph

Page Hits Expanded Induced Subgraph

Full WebGraph (Contain keyword) (Preds & Succs) to run PageRank

®9 a¥9 ¢°9 @ @
bl 5 I

Dijkstra's Algorithm

SINGLE-SOURCE SHORTEST PATH
(SSSP)

USCViterbi @

School of Engine

SSSP

e Let us associate a 'weight' with Edge weights
each edge
— Could be physical distance, cost of
using the link, etc.

* Find the shortest path from a
source node, 'a' to all other nodes

(c,13),(e,4)

(c,5),(h,6)
(a,13),(b,5),(d,2),(e,8),(9,7)
(c,2),(f,1)

(a,4),(c,8),(f,3)
(d,1).(e,3).(9.4)
(c,7),(f,4),(h,14)

(b,6).(9.14)

Adjacency Lists

List of Vertices
>Q -0 OO0 T

USCViterbi @

School of Engine

SSSP

What is the shortest distance from
a' to all other vertices?

How would you go about
computing those distances?

Vert Dist

a |(c,13),(e,4) .
3 b L(c,5),(h,6) " . E
£ ¢ |(a13),(b5),d2),(e8).a7 |2 g °
Q4 Lc2).¢1) =~ §
5 e |(a4).(c8).(13) : 7 ¢
2 ¢ 1(d,1).(e,3).(a.4) 8 7 ¢
g (c,7),(f,4),(h,14) < 7 ;
h | (b,6),(g,14) X

USCViterbi @

Dijkstra's Algorithm
* Dijkstra's algorithm is similar to a
BFS but pulls out the smallest
distance vertex (from the source)
rather than pulling vertices out in
FIFO order (as in BFS)

 Maintain a data structure that you
can identify shortly

— We'll show it as a table of all vertices
with their currently 'known' distance
from the source

* |nitially, a has dist=0

Vert Dist

 All others = infinite distance inf

Inf

List of Vertices
o0 -~ DO O O T oD
=1
—

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

>SDKQ -~ QOO T QO

Inf
Inf

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USCViterbi @

School of Engine

Vert

Dist

oQ ~D® QO T QD

Inf
Inf
Inf
Inf
Inf
Inf
Inf

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

Inf
13
Inf
Inf
Inf
Inf

12

V=€

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USCViterbi @

School of Engine

Vert

Dist

oQ ~D® QO T QD

inf
12
inf

Inf
Inf

11

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

inf
12

11
Inf

10 yv=d

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

inf
10

11
Inf

15

V=C

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices

if v !=s then v.dist = inf; PQ.insert(v)

while PQ is not empty
v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred=v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

List of Vertices

USC Viterbi €

School of Engine

Vert

Dist

oQ ~D® QO T QD

Inf

25

V=0

USCViterbi @

School of Engine

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty Vert Dist

v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u) 10 v=Db
if(v.dist + w < u.dist)
u.pred=v

u.dist = v.dist + w;

List of Vertices
5>Q -0 QO 0 T W
[o0)

25 | 21

PQ.decreaseKey(u, u.dist)

USCViterbi @

School of Engine

Dijkstra's Algorithm

SSSP(G, s)
PQ = empty PQ
s.dist =0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v !=s then v.dist = inf; PQ.insert(v)
while PQ is not empty Vert Dist

v =min(); PQ.remove_min()
for uin neighbors(v)
w = weight(v,u) 10 v=h
if(v.dist + w < u.dist)
u.pred=v

u.dist = v.dist + w;

List of Vertices
5>Q -0 QO 0 T W
[o0)

PQ.decreaseKey(u, u.dist)

USC Viterbi

ing

Another Example
* Try another example of Dijkstra's

List of Vertices
Vert Dist

0

OO ~NOOTP,~,WNBE

i, TS(“Viterbi

School of Engineering

Analysis
* Whatis the loop invariant? What can | SX/ about the
vertex | pull out from the PQ?
— Itis guaranteed that there is no shorter path to that vertex
— UNLESS: negative edge weights

* Could use induction to prove

— When | pull the first node out (it is the start node) it's

weight has to be 0 and that is definitely the shortest path
to itself

— Ithen "relax" (i.e. decrease) the distance to neighbors it
connects to and the next node | pull out would be the
neighbor with the shortest distance from the start

* Could there be shorter path to that node?

— No, because any other path would use some other edge
from the start which would have to have a larger weight

Dijkstra's Run-time Analysis

 What is the run-time of
Dijkstra's algorithm?

e How many times do you
execute the while loop on 87

* How many total times do you
execute the for loop on 10?

1
2
3
4.
S
6
7
8

9.

10.
11.
12.
13.
14.
15.

SSSP(G, s)
PQ = empty PQ
s.dist = 0; s.pred = NULL
PQ.insert(s)
For all v in vertices
if v I= s then v.dist = Inf;
PQ.insert(v)
while PQ is not empty
v = min(); PQ.remove_min()
for u in neighbors(v)
w = weight(v,u)
if(v.dist + w < u.dist)
u.pred =v
u.dist = v.dist + w;
PQ.decreaseKey(u, u.dist)

i, TS(“Viterbi

School of Engineering

Dijkstra's Run-time Analysis

1. SSSP(G,s)
PQ = empty PQ
s.dist = 0; s.pred = NULL
PQ.insert(s)

* What is the run-time of Dijkstra's algorithm? B
3
4

— V total times because once you pull a node out | 5. For all v in vertices
6
4
8
9

* How many times do you execute the while
loop on 8?

each iteration that node's distance is if v I= s then v.dist = inf;
guaranteed to be the shortest distance and PQ.insert(v)
will never be put back in the PQ while PQ is not empty

— What does each call to remove_min() cost... v = min(); PQ.remove_min()

— ..log(V) [at most V items in PQ] — arl T nel.ghbors(v)
11. w = weight(v,u)
* How many total times do you execute the for | 12 if(v.dist + w < u.dist)
loop on 107? 13. u.pred = v
— E total times: Visit each vertex's neighbors 14. u.dist = v.dist + w;
— Each iteration may call decreaseKey() which is log(V) | 15. PQ.decreaseKey(u, u.dist)

* Total runtime = V*log(V) + E*log(V) =
(V+E)*log(V)
— This is usually dominated by E*log(V)

i, TS(“Viterbi 2

Tangent on Heaps/PQs

e Suppose min-heaps

— Though everything we're about to say is true for max
heaps but for increasing values

* We know insert/remove is log(n) for a heap
 What if we want to decrease a value already in the
heap...
— Example: Decrease 26 to 9

— Could we find 26 easily?

* No requires a linear search through the array/heap =>
O(n)

— Once we find it could we adjust it easily?

* Yes, just promote it until it is in the right location =>
O(log n)

So currently decrease-key() would cost
O(n) + O(log n) = O(n)
Can we do better?

— 5 Viterbi
Tangent on Heaps/PQs

* Can we provide a decrease-key() that runs in
O(log n) and not O(n)

— Remember we'd have to first find then promote

* We need to know where items sit in the heap

— Essentially we want to quickly know the location
given the key (i.e. Map key => location)

— Unfortunately storing the heap as an array does just

the opposite (maps location => key)
01 23 45 6 7 8 9 1011 12 13

 What if we maintained an alternative map Heap [T - el o1l ol as| o6l 2alo8l a6] s a3l oo

that did provide the reverse indexing A

— Then | could find where the key sits and then
promote it em 7 1821 19 35 26 24 28 39 36 43 29 50

Map of
* |fl keep that map as a balanced BST can | ey to o

0l1(2|3|4(5|6|7|8|9(1011]12]13

achieve O(log n) decreaseKey() time?

— No! each promotion swap requires update your
location and your parents

— Of(log n) swaps each requiring lookup(s) in the
location map [O(log n)] yielding O(log?(n))

Tangent on Heaps/PQs

e Am | out of luck then?

* No, try a hash map

— 0O(1) lookup

* Now each swap/promotion up the heap only
costs O(1) and thus | have:

— Find => O(1)

* Using the hashmap eap :]i 128231 149355 266274 288399 :Z: : :
— Promote => O(log n)

* Bubble up at most log(n) levels = = en 7 1821103 2620 26 39 3643 20 50

0l1(2|3|4(5|6|7|8|9(1011]12]13

with each level incurring O(1) '~
updates of locations in the
hashmap

* Decrease-key() is an important operation in
the next algorithm we'll look at

A* Search Algorithm

ALGORITHM HIGHLIGHT

Search Methods

* Many systems require searching for goal states
— Path Planning

* Roomba Vacuum
* Mapquest/Google Maps
* Games!!

— Optimization Problems

* Find the optimal solution to a problem with many
constraints

i, TS(“Viterbi 2

School of Engineering

Search Applied to 8-Tile Game

e 8-Tile Puzzle
— 3x3 grid with one blank space

— With a series of moves, get the tiles in sequential
order

— Goal state:

1 2 1 2 3

3 4 5 4 5 6

6 7 8 7 8

HW6 Goal State Goal State for these
slides

Search Methods

* Brute-Force Search: When you don’t know where
the answer is, just search all possibilities until you
find it.

* Heuristic Search: A heuristic is a “rule of thumb”. An
example is in a chess game, to decide which move to
make, count the values of the pieces left for your
opponent. Use that value to “score” the possible
moves you can make.

— Heuristics are not perfect measures, they are quick
computations to give an approximation (e.g. may not take
into account “delayed gratification” or “setting up an
opponent”)

i, TS(“Viterbi

School of Engineering

Brute Force Search

* Brute Force Search
Tree w DGlell s

— Generate all
possible moves

=
N

S
00
w

— Explore each move 12
despite its GE 2
proximity to the A O A T A W 111
goal node

w
o
(%)
w
o
(%)
w
o
(%)
o
(%)
(€]

=
NMNEREANENE
m

|
\ \ \ \ \ \ 11213
' } 1
: Y 14 5
1
\
! |
i i i i i Y 71816
1 ‘o
‘o
\ \ vy, \ \
1
Y | ’
? \ A
I A
) ! ’ \
\ \ \ \ \ ! \
\ 1
1
e
A) 1
A
|
\
\ \ |
\ II \ | ||
I \ \ \ e 1 \
v, \ \ \
) \ ! \
" \ 1
N \ \ ‘l
\ \ v, \ \ \
___________ Y T

- USCViterbi @
Heuristics

e Heuristics are “scores” of how close a state is to the
goal (usually, lower = better)

* These scores must be easy to compute S B
(i.e. simpler than solving the problem) s | s | e
* Heuristics can usually be developed by simplifying > | 7
the constraints on a problem # of Tiles out of
Place=3

e Heuristics for 8-tile puzzle

— # of tiles out of place
* Simplified problem: If we could just pick a tile up and put it 1 8 3
in its correct place
— Total x-, y- distance of each tile from its correct location
(Manhattan distance)

 Simplified problem if tiles could stack on top of each other / Total x-/y- distance
hop over each other =6

4 5 6

2 7

- USCV1terb1
Heuristic Search

e Heuristic Search Tree

@ [
— Use total x-/y- Tl
distance (Manhattan @ @
distance) heuristic HE Tels
— EXplore the lowest @ 2 123 \ 1 z@
4[8]3]| [a] [s NAE
scored states 7[6[s] []els] [7]s

= =22
5

716(5] (7 6
123®
5
71816

123E
415
2(3

71816
6

)

718

o
(%)
o
[0

(2}

Caution About Heuristics

* Heuristics are just estimates and
thus could be wrong

* Sometimes pursuing lowest
heuristic score leads to a less-than
optimal solution or even no
solution

e Solution

— Take # of moves from start (depth)
Into account

A-Star Algorithm

Use a new metric to decide which state to
explore/expand

Define
— h = heuristic score (same as always)

— g =number of moves from start it took to get
to current state

— f=g+h
As we explore states and their successors,

assign each state its f-score and always
explore the state with lowest f-score

Heuristics should always underestimate
the distance to the goal
— If they do, A* guarantees optimal solutions

i, TS(“Viterbi

A-Star Algorithm

e Maintain 2 lists

School of Engineering

— Open list = Nodes to be explored (chosen
from)

— Closed list = Nodes already explored (already
chosen)

e General A* Pseudocode

open_list.push(Start State)

while(open_list is not empty)
1. s «— remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)
2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f
values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or

if they are already in the open list, update them if
they have a smaller f value

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

**|f implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

**If implementing this for a programming
assignment, please see the slide at the end about
alternate closed-list implementation

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

2. Add s to closed list
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-~ Q |\ Q |- ToQ
1R L 1 1 e R 1

OAN @O R (00N

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

— D Q
TR
€ N I=

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-0 Q | 0Q | DQ
IRt e e T 1

OEN |00 F (00N

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from Closed List
open_list (if tie in f-values, select one w/

larger g-value)

9=1, | 9=2,

2. Add s to closed list '}z; *}zg‘ Open List
3a. if s = goal node then o=1, o=1,
trace path back to start; STOP! f}z; *Eg
3b. else p— —
Generate successors/neighbors of s, r::g t::g,

compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if

they have a smaller f value G

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

I
N

1
=
o

larger g-value)

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

—_ o Q | TTQ
TR ST
€9 e [V e N =

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

=&

T o Q
T oaQ
T
(O

1
=
o
1
=
o

larger g-value)

—_— D Q
11
® o o
—_ D Q
I 1 1l
CJES

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

—_ o Q | TTQ
TR ST
€9 e [V e N =

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

=&

T o Q
T oaQ
(O
T oaQ
o
on @

1
=
o

1
=
o

1
=
o

larger g-value)

—- 0 Q
oI

® o o

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

- DJQ |- JQ
LI |

00 0 01 [
—h
|
[ERY
o

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value G

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

—_ o Q | TTQ
TR ST
€9 e [V e N =

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/

Closed List

o Q
101

=&

T oaQ
(O
T oaQ
o
on @

_...
I
=
o
1
=
o
1
=
o

larger g-value)

- TQ
TR
1T
on e

® o o

g:]"
2. Add s to closed list r}z;
3a. if s = goal node then

Open List

S Q Tl"‘j(Q
=
o

R

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

-~ D0Q |\ TDQ |- ToQ
I S T p
SAN|por @O0
-~ 0Q |wDoQ | oQ©
RN RN R

—_ o Q | TTQ
TR ST
€9 e [V e N =

()

i, TS(“Viterbi

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)
1. s € remove min. f-value state from g=3, | 9=4, | g¢=5, Closed List
open_list (if tie in f-values, select one w/ P::fo‘ P::166 P;lso’
larger g-value) o=1, | 9=2, | 9=3, | g=4, | g=5,
2. Add s to closed list PN I B O Open List
3a. if s = goal node then g=1, 9=1, ™
trace path back to start; STOP! h=7, h=5, h=3, | h=4,
f=8 =6 f=8 | =10
3b. else g=2, 9=2, 9=6, | 9=7,
Generate successors/neighbors of s, h=6, h=4, h=2, | h=3,
compute their f-values, and add them to =8 = =8 1 0
open_list if they are not in the closed_list ﬁj
=8

(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

()

i, TS(“Viterbi -«

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*

— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List

o Q
101

=&

T TaQ
'_\

oo &
T TaQ
AR
o yu

_...
1l

'_\

o

1T
on e

—- 0 Q
oI

® o o
H
o

Open List

'_\
oP o

T
'_\
o

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

—_ o Q | TTQ
TR ST
€9 e [V e N =

oQ |[ThoQ |IThoQ |ThoQ

m

o0
'_\
ol ®

- DQ | TQ | TQ |wTQ |wDQ
R L 1 1 I 1 1 I o (A

RO (@R N[ENS [owa (o~ s

i, TS(“Viterbi 2

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*
— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List

o Q
101

=&

T TaQ
'_\

oo &
T TaQ
AR
o yu

_...
1l

'_\

o

1T
on e

—- 0 Q
oI

® o o
H
o

Open List

'_\
oP o

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

- (o] —_ 0 Q
TN ST
oOMN 00N
'_\

o

oQ |[ThoQ |IThoQ |ThoQ

m

o0
'_\
ol ®

- D0Q | TQ | TQ | TQ |wTDQ
L L 1 1 I 1 1 T o (I

PO® PR N[N |[owa (o~ s

i, TS(“Viterbi -«

School of Engineering

Path-Planning w/ A* Algorithm
* Find optimal path from S to G using A*
— Use heuristic of Manhattan (x-/y-) distance

open_list.push(Start State)
while(open_list is not empty)

1. s € remove min. f-value state from
open_list (if tie in f-values, select one w/
larger g-value) g=1,

2. Add s to closed list i

3a. if s = goal node then

trace path back to start; STOP!

3b. else
Generate successors/neighbors of s,
compute their f-values, and add them to
open_list if they are not in the closed_list
(so we don’t re-explore), or if they are
already in the open list, update them if
they have a smaller f value

Closed List

o Q
101

=&

T TaQ
'_\

oo &
T TaQ
AR
o yu

_...
1l

'_\

o

1T
on e

—- 0 Q
oI

® o o
H
o

Open List

'_\
oP o

-~ D0Q |\ TDQ |- ToQ
I S T p

OAN |[@OR 0oN

- (o] —_ 0 Q
TN ST
oOMN 00N
'_\

o

oQ |[ThoQ |IThoQ |ThoQ

m

o0
'_\
ol ®

- D0Q | TQ | TQ | TQ |wTDQ
L L 1 1 I 1 1 T o (I

PO® PR N[N |[owa (o~ s

A* and BFS

* BFS explores all nodes at a shorter distance
from the start (i.e. g value)

Closed List

Open List

— D Q
TR
€ N I=

A* and BFS

* BFS explores all nodes at a shorter distance
from the start (i.e. g value)

Efg‘ Closed List
f=10
g=2, g=1, g=2,
h=8, | h=7, | h=6, :
f=10 | f=8 | f=8 Open List
g=2, g=1, g=1,
h=8, h=7, h=5,
f=10 f=8 f=6
g=2, g=2,
h=6, h=4,
=8 f=6

A* and BFS

 BFS is A* using just the g value to choose
which item to select and expand

9=2, Closed List
h=8,
=10
g=2, g=1, g=2,
h=8, h=7, h=6, .
f=10 | f=8 | f=8 Open List
9:2, g:]_, g:]_,
h=8, h=7, h=5,
f=10 f=8 f=6
9:2, 9:2,
h=6, h=4,
=8 f=6

i, TS(“Viterbi s

A* Analysis

* What data structure should we use for the open-list?
e What data structure should we use for the closed-list?
e What is the run time?

* Run time is similar to Dijkstra's algorithm...
— We pull out each node/state once from the open-list so that incurs N*O(remove-cost)

— We then visit each successor which is like O(E) and perform an insert or decrease operation which is
like E¥*max(O(insert), O(decrease)

— E =Number of potential successors and this depends on the problem and the possible solution space
— For the tile puzzle game, how many potential boards are there?

open_list.push(Start State)
while(open_list is not empty)
1. s € remove min. f-value state from open_list
(if tie in f-values, select one w/ larger g-value)
2. Add s to closed list
3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f
values, and add them to open_list if they are
not in the closed_list (so we don’t re-explore), or
if they are already in the open list, update them if
they have a smaller f value

i, TS(“Viterbi

Implementation Note

 When the distance to a node/state/successor (i.e. g value) is
uniform, we can greedily add a state to the closed-list at the
same time as we add it to the open-list

Non-uniform g-values Uniform g-values
open_list.push(Start State) open_list.push(Start State)
while(open_list is not empty) Closed_list.push(Start State)

1. s €& remove min. f-value state from open_list while(open_list is not empty)

(if tie in f-values, select one w/ larger g-value) 1. s ¢ remove min. f-value state from open_list
2. Add s to closed list (if tie in f-values, select one w/ larger g-value)
3a. if s = goal node then trace path back to start; STOP! 3a. if s = goal node then trace path back to start; STOP!
3b. Generate successors/neighbors of s, compute their f 3b. Generate successors/neighbors of s, compute their

values, and add them to open_list if they are values, and add them to open_list and closed_list
not in the closed_list (so we don’t re-explore), or if they are not in the closed_list

if they are already in the open list, update them if
they have a smaller f value

[EnY
N

0=0,=C

IS
[ole]
w

The first occurrence of a board
T has to be on the shortest path
: to the solution

=] .
I N

w

If time allows...

BETWEENESS CENTRALITY

BC Algorithm Overview
 What's the most central vertex(es) in the graph
below?

* How do we define "centrality"?

* Betweeness centrality defines "centrality" as the
nodes that are between the most other pairs

Sample Graph
Nl o=o gase
(g
(®) O

Graph 1 Graph 2

i, TS(“Viterbi

School of Engineering

BC Algorithm Overview

* Betweeness centrality (BC) defines "centrality" as the nodes that are between
(i.e. on the path between) the most other pairs of vertices

 BC considers betweeness on only "shortest" paths!

* To compute centrality score for each vertex we need to find shortest paths
between all pairs...

— Use the Breadth-First Search (BFS) algorithm to do this

Are these gray nodes
'‘between' a and e?

Sample Graph

e e @ e G No, a-c-d-e Is the

Original 1 Original w/
added path

i, TS(“Viterbi

School of Engineering

BC Algorithm Overview

 Betweeness-Centrality determines "centrality" as the number of
shortest paths from all-pairs upon which a vertex lies

* Consider the sample graph below

— Each external vertex (a, b, e, f) lies is a member of only the shortest paths

between itself and each other vertex

— Vertices c and d lie on greater number of shortest paths and thus will be

scored higher

Sample Graph

Image each vertex is a
ball and each edgeis a
chain or string. What
would this graph look
like if you picked it up
by vertex c? Vertex a?

i, TS(“Viterbi

School of Engineering

BC Implementation

 Based on Brandes' formulation for unweighted graphs
— Perform |V| Breadth-first traversals

— Traversals result in a subgraph consisting of shortest paths from root to all
other vertices

— Messages are then sent back up the subgraph from "leaf" vertices to the
root summing the percentage of shortest-paths each vertex is a member of

— Summing a vertex's score from each traversal yields overall BC result

Sample Graph with Traversals from
final BC scores selected roots
and resulting

S ° partial BC scores
e 19 19 G (in this case, the
G Q number of

5 Q 5 descendants)

School of Engineering

BC Implementation

* Asyou work down, track # of shortest paths running through a
vertex and its predecessor(s)

 Onyour way up, sum the nodes beneath
1,[-]

of shortest paths thru the vertex,
[List of predecessor]

Score on the way back up (if

multiple shortest paths, split the
score appropriately)

(a) °
() *
Traversals from
selected roots 2
and resulting Q Q
partial BC scores 0 0
(in this case, the e °
number of

descendants)

USC Viterbi

