CSCl 104
Priority Queues / Heaps

Mark Redekopp
David Kempe
Sandra Batista

PRIORITY QUEUES

e — {5 C Viterbi
Traditional Queue

 Traditional Queues
— Accesses/orders items based on POSITION

___________________________ 47
(front/back) :' i
(pop_front)i i
— Did not care about item's VALUE _ 115H33H62H81l€

* Priority Queue <—r_

_ Orders items based on VALUE L4

e Either minimum or maximum Traditional Queue

(push_back)

— Items arrive in some arbitrary order

— When removing an item, we always want the (push)
minimum or maximum depending on the TR, Ve — :
implementation (pop) |

* Heaps that always yield the min value are called <_|— =
min-heaps !

47

* Heaps that always yield the max value are called
max-heaps Priority Queue

— Leads to a "sorted" list

— Examples:
* Think hospital ER, air-traffic control, etc.

- 00000000 USCViterbi @
Priority Queue

* What member functions does a Priority Queue have? | pionicr
— push(item) — Add an item to the appropriate location of the };b°°1 operator<(...);
PQ
— top() — Return the min./max. value (push)
— pop() - Remove the front (min. or max) item from the PQ -{top) . T : P6
— size() - Number of items in the PQ (pop) ! J |
— empty() - Check if the PQ is empty i P2HP3 € |P4HP5
P1le:

— [Optional]: changePriority(item, new_priority)

e Useful in many algorithms (especially graph and search Priority Queue

algorithms) (Priority based on intrinsic
property of the data)

* Priority can be based on...

— Intrinsic data-type being stored (i.e. operator<() (push)
of type T) N (TCT) I , i76
— Separate parameter from data type, T, and (pop) | 15| 117 (ng - §
passed in which allows the same object to have | P1[lP2[" |P3[]P5||
. — . P1ied! :
different priorities based on the programmer's
desire (i.e. same object can be assigned different oo
riority Queue
priorities) (Priority based on separate

priority parameter)

e — 5 iterbi
Priority Queue Efficiency

* |f implemented as a sorted array list
— Insert() =
—Top() =
— Pop() =

* |fimplemented as an unsorted array list

— Insert() =
—Top() =
— Pop() =

e — 5 iterbi
Priority Queue Efficiency

* |f implemented as a sorted array list
— [Use back of array as location of top element]
— Insert() = O(n)
— Top() =0O(1)
— Pop() = O(1)
* |fimplemented as an unsorted array list
— Insert() = O(1)
— Top() =0(n)
— Pop() = O(n)

HEAPS

Heap Data Structure

* Provides an efficient implementation for a priority queue
* Can think of heap as a complete binary tree that maintains
the heap property:

— Heap Property: Every parent is less-than (if min-heap) or greater-than (if
max-heap) both children, but no ordering property between children

* Minimum/Maximum value is always the top element

Always a
complete tree

Min-Heap

Heap Operations

 Push: Add a new item to the
heap and modify heap as
necessary

* Pop: Remove min/max item
and modify heap as
necessary

* Top: Returns min/max

e Since heaps are complete
binary trees we can use an
array/vector as the
container

template <typename T>
class MinHeap
{ public:
MinHeap(int init capacity);
~MinHeap()
void push(const T& item);
T& top();
void pop();
int size() const;
bool empty() const;
private:
// Helper function
void heapify(int idx);

vector<T> items_; // or array

}

i, TS(“Viterbi

School of Engineering

Array/Vector Storage for Heap

* Recall: A complete binary tree (i.e. only the lowest-level contains empty
locations and items added left to right) can be modeled as an array (let’s
say it starts at index 1) where:

— Parent(i) =i/2
— Left_child(p) = 2*p
— Right_child(p) =2*p +1

o 1 2 3 4 5 6 7 8 9 10 11 12 13

em| 7 (18] 9 |19(35|14(10|28|39|36|43|16|17

Parent(5)=5/2=2
Left(5) =2*5=10
Right(5) = 2*5+1 =11

- 00000000 USCVlterbl@
Array/Vector Storage for Heap

* We can also use 0-based indexing
— Parent(i) =
— Left_child(p) =

— Right_child(p) =

o 1 2 3 4 5 6 7 8 9 10 11 12

7118 9 |19(35(14|10|28|39(36|43|16 |17

Add item to first free location at
bottom of tree

Recursively promote it up while
it is less than its parent
— Remember valid heap all parents

< children...so we need to promote
it up until that property is satisfied

i, TS(“Viterbi 2

Push Heap / TrickleUp

School of Engineering

void MinHeap<T>:
{
items_.push_back(item);
trickleUp(items .size()-1);
}

:push(const T& item)

void MinHeap<T>::trickleUp(int loc)
{
// could be implemented recursively
int parent =
while(parent &&
items [loc] @ items_[parent])
{ swap(items_ [parent], items [loc]);
loc =

)

)

parent =

’ Solutions at the
end of these slides

top()

T const & MinHeap<T>::top()

* top() simply needs
to return first item

{

}

if(empty())
throw(std: :out_of_range());
return items [1];

Top() returns 7

i, TS(“Viterbi

School of Eqgineering

Pop Heap / Heapify (TrickleDown)

void MinHeap<T>::pop()
¥ n T { items_[1] = items_.back(); items_.pop_back()
* Pop utilizes the "heapify heapify(1); // a.k.a. trickleDown()

algorith (a.k.a. trickleDown) }

void MinHeap<T>::heapify(int idx)
* Takes last (greatest) node {
if(idx == leaf node) return;
puts itin the top location int smallerChild = 2*idx; // start w/ left
if(right child exists) {
and then recursively swaps int rChild = smallerChild+1;
. . . if(items_[rChild] < items_[smallerChild])
it for the smallest child until g, TPV S RO
|t iS in |ts nght place if(items_[idx] > items_[smallerChild]){
swap(items_[idx], items_[smallerChild]);
heapify(smallerChild);
Original }}

USC Viterbi (2
School of Engineer

ing

Practice

Push(11) Push(23)

Building a heap out of an array

HEAPSORT

e — ()5 Viterbi
Using a Heap to Sort

* |f we could make a valid heap out of an arbitrary array, could we use that heap to
sort our data?

e Sure, just call top() and pop() n times to get data in sorted order
* How long would that take?

— ncallsto: top()=0(1) and pop()= O(log n) O 1 2 3 4 5 6 7 8
— Thus total time = ©@(n * log n) em| 7|9 |14|10|35|28|18|19
 But how long does it take to convert the array Array Converted to Valid Heap
1

to a valid heap?

O 1 2 3 4 5 6 7 8

em|(28| 9 (18103514 | 7 |19

Arbitrary Array

em| 7|9 (10|14|18|19|28|35

Complete Tree View of
Arbitrary Array Array after top/popping the heap n times

i, IS(Viterbi

make_heap(): Converting An Unordered
Array to a Heap

 We can convert an unordered array to

aheap 0 1 2 3 4 5 6 7 8
— std::make_heap() does this em 28| 9 | 7 10/35118 14119

| Array not fulfilling heap property
— Let's see how... (issueis 28 at index 1)

* Basic operation: Given two heaps we

can try to make one heap by unifying

them with some new, arbitrary value
but it likely won't be a heap

* How can we make a heap from this
non-heap

* Heapify!! (we did this in pop()) A Valid Heap A Valid Heap

Tree View of Array

* To convert an array to a heap we can
use the idea of first making heaps of
both sub-trees and then combining
the sub-trees (a.k.a. semi heaps) into
one unified heap by calling heapify()
on their parent()

* First consider all leaf nodes, are they
valid heaps if you think of them as the
root of a tree?

— Yesl!!

e So just start at the first non-leaf

School of Engineerin

Converting An Array to a Heap

O 1 2 3 4 5 6 7 8

em

28

9

18|10|35(14| 7

19

Original Array

Tree View of Array

P USCViterbi
Converting An Array toa H

ap
* First consider all leaf nodes, are they
valid heaps if you think of them as the
root of a tree?
— Yesl!!
e So just start at the first non-leaf
— Heapify(Loc. 4)

Leafs are valid heaps by definition

heapify(4) heapify(3) heapify(2) heapify(1)
. Swap 28<->7
Already in the Swap 18 & 7 Already a heap Swap 28 <-> 14

right order

School of Engineering

Converting An Array to a Heap

* Now that we have a valid heap, we can sort by top and popping...
e Canwedoitin place?

— Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area

Swap top &
last

heapify(1)

Swap top &
last

heapify(1)

e — 5 Viterbi
Sorting Using a Heap

* Now that we have a valid heap, we can sort by top and popping...
e Canwedoitin place?

— Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area

Swap top &
last

heapify(1)

Swap top &
last

heapify(1)

O 1 2 3 4 5 6 7 8 0O 1 2 3 4 5 6 7 8

em| 35|18 |28 | 19 WA 0INe R em| 18|19 |28 | 35 WVl No K BV

O 1 2 3 4 5 6 7 8

em

18

19

28

81000 7

O 1 2 3 4 5 6 7 8

1352819181410 9 7

* Notice the result is in descending order.

 How could we make it ascending order?

— Create a max heap rather than min heap.

e —— ()5 Viterbi
Build-Heap Run-Time

* To build a heap from an arbitrary array require n calls to
heapify.
* Heapify takes O()

* Let's be more specific:
— Heapify takes O(h)
— Because most of the heapify calls are made in the bottom of the tree
(shallow h), it turns out heapify can be done in O(n)
* n/2 calls with h=1
* n/4 calls with h=2

* n/8 calls with h=3
e Totals: 1*n/2 + 2*n/4 + 3*n/8

c TOREE hen (3) = e D (F)
e T(n)=n=x6(c) =0(n)

e USCViterbi @

School of Engine

Proving the Runtime of Build- Heap

Let us prove that Zh 08 py () is 0(1)

T = 5 he (2) < Siihe (2)

Now recall: Y50, (x)" = E forx<1 [x=1/2 for this problem]

Now suppose we take the derivative of both sides

Zh 1h- (x)h 1=

- (1-x)?
Suppose we multiply both sides by x:

X3 h-GO)M1=3% h- ()" = (1xx)2

1 nh 1
Forxzzwehavez,‘f:lh-(—) =—2-=2

Y T

log(n) i _ _
Thus for Build-Heap: T(n)=n % 3., = h * =n*x0(c) =0(n)

Reference/Optional

C++ STL HEAP IMPLEMENTATION

e — 5 Viterbi
STL Priority Queue

 |Implements a heap // priority queue::push/pop
.] #include <iostream>
¢ Operatlons- #include <queue>

— push(new_item) ,
- using namespace std;

— pop(): removes but does not

return top item int main ()

{

— top() return top item (item at priority queue<int> mypq;

back/end of the container) mypq.push(30);

. mypq.push(100);

— size() mypq.push(25);
_ mypq.push(40);

empty() cout << "Popping out elements...";

* http://www.cplusplus.com/refere while (!mypqg.empty()) {)
.. cout<< " " << mypq.top();
nce/stl/priority queue/push/ T
}

* By default, implements a max cout<< endl;
heap but can use comparator return 0;
functors to create a min-heap }

 Runtime: O(log(n)) push and pop
while all other functions are

constant (i.e. O(1)) Code here will print
100 40 30 25

http://www.cplusplus.com/reference/stl/priority_queue/push/

i, TS(“Viterbi

School of Engineering

STL Priority Queue Template

 Template that allows type of element, container class, and comparison
operation for ordering to be provided

* First template parameter should be type of element stored

* Second template parameter should be the container class you want to use
to store the items (usually vector<type of elem>)

e Third template parameters should be comparison functor that will define
the order from first to last in the container

1 arlertiy cuEnes SRS) 39 greater<int> will yield a min-heap
#include <iostreams 7 less<int>will yield a max-heap
#include <queue>

using namespace std; 0

Push(30
int main () (30) 0
{ priority_queue<int, vector<int>, greater<int>> mypq; 0 1
mypq.push(30); mypq.push(100); mypq.push(25);
cout<< "Popping out elements..."; Push(100) 30 |100
while (!mypq.empty()) {
cout<< " " << mypq.top(); O 1 2
mypq.pop();
) ypq.pop() Push(25) 25 1100l 30
}

Code here will print

25, 30, 100 Push(n): Mimics heap::push

Top(): Return last item
Pop(): Mimic heap::pop

i, TS(“Viterbi

School of Engineering

C++ less and greater

If you're class already has
operators < or > and you

don't want to write your

own functor you can use

the C++ built-in functors:
less and greater

Less

— Compares two objects of
type T using the operator<
defined for T

Greater

— Compares two objects of
type T using the operator<
defined for T

template <typename T>
struct less
{
bool operator()(const T& vl, const T& v2){
return vl < v2;
¥
}s

template <typename T>
struct greater
{
bool operator()(const T& v1l, const T& v2){
return vl > v2;
¥
}s

i, TS(“Viterbi

School of Engineering

STL Priority Queue Template

For user defined
classes, must
implement
operator<() for max-
heap or operator>()
for min-heap OR a
custom functor

Code here will pop in
order:

— Jane
— Charlie
— Bill

// priority_queue::push/pop
#include <iostream>
#include <queue>

#include <string>

using namespace std;

class Item {
public:
int score;
string name;

Item(int s, string n) { score = s; name = n;}

bool operator>(const Item &rhs) const

{ if(this->score > rhs.score) return true;
else return false;

}
hE

int main ()
{
priority queue<Item, vector<Item>, greater<Item> > mypq;
Item i1(25,”Bill”); mypq.push(il);
Item i2(5,”Jane”); mypq.push(i2);
Item i3(10,”’Charlie”); mypq.push(i3);
cout<< "Popping out elements...";
while (!mypqg.empty()) {
cout<< " " << mypqg.top().name;
mypq.pop();
}}

More Details

* Behind the scenes std::priority _queue uses
standalone functions defined in the
algorithm library
— push_heap

* https://en.cppreference.com/w/cpp/algorithm/push heap

— pop_heap

* https://en.cppreference.com/w/cpp/algorithm/pop heap

—make_heap
e https://en.cppreference.com/w/cpp/algorithm/make heap

https://en.cppreference.com/w/cpp/algorithm/push_heap
https://en.cppreference.com/w/cpp/algorithm/pop_heap
https://en.cppreference.com/w/cpp/algorithm/make_heap

SOLUTIONS

Add item to first free location at
bottom of tree

Recursively promote it up while
it is less than its parent
— Remember valid heap all parents

< children...so we need to promote
it up until that property is satisfied

i, TS(“Viterbi 2

Push Heap / TrickleUp

School of Engineering

void MinHeap<T>::push(const T& item)
{
items_.push_back(item);
trickleUp(items .size()-1);
}

void MinHeap<T>::trickleUp(int loc)
{
// could be implemented recursively
int parent = loc/2;
while(parent >= 1 &&
items_[loc] < items_[parent])
{ swap(items_[parent], items [loc]);
loc = parent;

parent = loc/2;]
Solutions at the

end of these slides

