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Motivation

Suppose a company has a unique 3-digit ID for each of

its 1000 employees.

 We want a data structure that, when given an
employee ID, efficiently brings up that employee’s
record.

How should we implement this?

* An array gives O(1) access time!

Alright, how do we obtain this runtime when the keys
are no longer so nicely ordered or non-integers??
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Maps/Dictionaries

Arrays Maps/Dictionaries

 Anarray maps integers ¢ Dictionaries map keys to values

to values — Given key, k, mapl[k] returns the associated
value

— Given i, array[i] returns
the value in O(1) — Key can be anything provided...

* |t has a '<' operator defined for it (C++ map)
or some other comparator functor (other
languages require something similar)

2 " 3| C++ maps
l allow any

type to be the
map<string, double> key

“Tommy"| 2.5 || pair<string,double>

0O 1 2 3 4 5

3.2|12.7 ﬁZ.Ql 3.8|4.0
3.45

Arrays associate an integer with
some arbitrary type as the value

(i.e. the key is always an integer)
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School of Engineering

Dictionary Implementation

e Adictionary/map can be implemented with a balanced BST

— Insert, Find, Remove = O( )

e Can we do better?

— Hash tables (unordered maps) offer the promise of O ) access time

key value

"Jordan"| Student

object
"Frank" | Student "Percy" | Student
object | object
"Anne" | Student "Greg" | Student "Tommy"| Student
object object object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



B ()5 C Vierbi >
Hash Tables - Insert

* Can we use non-integer keys to index an array? insert("3ill",3.7)5

* Yes. Let us convert (i.e. "hash") the non-integer "Jil1l"
key to an integer

Conversion /

* Toinsert a key, we hash it and place the key Hash function

(and value) at that index in the array

. . 2
— For now, make the unrealistic assumption that J
each unique key hashes to a unique integer 0 1 2 3 4 5
* The conversion function is known as a hash 59 Asné‘ - |

function, h(k)
. A map implemented as a hash table
* A hash table implements a set/map ADT szeypzname, value = GPA)

— insert(key) / insert(key,value)

— remove(key)
Hash table parameter definitions:

+  Question to address: What should we do if two keys "~ OF keys entered (=4 above)

("Jill" and "Erin") hash to the same location (aka a m= t?lbleS|ze _(=6 above)
COLLISION)? a=_—= Loading factor =

(4/6 above)

— lookup/find(key) => value
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Hash Tables - Find

find("3ill") —1
* To find a key, we simply hash it again to find P
the index where it was inserted and access it
in the array Conversion / 0(1)
Hash function
* How might we hash a string to an integer? 2 +
— Use ASCII codes for each character and add, J
. . . 0 1 2 3 4 5
multiply, or shift/mix them Bo Ann Tim o(1)
— We then can use simple a modulo m 2.7135KHl |38
operation to convert the sum to a value 37 0_1
between 0 to m-1 where m is the table size ' 1)

— Note: All data in a computer is already bits (1s  We could sum the ASCII values.
and 0s). Any object can be viewed as a long

binary number and hashed 'h' =104 'e' =101 'l' = 108
'l = 108 'o' = 111

h("hello") = 532 % m

Is this a good way to hash a string?
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Hash Tables - Remove

* To remove a key, we simply hash the key and ~ €r@se¢("Ji11") l

mark the location as "free" again Jill
— Could use a bool in the struct for each array Conversion / (1)
entry (more later) to indicate it is free Hash function
 The hash function, h(k), should , n
— Be fast/easy to compute !
* O(|k|)—where |k] is the length of the key 0 1 2 3 4
* Butin terms of n [# of keys in the set/map] this ZB_(; gngl - Erg 6(1)
runtime is constant since |k| << n [e.g. O(1)]
— Be consistent and output the same result any (1)
time it is given the same input
— Distribute keys well Hash table parameter definitions:
* We'd like every unique key to map to a different
index, but that turns out to be almost n = # of keys entered
impossible. m = tableSize
* We'll settle for a "good" hash function where a= == Loading factor
m

the probability of a key mapping to any location

X is 1/m (i.e. uniform)
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Possible Hash Functions

 Define n = # of keys stored, m = table size and suppose
k is non-negative integer key

e Evaluate the following possible hash functions
e h(k)=07?

* h(k) =rand() mod m?

* h(k)=kmodm?

e Rules of thumb

— The hash function should examine the entire search key (i.e. all
bits/characters), not just a few digits or a portion of the key

— When modulo hashing is used, the base should be prime

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



Hashing Efficiency

e If computing the hash function,
h(k), is O(1) and the array access

is 0(1)’ erase("Jill") —l
Jill
 Then the runtime of the '
operations is O(1) oaversion | 6(1)
2 +
* What might prevent us from :
. . . 3 0O 1 2 3 4 5
achieving this O(1): o Ann. T o(1)
— Collisions 2118 =
6(1)
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Ordered vs. Unordered

Ordered Map/Set

— map/set —
(implemented as balanced BST)

Unordered Map/Set

unordered_map/unordered_set
(implemented as hash table)

Each uses a hash table for O(1) average
runtime to insert, find, and remove

— Log(n) runtime for insert/find/remove —

— If we print each key via an in-order
traversal of the tree, in what order will  —
the keys be printed?

New to C++11 and requires compilation with
the -std=c++11 optionin g++

— Iteration will print the keys in an undefined
order (unordered)

key value find("3ill") —
"Jordan” | Student — Provides hash functions Jill
| object .
for basic types: :
. . Conversion/
/ int, string, etc. but for Hash function
"Frank" | Student "Percy" | Student any other j{ype you M
object object must provide your J
own hash function 0 1 2 3 45
i Bo T Ti
(like the operator< 3
"Anne" | Student "Greg" | Student "Tommy"| Student for BSTS)
object object object 37 «——
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Table Size and Collisions

* Suppose we want to store USC student info
using their 10-digit USC ID as the key

— The set of all POSSIBLE keys, S, has size |S| = 101°

— But the number of keys we'd actually store, n, is
likely much less (i.e. n << |S])

* So how large should the table size (m) be?

< <

* But anything smaller than the size of all possible
keys admits the chance of COLLISION

— A collision is when two keys map to the same
location [i.e. h(k1) == h(k2) ]

— The probability of this should be low

— How we handle collisions is the major remaining
guestion to answer

You will see that table size (m) should usually be
©2022byaM£rime number
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inser‘t("Er‘in",3.2)—l

"Er‘in"

Conversion /
Hash function

0O 1 2 3 4 5

Bo [Annfaiil i Tim
2.7 3.5 &l 3.8

COLLISION!!
h(*Jill") = h("Erin")
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Resolving Collisions

School of Engineering

* Collisions occur when two keys, k1 and k2, are not equal, but
h(k1) = h(k2).
* Collisions are inevitable if the number of entries, n, is greater

than table size, m (by pigeonhole principle) and are likely even if
n <m (by the birthday paradox...more in our probability unit)

e Methods

— Closed Addressing (e.g. buckets or chaining): Keys MUST live in the

location they hash to (thus requiring multiple locations at each hash table
index)

* Methods: 1.) Buckets, 2.) Chaining

— Open Addressing (aka probing): Keys MAY NOT live in the location they
hash to (only requiring a single 1D array as the hash table)

* Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing
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School of Engineering

Closed Addressing I\/Ikgthods

* Make each entry in the table a fixed- BucketO | Tim
size ARRAY (bucket) or LINKED LIST 1
(chain) of items/entries so all keys 2 | W] Erin
that hash to a location can reside at 3
that index 4
— Close Addressing => A key will reside
in the location it hashes to (it's just m-1 | Bo

that there may be many keys (and

values) stored at that location
Array of Linked

* Buckets Lists key, value
— How big should you make each array? 0 Tim | 3.8
— Too much wasted space 1
° Chaining 2 Jilh | 3.7 Erin| 3.2
— Each entry is a linked list (or, 3
potentially, vector) 4
m-1 Bo | 2.7
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Open Addressing and Linear Probing

 With open addressing, we keep the hash table a 1D
array (only one location per index) but when
collisions occur we allow keys to reside in a location
other than h(k) Tom key, value

USC Viterbi

— Open Addressing => It is possible a key does NOT
reside in the location it hashes to requiring extra
searching in a process called probing

> T

Tom

* Forinsertion: always start by checking location h(k)

A wWw N PO

— Ifitis open, write the key (and value) there

— Else "probe" for an empty location

e Linear Probing (other techniques in a minute) m-2

m-1

— Let i be number of failed checks to find a blank
location (for insertion) or the key we are looking (for
find/remove)

— h(k,i) = (h(k)+i) mod m

— Example: If h(k) occupied (i.e. collision) then check
h(k)+1, h(k)+2, h(k)+3, ...
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Probing Impact on Find

insert("Ana") key
* |f h(k) is occupied with another key, then probe 0 | N
* Insert: probe until we find a blank location ; ® TJO”rL 3
* Find/Remove: probe until we... 3 | Ana |
— Find the key we are looking for ..OR.. 4
— ..OR.. 5
m-1
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Probing Impact on Find

USC Viterbi

insert("Ana") key
* |f h(k) is occupied with another key, then probe 0 | |
* Insert: probe until we find a blank location ; ® TJO”rln
* Find/Remove: probe until we... 3 | Ana |
— Find the key we are looking for ..OR.. 4
— We reach a free location ..OR.. 5
— We have looked in all possible locations (i.e. wrapped
back to h(k) or alternatively we've performed m probes) m-1
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Removal

erase("Tom") key, valid, removed

 Many implementations exist but we will show one 0
simple way for illustration 1 Jill 1,0
* Each location stores two bools 2 | Tom1,0 B
— Valid: a stored key exists in this location (or else is 3 | Analo0
free) 4
— Removed: a key was erased at this location (so it is 5
free for insertion, but probing must continue for
find/remove) m-1
. Progression; find("Ana") key, valid, removed
— Initially: V=0,R=0 (Free/Never used), 0
— Oninsert: \V=1,R=0, 1 Jill 1,0
— On erasure: V=0,R=1 (can return to V=1,R=0 on 2 | om0 B
insert) 3 Ana 1,0
* For performance, we can periodically 4
rebuild/rehash the hash table after some number S
of erasures to effectively return locations to
-1
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Linear Probing & Primary Clustering

* Suppose a hash table (m=10) with integer keys and h(k) = k%m
* |nsert: 11, 21,2,31,3

— Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may
cause collisions for other nearby hash locations

* This is known as primary clustering (a few collisions to one location and
the resulting probing cause collisions for other keys that would not have

collided)
" key, value 21 key, value . key, value

0 0 0

1 11, val 1 11, val ) 1 11, val

2 2 21, val 2 21, val B
3 3 3 2, val

4 4 4

8 8 8
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Quadratic Probing

Ana Linear Probing

* If certain data patterns lead to many
collisions, linear probing leads to
clusters of occupied areas in the table
called primary clustering

Tom h(k)+1

Q) (i
3

Ana h(k)+2

O N W N - O

* Quadratic probing tends to spread
out data across the table by taking
larger and larger steps until it finds an
empty location

Ana Quadratic Probing

0
* Quadratic Probing 1 ® Jill h(k)
— (Again, let i be number of failed probes) 2 Tom h(k)+17
— h(k,i) = (h(k)+i2) mod m j
— If h(k) occupied, then check h(k)+17, c Y h(K)+22

h(k)+22, h(k)+32, ...
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Linear vs. Quadratic Probing

USCViterbi ¢

Ana key, value
* If certain data patterns lead to many 2@ o
collisions, linear probing leads to 2 | Tom
clusters of occupied areas in the table 3 [EGIE
. . 4
called primary clustering c
 How would quadratic probing help
. . . m-1
fight primary clustering? -
Ana ey, value
— Quadratic probing tends to spread out 0
data across the table by taking larger and 1 ® Jill
larger steps until it finds an empty 2 Tom
location 3
4
) Ana
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m '1
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Quadratic Probing Practice

e Use the hash function h(k)=k%9 to find the contents of a hash table (m=9)
after inserting keys 36, 27, 18, 9, 0 using quadratic probing

* |f your loading factor rises above 0.5, bad things can happen!

e Use the hash function h(k)=k%7 to find the contents of a hash table
(m=10) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

0 1 2 3 4 5 6

* (Quadratic probing only works well for prime table sizes, and keeping the
load factor < 0.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Double Hashing

* Note: In linear and quadratic probing, if 0 Su
two keys hash to the same place (h,(k1) 1 ®T
== h,(k2)) we will probe the same > | |\ ho-
seguence Ang — 3 1*h,(k)
 Could we probe a different sequence 4 Tom
even if two keys have collided? 5 hy(k)+
— Let's use ANOTHER hash function, h,(k) 6 27
to choose the step size of our probing 7 Ana
sequence
* Double Hashing (pr03bing
— (Again, let i be number of failed probes) stepsize)
— Pick a second hash function h,(k) in Sequence:
addition to the primary hash function, — Start at h1(k),
h, (k) — If needed, probe h1(k) + h2(k)
— h(k,i) = [ hy(k) + i*h,(k) ] mod m — If needed, probe h1(k) + 2*h2(k)

— If needed, probe h1(k) + 3*h2(k)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Double Hashing

* Assume
— m=13,
— h1(k) =k % 13
— h2(k)=5-(k%5)
 What sequence would | probe if k =31
— h1(31)=__, h2(31)=

— Seq:

— Notice we in the table. Why? A
table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



i, TS(“Viterbi

School of Engineering

Double Hashing

* Assume
— m=13,
— hy(k) =k % 13
— hy(k) =5—(k % 5)
 What sequence would | probe if k =31
— h(31)=5
— h,(31) =5-(31 % 5) = 4 (which is the step size)
— 5+0%4=5%13=5
— 5+1%4=9%13=9
— 5+2*4=13%13=0
— 5+3%4=17%13=4
— Andthenonto 8,12,3,7,11,2,6,10,1
— Notice we visited each index in the table. Why? A prime table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Rehashing

* For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

* Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

* General guideline for probing: keep a <
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 -
2022 by ik etekopp, TIK e KorclR Lot may ot b sharec, upoade orcstibute h(k) =k % 11
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Rehashing

* For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

* Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

* General guideline for probing: keep a < 0.5
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 - 1 38 18 9
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Probing Technique Summary

Tom key, value
* |f h(k) is occupied with another key, then probe 0
* Letibe number of failed probes . GMB
2 Tom
* Linear Probing 3 Ana
— h(k,i) = (h(k)+i) mod m 4
* Quadratic Probing 5
— h(k,i) = (h(k)+i?) mod m
— If h(k) occupied, then check h(k)+1?, h(k)+2?, h(k)+3?, ... m-1
* Double Hashing Tom key, value
— Pick a second hash function h,(k) in addition to the 0
primary hash function, h,(k) 1 ® Jill
— h(k,i) = [ hy(k) + i*hy(k) ] mod m 2 Tom
3
4
) Ana

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m '1




Hash Function Goals

* A '"perfect hash function" should map each of the n
keys to a unique location in the table

— Recall that we will size our table to be larger than the
expected number of keys...i.e.n < m

— Perfect hash functions are not practically attainable
 A'"good" hash function

— |s easy and fast to compute

— Scatters data uniformly throughout the hash table
* P(h(k)=x)=1/m (i.e. pseudorandom)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Hashing Efficiency

* Loading factor, o, defined as:
— o =n/ m (Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1

— Good rule of thumb: resize and rehash after oo > 0.5

* For closed addressing (chaining), o, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

— Need to keep o constant (usually o< 1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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School of Engineering

Hashing Efficiency

* Loading factor, o, defined as:
— o =n/ m (Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1

— Good rule of thumb: resize and rehash after oo > 0.5

* For closed addressing (chaining), o, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

» Average length of chain willbe c=n/m

— Need to keep o constant (usually a < 1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime.
However, they are probabilistic.

 There was a similar problem with Splay Trees: they
had a good average runtime, but a poor worst-case
runtime.

As of this moment, we do not have the necessary
mathematical framework to analyze either of these
structures.

* We're going to start remedying that... now.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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