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Motivation

Suppose a company has a unique 3-digit ID for each of 
its 1000 employees.

• We want a data structure that, when given an 
employee ID, efficiently brings up that employee’s 
record.

How should we implement this?

• An array gives O(1) access time!

Alright, how do we obtain this runtime when the keys 
are no longer so nicely ordered or non-integers??
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Maps/Dictionaries

Arrays

• An array maps integers
to values
– Given i, array[i] returns 

the value in O(1)

Maps/Dictionaries

• Dictionaries map keys to values
– Given key, k, map[k] returns the associated 

value

– Key can be anything provided…

• It has a '<' operator defined for it (C++ map) 
or some other comparator functor (other 
languages require something similar)

"Tommy" 2.5

"Jill" 3.45

map<string, double>

Pair<string,double>

3.2 2.7 3.452.91 3.8

0 1 2 3 4

4.0

5

C++ maps 

allow any 

type to be the 

key 

Arrays associate an integer with 

some arbitrary type as the value

(i.e. the key is always an integer) 

2

3.45

"Jill"

3.45
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Dictionary Implementation

• A dictionary/map can be implemented with a balanced BST
– Insert, Find, Remove = O(_________)

• Can we do better?
– Hash tables (unordered maps) offer the promise of O(____) access time

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object
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Hash Tables - Insert
• Can we use non-integer keys to index an array?

• Yes. Let us convert (i.e. "hash") the non-integer 
key to an integer 

• To insert a key, we hash it and place the key 
(and value) at that index in the array

– For now, make the unrealistic assumption that 
each unique key hashes to a unique integer

• The conversion function is known as a hash 
function, h(k)

• A hash table implements a set/map ADT
– insert(key) / insert(key,value)

– remove(key)

– lookup/find(key) => value

• Question to address:  What should we do if two keys 
("Jill" and "Erin") hash to the same location (aka a 
COLLISION)?

Bo

2.7

Ann

3.5

Jill

3.7
-

Tim

3.8

0 1 2 3 4 5

insert("Jill",3.7)

Conversion / 

Hash function

2

A map implemented as a hash table

(key=name, value = GPA)

"Jill"

Hash table parameter definitions:
n = # of keys entered (=4 above)

m = tableSize (=6 above)

𝜶 =
𝒏

𝒎
= Loading factor = 

(4/6 above)
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Hash Tables - Find

• To find a key, we simply hash it again to find 
the index where it was inserted and access it 
in the array

• How might we hash a string to an integer?

– Use ASCII codes for each character and add, 
multiply, or shift/mix them

– We then can use simple a modulo m
operation to convert the sum to a value 
between 0 to m-1 where m is the table size

– Note: All data in a computer is already bits (1s 
and 0s).  Any object can be viewed as a long 
binary number and hashed 

Bo

2.7

Ann

3.5

Jill

3.7
-

Tim

3.8

0 1 2 3 4 5

3.7

find("Jill")

Conversion / 

Hash function

2

Jill

𝜽(𝟏)

𝜽(𝟏)

+

𝜽(𝟏)

We could sum the ASCII values.

'h' = 104   'e' = 101  'l' = 108   
'l' = 108   'o' = 111
_______________________

h("hello") = 532 % m

Is this a good way to hash a string?
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Hash Tables - Remove
• To remove a key, we simply hash the key and 

mark the location as "free" again

– Could use a bool in the struct for each array 
entry (more later) to indicate it is free

• The hash function, h(k), should
– Be fast/easy to compute 

• O(|k|) – where |k| is the length of the key

• But in terms of n [# of keys in the set/map] this 
runtime is constant since |k| << n [e.g. O(1)]

– Be consistent and output the same result any 
time it is given the same input

– Distribute keys well 

• We'd like every unique key to map to a different 
index, but that turns out to be almost 
impossible.

• We'll settle for a "good" hash function where 
the probability of a key mapping to any location 
x is 1/m (i.e. uniform)

Bo

2.7

Ann

3.5
-

Tim

3.8

0 1 2 3 4 5

erase("Jill")

Conversion / 

Hash function

2

Jill

𝜽(𝟏)

𝜽(𝟏)

+

𝜽(𝟏)

Hash table parameter definitions:

n = # of keys entered
m = tableSize

𝜶 =
𝒏

𝒎
= Loading factor
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Possible Hash Functions

• Define n = # of keys stored, m = table size and suppose 
k is non-negative integer key

• Evaluate the following possible hash functions

• h(k) = 0 ? 

• h(k) = rand() mod m ?

• h(k) = k mod m ?

• Rules of thumb
– The hash function should examine the entire search key (i.e. all 

bits/characters), not just a few  digits or a portion of the key

– When modulo hashing is used, the base should be prime
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Hashing Efficiency

• If computing the hash function, 
h(k), is O(1) and the array access 
is O(1),

• Then the runtime of the 
operations is O(1)

• What might prevent us from 
achieving this O(1)?
– Collisions

Bo

2.7

Ann

3.5
-

Tim

3.8

0 1 2 3 4 5

erase("Jill")

Conversion / 

Hash function

2

Jill

𝜽(𝟏)

𝜽(𝟏)

+

𝜽(𝟏)
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24

Ordered vs. Unordered

Ordered Map/Set
– map/set 

(implemented as balanced BST)

– Log(n) runtime for insert/find/remove

– If we print each key via an in-order 

traversal of the tree, in what order will 

the keys be printed?

Unordered Map/Set
– unordered_map/unordered_set

(implemented as hash table)

– Each uses a hash table for O(1) average 

runtime to insert, find, and remove

– New to C++11 and requires compilation with 

the -std=c++11 option in g++

– Iteration will print the keys in an undefined 

order (unordered)

– Provides hash functions

for basic types: 

int, string, etc. but for 

any other type you 

must provide your 

own hash function 

(like the operator< 

for BSTs)

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object



11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Table Size and Collisions
• Suppose we want to store USC student info 

using their 10-digit USC ID as the key

– The set of all POSSIBLE keys, S, has size |S| = 1010

– But the number of keys we'd actually store, n, is 
likely much less (i.e. n << |S|)

• So how large should the table size (m) be?

________ < _____________ < _________

• But anything smaller than the size of all possible 
keys admits the chance of COLLISION

– A collision is when two keys map to the same 
location [i.e. h(k1) == h(k2) ]

– The probability of this should be low

– How we handle collisions is the major remaining 
question to answer

• You will see that table size (m) should usually be 
a prime number

Bo

2.7

Ann

3.5

Jill

3.7
-

Tim

3.8

0 1 2 3 4 5

insert("Erin",3.2)

Conversion / 

Hash function

2

COLLISION!!

h("Jill") = h("Erin")

"Erin"
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Resolving Collisions

• Collisions occur when two keys, k1 and k2, are not equal, but 
h(k1) = h(k2).

• Collisions are inevitable if the number of entries, n, is greater 
than table size, m (by pigeonhole principle) and are likely even if 
n < m (by the birthday paradox…more in our probability unit)

• Methods
– Closed Addressing (e.g. buckets or chaining):  Keys MUST live in the 

location they hash to (thus requiring multiple locations at each hash table 
index)

• Methods: 1.) Buckets, 2.) Chaining

– Open Addressing (aka probing): Keys MAY NOT live in the location they 
hash to (only requiring a single 1D array as the hash table)

• Methods:  1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing
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Closed Addressing Methods
• Make each entry in the table a fixed-

size ARRAY (bucket) or LINKED LIST 
(chain) of items/entries so all keys 
that hash to a location can reside at 
that index

– Close Addressing => A key will reside 
in the location it hashes to (it's just 
that there may be many keys (and 
values) stored at that location

• Buckets

– How big should you make each array?  

– Too much wasted space

• Chaining

– Each entry is a linked list (or, 
potentially, vector)

TimBucket 0

1

2

3

4

m-1

k,v

0

1

2

3

4

m-1

…

key, value

…

…

Jill Erin …

…

…

…

Bo …

Tim 3.8

Bo 2.7

Erin 3.2Jill 3.7

Array of Linked 

Lists
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Open Addressing and Linear Probing

• With open addressing, we keep the hash table a 1D 
array (only one location per index) but when 
collisions occur we allow keys to reside in a location 
other than h(k)

– Open Addressing => It is possible a key does NOT 
reside in the location it hashes to requiring extra 
searching in a process called probing

• For insertion: always start by checking location h(k)

– If it is open, write the key (and value) there

– Else "probe" for an empty location

• Linear Probing (other techniques in a minute)

– Let i be number of failed checks to find a blank 
location (for insertion) or the key we are looking (for 
find/remove)

– h(k,i) = (h(k)+i) mod m

– Example: If h(k) occupied (i.e. collision) then check 
h(k)+1, h(k)+2, h(k)+3, …

0

Jill1

Tom2

3

4

m-2

m-1

…

key, valueTom

h(k)
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Probing Impact on Find

• If h(k) is occupied with another key, then probe

• Insert: probe until we find a blank location

• Find/Remove: probe until we…
– Find the key we are looking for ..OR..

– _______________________________  ..OR..

– _______________________________

0

Jill1

Tom2

Ana3

4

…

5

m-1

keyinsert("Ana")

h(k)
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Probing Impact on Find

• If h(k) is occupied with another key, then probe

• Insert: probe until we find a blank location

• Find/Remove: probe until we…
– Find the key we are looking for ..OR..

– We reach a free location ..OR..

– We have looked in all possible locations (i.e. wrapped 
back to h(k) or alternatively we've performed m probes)

0

Jill1

Tom2

Ana3

4

…

5

m-1

keyinsert("Ana")

h(k)
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Removal
• Many implementations exist but we will show one 

simple way for illustration

• Each location stores two bools

– Valid:  a stored key exists in this location (or else is 
free)

– Removed: a key was erased at this location (so it is 
free for insertion, but probing must continue for 
find/remove)

• Progression:

– Initially: V=0,R=0 (Free/Never used), 

– On insert: V=1,R=0, 

– On erasure: V=0,R=1 (can return to V=1,R=0 on 
insert)

• For performance, we can periodically 
rebuild/rehash the hash table after some number 
of erasures to effectively return locations to 
free/never used

0

Jill 1,01

Tom 1,02

Ana 1,03

4

…

5

m-1

key, valid, removederase("Tom")

h(k)

0

Jill 1,01

Tom 0,12

Ana 1,03

4

…

5

m-1

key, valid, removedfind("Ana")

h(k)
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Linear Probing & Primary Clustering

• Suppose a hash table (m=10) with integer keys and 𝒉(𝒌) = 𝒌%𝒎

• Insert:  11, 21, 2, 31, 3
– Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may 

cause collisions for other nearby hash locations

• This is known as primary clustering (a few collisions to one location and 
the resulting probing cause collisions for other keys that would not have 
collided)

0

11, val1

2

3

4

8

9

…

key, value
11

h(k)

0

11, val1

21, val2

3

4

8

9

…

key, value
21

h(k)

0

11, val1

21, val2

2, val3

4

8

9

…

key, value
2

h(k)
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Quadratic Probing

• If certain data patterns lead to many 
collisions, linear probing leads to 
clusters of occupied areas in the table 
called primary clustering

• Quadratic probing tends to spread 
out data across the table by taking 
larger and larger steps until it finds an 
empty location

• Quadratic Probing
– (Again, let i be number of failed probes)

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, 
h(k)+22, h(k)+32, …

0

Jill1

Tom2

Ana3

4

…

5

Ana

h(k)

0

Jill1

Tom2

3

4

…

5 Ana

Ana

h(k)
h(k)+12

Linear Probing

Quadratic Probing

h(k)+22

h(k)+1

h(k)+2

h(k)

h(k)
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Linear vs. Quadratic Probing

• If certain data patterns lead to many 
collisions, linear probing leads to 
clusters of occupied areas in the table 
called primary clustering

• How would quadratic probing help 
fight primary clustering?

– Quadratic probing tends to spread out 
data across the table by taking larger and 
larger steps until it finds an empty 
location

0

Jill1

Tom2

Ana3

4

…

5

m-1

key, valueAna

h(k)

0

Jill1

Tom2

3

4

…

5

m-1

Ana

key, valueAna

h(k)
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Quadratic Probing Practice

• Use the hash function h(k)=k%9 to find the contents of a hash table (m=9) 
after inserting keys 36, 27, 18, 9, 0 using quadratic probing

• If your loading factor rises above 0.5, bad things can happen!

• Use the hash function h(k)=k%7 to find the contents of a hash table 
(m=10) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

• Quadratic probing only works well for prime table sizes, and keeping the 
load factor < 0.5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6
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Double Hashing

• Note: In linear and quadratic probing, if 
two keys hash to the same place (h1(k1) 
== h1(k2)) we will probe the same
sequence

• Could we probe a different sequence 
even if two keys have collided? 

– Let's use ANOTHER hash function, h2(k) 
to choose the step size of our probing 
sequence

• Double Hashing 

– (Again, let i be number of failed probes)

– Pick a second hash function h2(k) in 
addition to the primary hash function, 
h1(k)

– h(k,i) = [ h1(k) + i*h2(k) ] mod m

Sequence: 

– Start at h1(k), 

– If needed, probe h1(k) + h2(k)

– If needed, probe h1(k) + 2*h2(k)

– If needed, probe h1(k) + 3*h2(k)

0

Jill1

2

3

Tom 4

5

Ana7

h1(k)+

1*h2(k)
Ana

…

6

h1(k)+

2*h2(k)

Su

h2(k)

h1(k)

3

(probing 

stepsize)
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Double Hashing

• Assume 
– m=13, 

– h1(k) = k % 13

– h2(k) = 5 – (k % 5)

• What sequence would I probe if k = 31
– h1(31) = ___, h2(31) = _______________

– Seq: ______________________________________________

– Notice we _______________________ in the table. Why? A _____ 
table size!
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Double Hashing

• Assume 
– m=13, 

– h1(k) = k % 13

– h2(k) = 5 – (k % 5)

• What sequence would I probe if k = 31
– h1(31) = 5

– h2(31) = 5-(31 % 5) = 4 (which is the step size)

– 5 + 0*4 = 5 % 13 = 5

– 5 + 1*4 = 9 % 13 = 9

– 5 + 2*4 = 13 % 13 = 0

– 5 + 3*4 = 17 % 13 = 4

– And then onto 8, 12, 3, 7, 11, 2, 6, 10, 1 

– Notice we visited each index in the table. Why? A prime table size!
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Rehashing

• For probing (open-addressing), as α approaches 1 the 
expected number of probes/comparisons will get very large

– Capped at the tableSize, m (i.e. O(m))

• Similar to resizing a vector, we can allocate a larger prime size 
table/array

– Must rehash items to location in new table size and cannot just copy 
items to corresponding location in the new array

– Example:   h(k) = k % 7    !=   h(k) = k % 11   (e.g. k=9)

– For quadratic probing if table size m is prime, then first m/2 probes 
will go to unique locations

• General guideline for probing: keep α < ____

0 1 2 3 4 5 6

1 9 38 18

h(k) = k % 7 

0 1 2 3 4 5 6 7 8 9 10

h(k) = k % 11 
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Rehashing

• For probing (open-addressing), as α approaches 1 the 
expected number of probes/comparisons will get very large

– Capped at the tableSize, m (i.e. O(m))

• Similar to resizing a vector, we can allocate a larger prime size 
table/array

– Must rehash items to location in new table size and cannot just copy 
items to corresponding location in the new array

– Example:   h(k) = k % 7    !=   h(k) = k % 11   (e.g. k=9)

– For quadratic probing if table size m is prime, then first m/2 probes 
will go to unique locations

• General guideline for probing: keep α < 0.5

0 1 2 3 4 5 6

1 9 38 18

h(k) = k % 7 

0 1 2 3 4 5 6 7 8 9 10

1 38 18 9

h(k) = k % 11 
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Probing Technique Summary

• If h(k) is occupied with another key, then probe

• Let i be number of failed probes

• Linear Probing

– h(k,i) = (h(k)+i) mod m

• Quadratic Probing

– h(k,i) = (h(k)+i2) mod m

– If h(k) occupied, then check h(k)+12, h(k)+22, h(k)+32, …

• Double Hashing 

– Pick a second hash function h2(k) in addition to the 
primary hash function, h1(k)

– h(k,i) = [ h1(k) + i*h2(k) ] mod m

0

Jill1

Tom2

Ana3

4

…

5

m-1

key, valueTom

h(k)

0

Jill1

Tom2

3

4

…

5

m-1

Ana

key, valueTom

h(k)
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Hash Function Goals

• A "perfect hash function" should map each of the n
keys to a unique location in the table 

– Recall that we will size our table to be larger than the 
expected number of keys…i.e. n < m

– Perfect hash functions are not practically attainable

• A "good" hash function

– Is easy and fast to compute

– Scatters data uniformly throughout the hash table
• P( h(k) = x ) = 1/m   (i.e. pseudorandom)
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Hashing Efficiency
• Loading factor, α, defined as:  

– α = n / m (Really it is just the fraction of locations currently occupied)

– n=number of items in the table, m=tableSize

• For open addressing, α ≤ 1 
– Good rule of thumb: resize and rehash after α > 0.5 

• For closed addressing (chaining), α, can be greater than 1
– This is because n > m

– What is the average length of a chain in the table (e.g. 10 total items in 
a hash table with table size of 5)?

– Need to keep α constant (usually α ≤ 1 )
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Hashing Efficiency
• Loading factor, α, defined as:  

– α = n / m (Really it is just the fraction of locations currently occupied)

– n=number of items in the table, m=tableSize

• For open addressing, α ≤ 1 
– Good rule of thumb: resize and rehash after α > 0.5 

• For closed addressing (chaining), α, can be greater than 1
– This is because n > m

– What is the average length of a chain in the table (e.g. 10 total items in 
a hash table with table size of 5)?
• Average length of chain will be α = n / m

– Need to keep α constant (usually α ≤ 1 )
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Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime.  
However, they are probabilistic.

• There was a similar problem with Splay Trees: they 
had a good average runtime, but a poor worst-case 
runtime.

As of this moment, we do not have the necessary 
mathematical framework to analyze either of these 
structures.

• We’re going to start remedying that… now.
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