CSCI 104
Priority Queues / Heaps

Mark Redekopp
David Kempe
Sandra Batista
A graph with restrictions

TREES
Tree Definitions – Part 1

• **Definition**: A connected, acyclic (no cycles) graph with:
 – A root node, r, that has 0 or more subtrees
 – Exactly one path between any two nodes
• In general:
 – Nodes have exactly one parent (except for the root which has none) and 0 or more children
• **d-ary tree**
 – Tree where each node has at most d children
 – Binary tree = d-ary Tree with d=2

Terms:
• **Parent(i)**: Node directly above node i
• **Child(i)**: Node directly below node i
• **siblings**: Children of the same parent
• **Root**: Only node with no parent
• **Leaf**: Node with 0 children
• **Height**: Number of nodes on longest path from root to any leaf
• **Subtree(n)**: Tree rooted at node n
• **Ancestor(n)**: Any node on the path from n to the root
• **Descendant(n)**: Any node in the subtree rooted at n

![Diagram of a 3-ary (trinary) tree](image)
Tree Definitions – Part 2

• Tree height: maximum # of nodes on a path from root to any leaf

• **Full** d-ary tree, T, where
 – Every vertex has 0 or d children and all leaf nodes are at the same level (i.e. adding 1 more node requires increasing the height of the tree)

• **Complete** d-ary tree
 – **Top h-1 levels are full** AND **bottom level is filled left-to-right**
 – Each level is filled left-to-right and a new level is not started until the previous one is complete

• **Balanced** d-ary tree
 – Tree where, for EVERY node, the subtrees for each child differ in height by at most 1

DAPS, 6th Ed. Figure 15-8
• A full binary tree of n nodes has height, $h = \lceil \log_2(n + 1) \rceil$
 – This implies the minimum height of any tree with n nodes is $\lceil \log_2(n + 1) \rceil$

• The maximum height of a tree with n nodes is, ___

15 nodes => height $\log_2(16) = 4$

5 nodes => height = ___
Array-based and Link-based

TREE IMPLEMENTATIONS
Array-Based Complete Binary Tree

- Binary tree that is complete (i.e. only the lowest-level contains empty locations and items added left to right) can be stored nicely in an array (let’s say it starts at index 1 and index 0 is empty)
- Can you find the mathematical relation for finding the index of node i's parent, left, and right child?
 - Parent(i) = __________
 - Left_child(i) = ___________
 - Right_child(i) = ___________

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>em</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>14</td>
<td>10</td>
<td>28</td>
<td>39</td>
<td>36</td>
<td>43</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

parent(5) = _______
Left_child(5) = _______
Right_child(5) = _______
Array-Based Complete Binary Tree

- Binary tree that is complete (i.e. only the lowest-level contains empty locations and items added left to right) can be stored nicely in an array (let’s say it starts at index 1 and index 0 is empty)
- Can you find the mathematical relation for finding node i's parent, left, and right child?
 - Parent(i) = i/2
 - Left_child(i) = 2*i
 - Right_child(i) = 2*i + 1

<table>
<thead>
<tr>
<th>em</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>35</td>
<td>14</td>
<td>10</td>
<td>28</td>
<td>39</td>
<td>36</td>
<td>43</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parent(5) = 5/2 = 2
Left_child(5) = 2*5 = 10
Right_child(5) = 2*5+1 = 11

Non-complete binary trees require much more bookkeeping to store in arrays...usually link-based approaches are preferred
0-Based Indexing

- Now let's assume we start the root at index 0 of the array
- Can you find the mathematical relation for finding the index of node i's parent, left, and right child?
 - Parent(i) = __________
 - Left_child(i) = __________
 - Right_child(i) = __________

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
7 & 18 & 9 & 19 & 35 & 14 & 10 & 28 & 39 & 36 & 43 & 16 & 17
\end{array}
\]

parent(5) = __________
Left_child(5) = __________
Right_child(5) = __________
D-ary Array-based Implementations

- Arrays can be used to store d-ary complete trees
 - Adjust the formulas derived for binary trees in previous slides in terms of d

A 3-ary (trinary) tree
Link-Based Approaches

- For an arbitrary (non-complete) d-ary tree we need to use pointer-based structures
 - Much like a linked list but now with two pointers per Item
- Use NULL pointers to indicate no child
- Dynamically allocate and free items when you add/remove them

```cpp
#include<iostream>
using namespace std;

template <typename T>
struct Item {
    T val;
    Item<T>* left, right;
    Item<T>* parent;
};

// Bin. Search Tree
template <typename T>
class BinTree {
    public:
        BinTree();
        ~BinTree();
        void add(const T& v);
    ...
    private:
        Item<T>* root_;  // Blueprint:
};
```
Link-Based Approaches

• Add(5)
• Add(6)
• Add(7)
Traditional Queue

- Traditional Queues
 - Accesses/orders items based on POSITION (front/back)
 - Did not care about item's VALUE

- Priority Queue
 - Orders items based on VALUE
 - Either minimum or maximum
 - Items arrive in some arbitrary order
 - When removing an item, we always want the minimum or maximum depending on the implementation
 - Heaps that always yield the min value are called min-heaps
 - Heaps that always yield the max value are called max-heaps
 - Leads to a "sorted" list
 - Examples:
 - Think hospital ER, air-traffic control, etc.
Priority Queue

- What member functions does a Priority Queue have?
 - `push(item)` – Add an item to the appropriate location of the PQ
 - `top()` – Return the min./max. value
 - `pop()` - Remove the front (min. or max) item from the PQ
 - `size()` - Number of items in the PQ
 - `empty()` - Check if the PQ is empty
 - [Optional]: `changePriority(item, new_priority)`
 - Useful in many algorithms (especially graph and search algorithms)

- Priority can be based on...
 - Intrinsic data-type being stored (i.e. `operator<()` of type T)
 - Separate parameter from data type, T, and passed in which allows the same object to have different priorities based on the programmer's desire (i.e. same object can be assigned different priorities)
Priority Queue Efficiency

• If implemented as a sorted array list
 – Insert() = ____________
 – Top() = ____________
 – Pop() = ____________

• If implemented as an unsorted array list
 – Insert() = ____________
 – Top() = ____________
 – Pop() = ____________
Priority Queue Efficiency

• If implemented as a sorted array list
 – [Use back of array as location of top element]
 – Insert() = O(n)
 – Top() = O(1)
 – Pop() = O(1)

• If implemented as an unsorted array list
 – Insert() = O(1)
 – Top() = O(n)
 – Pop() = O(n)
HEAPS
Heap Data Structure

- Provides an efficient implementation for a priority queue
- Can think of heap as a complete binary tree that maintains the heap property:
 - **Heap Property**: Every parent is less-than (if min-heap) or greater-than (if max-heap) both children, but no ordering property between children
- Minimum/Maximum value is always the top element

![Min-Heap](image-url)
Heap Operations

- **Push**: Add a new item to the heap and modify heap as necessary
- **Pop**: Remove min/max item and modify heap as necessary
- **Top**: Returns min/max
- Since heaps are complete binary trees we can use an array/vector as the container

```cpp
template <typename T>
class MinHeap
{
    public:
        MinHeap(int init_capacity);
        ~MinHeap();
        void push(const T& item);
        T& top();
        void pop();
        int size() const;
        bool empty() const;
    private:
        // Helper function
        void heapify(int idx);
        vector<T> items_; // or array
};
```
Array/Vector Storage for Heap

- Recall: A **complete** binary tree (i.e. only the lowest-level contains empty locations and items added left to right) can be modeled as an array (let’s say it starts at index 1) where:
 - \(\text{Parent}(i) = i/2 \)
 - \(\text{Left} _ \text{child}(p) = 2*p \)
 - \(\text{Right} _ \text{child}(p) = 2*p + 1 \)

\[\begin{array}{c}
<table>
<thead>
<tr>
<th>\text{Index}</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{em}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>18</td>
<td></td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>14</td>
<td>10</td>
<td>28</td>
<td>39</td>
<td>36</td>
<td>43</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Parent(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left(5)</td>
<td></td>
<td>9</td>
<td>18</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Right(5)</td>
<td></td>
<td>11</td>
<td>19</td>
<td>12</td>
<td>28</td>
<td>39</td>
<td>43</td>
<td>36</td>
<td>43</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\end{array} \]

- Parent(5) = 5/2 = 2
- Left(5) = 2*5 = 10
- Right(5) = 2*5 + 1 = 11
Array/Vector Storage for Heap

• We can also use 0-based indexing
 – Parent(i) = ______
 – Left_child(p) = ______
 – Right_child(p) = ______
Push Heap / TrickleUp

- Add item to first free location at bottom of tree
- Recursively promote it up while it is less than its parent
 - Remember valid heap all parents < children...so we need to promote it up until that property is satisfied

```cpp
void MinHeap<T>::push(const T& item)
{
    items_.push_back(item);
    trickleUp(items_.size()-1);
}

void MinHeap<T>::trickleUp(int loc)
{
    // could be implemented recursively
    int parent = _________;
    while(parent _______ &&
          items_[loc] _______ items_[parent] )
    {
        swap(items_[parent], items_[loc]);
        loc = _________;
        parent = _______;
    }
}
```

Solutions at the end of these slides
top()

- top() simply needs to return first item

T const & MinHeap<T>::top()
{
 if(empty())
 throw(std::out_of_range());
 return items_[1];
}
Pop Heap / Heapify (TrickleDown)

- Pop utilizes the "heapify" algorithm (a.k.a. trickleDown)
- Takes last (greatest) node puts it in the top location and then recursively swaps it for the smallest child until it is in its right place

Original

```
void MinHeap<T>::pop()
{    items_[1] = items_.back(); items_.pop_back()
    heapify(1); // a.k.a. trickleDown()
}

void MinHeap<T>::heapify(int idx)
{
    if(idx == leaf node) return;
    int smallerChild = 2*idx; // start w/ left
    if(right child exists) {
        int rChild = smallerChild+1;
        if(items_[rChild] < items_[smallerChild])
            smallerChild = rChild;
    }
    if(items_[idx] > items_[smallerChild]){
        swap(items_[idx], items_[smallerChild]);
        heapify(smallerChild);
    }
}
```
Practice

Push(11)

Push(23)

Pop()

Pop()
Building a heap out of an array

HEAPSORT
Using a Heap to Sort

- If we could make a valid heap out of an arbitrary array, could we use that heap to sort our data?
- Sure, just call top() and pop() \(n\) times to get data in sorted order
- How long would that take?
 - \(n\) calls to: \(\text{top}() = \Theta(1)\) and \(\text{pop}() = \Theta(\log n)\)
 - Thus total time = \(\Theta(n \times \log n)\)
- But how long does it take to convert the array to a valid heap?

![Complete Tree View of Arbitrary Array](image1)

![Array Converted to Valid Heap](image2)

![Array after top/popping the heap \(n\) times](image3)
make_heap(): Converting An Unordered Array to a Heap

- We can convert an unordered array to a heap
 - std::make_heap() does this
 - Let's see how...
- Basic operation: Given two heaps we can try to make one heap by unifying them with some new, arbitrary value but it likely won't be a heap
- How can we make a heap from this non-heap
- Heapify!! (we did this in pop())
Converting An Array to a Heap

- To convert an array to a heap we can use the idea of first making heaps of both sub-trees and then combining the sub-trees (a.k.a. semi heaps) into one unified heap by calling heapify() on their parent()

- First consider all leaf nodes, are they valid heaps if you think of them as the root of a tree?
 - Yes!!

- So just start at the first non-leaf
Converting An Array to a Heap

• First consider all leaf nodes, are they valid heaps if you think of them as the root of a tree?
 – Yes!!
• So just start at the first non-leaf
 – Heapify(Loc. 4)

Leafs are valid heaps by definition
Converting An Array to a Heap

- Now that we have a valid heap, we can sort by top and popping...
- Can we do it in place?
 - Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area
Converting An Array to a Heap

- Now that we have a valid heap, we can sort by top and popping...
- Can we do it in place?
 - Yes, Break the array into "heap" and "sorted" areas, iteratively adding to the "sorted" area
Converting An Array to a Heap

- Notice the result is in descending order.
- How could we make it ascending order?
 - Create a max heap rather than min heap.
Build-Heap Run-Time

• To build a heap from an arbitrary array require n calls to heapify.

• Heapify takes $O(_________)$

• Let's be more specific:
 – Heapify takes $O(h)$
 – Because most of the heapify calls are made in the bottom of the tree (shallow h), it turns out heapify can be done in $O(n)$
 • $n/2$ calls with $h=1$
 • $n/4$ calls with $h=2$
 • $n/8$ calls with $h=3$
 • Totals: $1*n/2 + 2*n/4 + 3*n/8$
 • $T(n) = \sum_{h=1}^{\log n} h * n * \left(\frac{1}{2}\right)^h = n * \sum_{h=1}^{\log n} h * \left(\frac{1}{2}\right)^h$
 • $T(n) = n * \theta(c) = \theta(n)$
Proving the Runtime of Build-Heap

• Let us prove that $\sum_{h=1}^{\log(n)} h \ast \left(\frac{1}{2}\right)^h$ is $\Theta(1)$

• $T(n) = \sum_{h=1}^{\log(n)} h \ast \left(\frac{1}{2}\right)^h < \sum_{h=1}^{\infty} h \ast \left(\frac{1}{2}\right)^h$

• Now recall: $\sum_{h=1}^{\infty} (x)^h = \frac{1}{1-x}$ for $x < 1$ \[x=1/2 \text{ for this problem}\]

• Now suppose we take the derivative of both sides

• $\sum_{h=1}^{\infty} h \cdot (x)^{h-1} = \frac{1}{(1-x)^2}$

• Suppose we multiply both sides by x:

$x \cdot \sum_{h=1}^{\infty} h \cdot (x)^{h-1} = \sum_{h=1}^{\infty} h \cdot (x)^h = \frac{x}{(1-x)^2}$

• For $x = \frac{1}{2}$ we have $\sum_{h=1}^{\infty} h \cdot \left(\frac{1}{2}\right)^h = \frac{1}{(1-\frac{1}{2})^2} = 2$

• Thus for Build-Heap: $T(n) = n \ast \sum_{h=1}^{\log(n)} h \ast \left(\frac{1^h}{2}\right) = n \ast \Theta(c) = \Theta(n)$
Reference/Optional

C++ STL HEAP IMPLEMENTATION
STL Priority Queue

- Implements a heap
- Operations:
 - `push(new_item)`
 - `pop()`: removes but does not return top item
 - `top()` return top item (item at back/end of the container)
 - `size()`
 - `empty()`

- By default, implements a **max** heap but can use comparator functors to create a **min**-heap
- Runtime: $O(\log(n))$ push and pop while all other functions are constant (i.e. $O(1)$)

```cpp
#include <iostream>
#include <queue>
using namespace std;

int main ()
{
    priority_queue<int> mypq;
    mypq.push(30);
    mypq.push(100);
    mypq.push(25);
    mypq.push(40);
    cout << "Popping out elements...";
    while (!mypq.empty()) {
        cout << " " << mypq.top();
        mypq.pop();
    }
    cout << endl;
    return 0;
}
```

Code here will print:

```
100 40 30 25
```
STL Priority Queue Template

- Template that allows type of element, container class, and comparison operation for ordering to be provided
- First template parameter should be type of element stored
- Second template parameter should be the container class you want to use to store the items (usually `vector<type_of_elem>`)

  ```cpp
  #include <iostream>
  #include <queue>
  using namespace std;

  int main ()
  { 
    priority_queue<int, vector<int>, greater<int>> mypq;
    mypq.push(30); mypq.push(100); mypq.push(25);
    cout << "Popping out elements..."; 
    while (!mypq.empty()) {
      cout << " " << mypq.top();
      mypq.pop();
    }
  }
  ```

 Code here will print 25, 30, 100

- Third template parameters should be comparison functor that will define the order from first to last in the container

 greater<int> will yield a min-heap
 less<int> will yield a max-heap
C++ less and greater

• If you're class already has operators < or > and you don't want to write your own functor you can use the C++ built-in functors: **less** and **greater**

• Less
 – Compares two objects of type T using the operator< defined for T

• Greater
 – Compares two objects of type T using the operator< defined for T

```cpp
template <typename T>
struct less
{
    bool operator()(const T& v1, const T& v2){
        return v1 < v2;
    }
};

template <typename T>
struct greater
{
    bool operator()(const T& v1, const T& v2){
        return v1 > v2;
    }
};
```
STL Priority Queue Template

- For user defined classes, must implement operator<() for max-heap or operator>() for min-heap OR a custom functor
- Code here will pop in order:
 - Jane
 - Charlie
 - Bill
More Details

• Behind the scenes std::priority_queue uses standalone functions defined in the algorithm library
 – push_heap
 • https://en.cppreference.com/w/cpp/algorithm/push_heap
 – pop_heap
 • https://en.cppreference.com/w/cpp/algorithm/pop_heap
 – make_heap
 • https://en.cppreference.com/w/cpp/algorithm/make_heap
SOLUTIONS
Push Heap / TrickleUp

• Add item to first free location at bottom of tree
• Recursively promote it up while it is less than its parent
 – Remember valid heap all parents < children...so we need to promote it up until that property is satisfied

```cpp
void MinHeap<T>::push(const T& item)
{
  items_.push_back(item);
  trickleUp(items_.size()-1);
}

void MinHeap<T>::trickleUp(int loc)
{
  // could be implemented recursively
  int parent = loc/2;
  while(parent >= 1 &&
        items_[loc] < items_[parent] )
  {
    swap(items_[parent], items_[loc]);
    loc = parent;
    parent = loc/2;
  }
}
```

Solutions at the end of these slides