CSCl 104
Hash Tables Intro

Mark Redekopp
David Kempe

Motivation

Suppose a company has a unique 3-digit ID for each of

its 1000 employees.

 We want a data structure that, when given an
employee ID, efficiently brings up that employee’s
record.

How should we implement this?

* An array gives O(1) access time!

Alright, how do we obtain this runtime when the keys
are no longer so nicely ordered or non-integers??

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— ()5 Viterbi >
Maps/Dictionaries

Arrays Maps/Dictionaries

 Anarray maps integers ¢ Dictionaries map keys to values

to values — Given key, k, mapl[k] returns the associated
value

— Given i, array[i] returns
the value in O(1) — Key can be anything provided...

* |t has a '<' operator defined for it (C++ map)
or some other comparator functor (other
languages require something similar)

2 " 3| C++ maps
l allow any

type to be the
map<string, double> key

“Tommy"| 2.5 || pair<string,double>

0O 1 2 3 4 5

3.2|12.7 ﬁZ.Ql 3.8|4.0
3.45

Arrays associate an integer with
some arbitrary type as the value

(i.e. the key is always an integer)
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

3.45

i, TS(“Viterbi -

School of Engineering

Dictionary Implementation

e Adictionary/map can be implemented with a balanced BST

— Insert, Find, Remove = O()

e Can we do better?

— Hash tables (unordered maps) offer the promise of O) access time

key value

"Jordan"| Student

object
"Frank" | Student "Percy" | Student
object | object
"Anne" | Student "Greg" | Student "Tommy"| Student
object object object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

B ()5 C Vierbi >
Hash Tables - Insert

* Can we use non-integer keys to index an array? insert("3ill",3.7)5

* Yes. Let us convert (i.e. "hash") the non-integer "Jil1l"
key to an integer

Conversion /

* Toinsert a key, we hash it and place the key Hash function

(and value) at that index in the array

. . 2
— For now, make the unrealistic assumption that J
each unique key hashes to a unique integer 0 1 2 3 4 5
* The conversion function is known as a hash 59 Asné‘ - |

function, h(k)
. A map implemented as a hash table
* A hash table implements a set/map ADT szeypzname, value = GPA)

— insert(key) / insert(key,value)

— remove(key)
Hash table parameter definitions:

+ Question to address: What should we do if two keys "~ OF keys entered (=4 above)

("Jill" and "Erin") hash to the same location (aka a m= t?lbleS|ze _(=6 above)
COLLISION)? a=_—= Loading factor =

(4/6 above)

— lookup/find(key) => value

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e l:ﬁS(:\fhxnﬂ)i<:::>

Hash Tables - Find

find("3ill") —1
* To find a key, we simply hash it again to find P
the index where it was inserted and access it
in the array Conversion / 0(1)
Hash function
* How might we hash a string to an integer? 2 +
— Use ASCII codes for each character and add, J
. . . 0 1 2 3 4 5
multiply, or shift/mix them Bo Ann Tim o(1)
— We then can use simple a modulo m 2.7135KHl |38
operation to convert the sum to a value 37 0_1
between 0 to m-1 where m is the table size ' 1)

— Note: All data in a computer is already bits (1s We could sum the ASCII values.
and 0s). Any object can be viewed as a long

binary number and hashed 'h' =104 'e' =101 'l' = 108
'l = 108 'o' = 111

h("hello") = 532 % m

Is this a good way to hash a string?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

B ()5 Viterbi
Hash Tables - Remove

* To remove a key, we simply hash the key and ~ €r@se¢("Ji11") l

mark the location as "free" again Jill
— Could use a bool in the struct for each array Conversion / (1)
entry (more later) to indicate it is free Hash function
 The hash function, h(k), should , n
— Be fast/easy to compute !
* O(|k|)—where |k] is the length of the key 0 1 2 3 4
* Butin terms of n [# of keys in the set/map] this ZB_(; gngl - Erg 6(1)
runtime is constant since |k| << n [e.g. O(1)]
— Be consistent and output the same result any (1)
time it is given the same input
— Distribute keys well Hash table parameter definitions:
* We'd like every unique key to map to a different
index, but that turns out to be almost n = # of keys entered
impossible. m = tableSize
* We'll settle for a "good" hash function where a= == Loading factor
m

the probability of a key mapping to any location

X is 1/m (i.e. uniform)
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Possible Hash Functions

 Define n = # of keys stored, m = table size and suppose
k is non-negative integer key

e Evaluate the following possible hash functions
e h(k)=07?

* h(k) =rand() mod m?

* h(k)=kmodm?

e Rules of thumb

— The hash function should examine the entire search key (i.e. all
bits/characters), not just a few digits or a portion of the key

— When modulo hashing is used, the base should be prime

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hashing Efficiency

e If computing the hash function,
h(k), is O(1) and the array access

is 0(1)’ erase("Jill") —l
Jill
 Then the runtime of the '
operations is O(1) oaversion | 6(1)
2 +
* What might prevent us from :
. . . 3 0O 1 2 3 4 5
achieving this O(1): o Ann. T o(1)
— Collisions 2118 =
6(1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i (5 Vierbi
Ordered vs. Unordered

Ordered Map/Set

— map/set —
(implemented as balanced BST)

Unordered Map/Set

unordered_map/unordered_set
(implemented as hash table)

Each uses a hash table for O(1) average
runtime to insert, find, and remove

— Log(n) runtime for insert/find/remove —

— If we print each key via an in-order
traversal of the tree, in what order will —
the keys be printed?

New to C++11 and requires compilation with
the -std=c++11 optionin g++

— Iteration will print the keys in an undefined
order (unordered)

key value find("3ill") —
"Jordan” | Student — Provides hash functions Jill
| object .
for basic types: :
. . Conversion/
/ int, string, etc. but for Hash function
"Frank" | Student "Percy" | Student any other j{ype you M
object object must provide your J
own hash function 0 1 2 3 45
i Bo T Ti
(like the operator< 3
"Anne" | Student "Greg" | Student "Tommy"| Student for BSTS)
object object object 37 «——

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

_USCViterbi@
Table Size and Collisions

* Suppose we want to store USC student info
using their 10-digit USC ID as the key

— The set of all POSSIBLE keys, S, has size |S| = 101°

— But the number of keys we'd actually store, n, is
likely much less (i.e. n << |S])

* So how large should the table size (m) be?

< <

* But anything smaller than the size of all possible
keys admits the chance of COLLISION

— A collision is when two keys map to the same
location [i.e. h(k1) == h(k2)]

— The probability of this should be low

— How we handle collisions is the major remaining
guestion to answer

You will see that table size (m) should usually be
©2022byaM£rime number

Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

inser‘t("Er‘in",3.2)—l

"Er‘in"

Conversion /
Hash function

0O 1 2 3 4 5

Bo [Annfaiil i Tim
2.7 3.5 &l 3.8

COLLISION!!
h(*Jill") = h("Erin")

i, TS(“Viterbi 2

Resolving Collisions

School of Engineering

* Collisions occur when two keys, k1 and k2, are not equal, but
h(k1) = h(k2).
* Collisions are inevitable if the number of entries, n, is greater

than table size, m (by pigeonhole principle) and are likely even if
n <m (by the birthday paradox...more in our probability unit)

e Methods

— Closed Addressing (e.g. buckets or chaining): Keys MUST live in the

location they hash to (thus requiring multiple locations at each hash table
index)

* Methods: 1.) Buckets, 2.) Chaining

— Open Addressing (aka probing): Keys MAY NOT live in the location they
hash to (only requiring a single 1D array as the hash table)

* Methods: 1.) Linear Probing, 2.) Quadratic Probing, 3.) Double-hashing

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -

School of Engineering

Closed Addressing I\/Ikgthods

* Make each entry in the table a fixed- BucketO | Tim
size ARRAY (bucket) or LINKED LIST 1
(chain) of items/entries so all keys 2 | W] Erin
that hash to a location can reside at 3
that index 4
— Close Addressing => A key will reside
in the location it hashes to (it's just m-1 | Bo

that there may be many keys (and

values) stored at that location
Array of Linked

* Buckets Lists key, value
— How big should you make each array? 0 Tim | 3.8
— Too much wasted space 1
° Chaining 2 Jilh | 3.7 Erin| 3.2
— Each entry is a linked list (or, 3
potentially, vector) 4
m-1 Bo | 2.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Open Addressing and Linear Probing

 With open addressing, we keep the hash table a 1D
array (only one location per index) but when
collisions occur we allow keys to reside in a location
other than h(k) Tom key, value

USC Viterbi

— Open Addressing => It is possible a key does NOT
reside in the location it hashes to requiring extra
searching in a process called probing

> T

Tom

* Forinsertion: always start by checking location h(k)

A wWw N PO

— Ifitis open, write the key (and value) there

— Else "probe" for an empty location

e Linear Probing (other techniques in a minute) m-2

m-1

— Let i be number of failed checks to find a blank
location (for insertion) or the key we are looking (for
find/remove)

— h(k,i) = (h(k)+i) mod m

— Example: If h(k) occupied (i.e. collision) then check
h(k)+1, h(k)+2, h(k)+3, ...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi 2

School of Engineering

Probing Impact on Find

insert("Ana") key
* |f h(k) is occupied with another key, then probe 0 | N
* Insert: probe until we find a blank location ; ® TJO”rL 3
* Find/Remove: probe until we... 3 | Ana |
— Find the key we are looking for ..OR.. 4
— ..OR.. 5
m-1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Probing Impact on Find

USC Viterbi

insert("Ana") key
* |f h(k) is occupied with another key, then probe 0 | |
* Insert: probe until we find a blank location ; ® TJO”rln
* Find/Remove: probe until we... 3 | Ana |
— Find the key we are looking for ..OR.. 4
— We reach a free location ..OR.. 5
— We have looked in all possible locations (i.e. wrapped
back to h(k) or alternatively we've performed m probes) m-1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi (0

School of Engineering

Removal

erase("Tom") key, valid, removed

 Many implementations exist but we will show one 0
simple way for illustration 1 Jill 1,0
* Each location stores two bools 2 | Tom1,0 B
— Valid: a stored key exists in this location (or else is 3 | Analo0
free) 4
— Removed: a key was erased at this location (so it is 5
free for insertion, but probing must continue for
find/remove) m-1
. Progression; find("Ana") key, valid, removed
— Initially: V=0,R=0 (Free/Never used), 0
— Oninsert: \V=1,R=0, 1 Jill 1,0
— On erasure: V=0,R=1 (can return to V=1,R=0 on 2 | om0 B
insert) 3 Ana 1,0
* For performance, we can periodically 4
rebuild/rehash the hash table after some number S
of erasures to effectively return locations to
-1

© 2022 by ;ﬁgﬁ?glkmﬁMgccntuﬁgrdected and may not be shared, uploaded, or distributed. m

i, TS(“Viterbi

School of Engineering

Linear Probing & Primary Clustering

* Suppose a hash table (m=10) with integer keys and h(k) = k%m
* |nsert: 11, 21,2,31,3

— Notice, that the collisions of 11, 21, and 31 cause collisions for 2 and 3 which then may
cause collisions for other nearby hash locations

* This is known as primary clustering (a few collisions to one location and
the resulting probing cause collisions for other keys that would not have

collided)
" key, value 21 key, value . key, value

0 0 0

1 11, val 1 11, val) 1 11, val

2 2 21, val 2 21, val B
3 3 3 2, val

4 4 4

8 8 8

© 2022 by Mark Redeko;%. This d may not be shared, upload99 or di

USCViterbi ¢

School of Engine

Quadratic Probing

Ana Linear Probing

* If certain data patterns lead to many
collisions, linear probing leads to
clusters of occupied areas in the table
called primary clustering

Tom h(k)+1

Q) (i
3

Ana h(k)+2

O N W N - O

* Quadratic probing tends to spread
out data across the table by taking
larger and larger steps until it finds an
empty location

Ana Quadratic Probing

0
* Quadratic Probing 1 ® Jill h(k)
— (Again, let i be number of failed probes) 2 Tom h(k)+17
— h(k,i) = (h(k)+i2) mod m j
— If h(k) occupied, then check h(k)+17, c Y h(K)+22

h(k)+22, h(k)+32, ...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engine

Linear vs. Quadratic Probing

USCViterbi ¢

Ana key, value
* If certain data patterns lead to many 2@ o
collisions, linear probing leads to 2 | Tom
clusters of occupied areas in the table 3 [EGIE
. . 4
called primary clustering c
 How would quadratic probing help
. . . m-1
fight primary clustering? -
Ana ey, value
— Quadratic probing tends to spread out 0
data across the table by taking larger and 1 ® Jill
larger steps until it finds an empty 2 Tom
location 3
4
) Ana
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m '1

e — 5 iterbi -
Quadratic Probing Practice

e Use the hash function h(k)=k%9 to find the contents of a hash table (m=9)
after inserting keys 36, 27, 18, 9, 0 using quadratic probing

* |f your loading factor rises above 0.5, bad things can happen!

e Use the hash function h(k)=k%7 to find the contents of a hash table
(m=10) after inserting keys 14, 8, 21, 2, 7 using quadratic probing

0 1 2 3 4 5 6

* (Quadratic probing only works well for prime table sizes, and keeping the
load factor < 0.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi <2

School of Engineering

Double Hashing

* Note: In linear and quadratic probing, if 0 Su
two keys hash to the same place (h,(k1) 1 ®T
== h,(k2)) we will probe the same > | |\ ho-
seguence Ang — 3 1*h,(k)
 Could we probe a different sequence 4 Tom
even if two keys have collided? 5 hy(k)+
— Let's use ANOTHER hash function, h,(k) 6 27
to choose the step size of our probing 7 Ana
sequence
* Double Hashing (pr03bing
— (Again, let i be number of failed probes) stepsize)
— Pick a second hash function h,(k) in Sequence:
addition to the primary hash function, — Start at h1(k),
h, (k) — If needed, probe h1(k) + h2(k)
— h(k,i) = [hy(k) + i*h,(k)] mod m — If needed, probe h1(k) + 2*h2(k)

— If needed, probe h1(k) + 3*h2(k)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — ()5 Viterbi
Double Hashing

* Assume
— m=13,
— h1(k) =k % 13
— h2(k)=5-(k%5)
 What sequence would | probe if k =31
— h1(31)=__, h2(31)=

— Seq:

— Notice we in the table. Why? A
table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Double Hashing

* Assume
— m=13,
— hy(k) =k % 13
— hy(k) =5—(k % 5)
 What sequence would | probe if k =31
— h(31)=5
— h,(31) =5-(31 % 5) = 4 (which is the step size)
— 5+0%4=5%13=5
— 5+1%4=9%13=9
— 5+2*4=13%13=0
— 5+3%4=17%13=4
— Andthenonto 8,12,3,7,11,2,6,10,1
— Notice we visited each index in the table. Why? A prime table size!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCViterbi @
Rehashing

* For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

* Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

* General guideline for probing: keep a <
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 -
2022 by ik etekopp, TIK e KorclR Lot may ot b sharec, upoade orcstibute h(k) =k % 11

- 00000000 USCViterbi ‘
Rehashing

* For probing (open-addressing), as a approaches 1 the
expected number of probes/comparisons will get very large

— Capped at the tableSize, m (i.e. O(m))

* Similar to resizing a vector, we can allocate a larger prime size

table/array

— Must rehash items to location in new table size and cannot just copy
items to corresponding location in the new array

— Example: h(k)=k% 7 != h(k)=k% 11 (e.g. k=9)
— For quadratic probing if table size m is prime, then first m/2 probes
will go to unique locations

* General guideline for probing: keep a < 0.5
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10
1 9 38 18 - 1 38 18 9

© 2022 by Mark Redekopp. m&merﬁs Kotgc/gd Z1d may not be shared, uploaded, or distributed. h (k) - k % ll

USC Viterbi (2
Probing Technique Summary

Tom key, value
* |f h(k) is occupied with another key, then probe 0
* Letibe number of failed probes . GMB
2 Tom
* Linear Probing 3 Ana
— h(k,i) = (h(k)+i) mod m 4
* Quadratic Probing 5
— h(k,i) = (h(k)+i?) mod m
— If h(k) occupied, then check h(k)+1?, h(k)+2?, h(k)+3?, ... m-1
* Double Hashing Tom key, value
— Pick a second hash function h,(k) in addition to the 0
primary hash function, h,(k) 1 ® Jill
— h(k,i) = [hy(k) + i*hy(k)] mod m 2 Tom
3
4
) Ana

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. m '1

Hash Function Goals

* A '"perfect hash function" should map each of the n
keys to a unique location in the table

— Recall that we will size our table to be larger than the
expected number of keys...i.e.n < m

— Perfect hash functions are not practically attainable
 A'"good" hash function

— |s easy and fast to compute

— Scatters data uniformly throughout the hash table
* P(h(k)=x)=1/m (i.e. pseudorandom)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Hashing Efficiency

* Loading factor, o, defined as:
— o =n/ m (Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1

— Good rule of thumb: resize and rehash after oo > 0.5

* For closed addressing (chaining), o, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

— Need to keep o constant (usually o< 1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Hashing Efficiency

* Loading factor, o, defined as:
— o =n/ m (Really it is just the fraction of locations currently occupied)
— n=number of items in the table, m=tableSize

* For open addressing, a <1

— Good rule of thumb: resize and rehash after oo > 0.5

* For closed addressing (chaining), o, can be greater than 1
— This is because n >m

— What is the average length of a chain in the table (e.g. 10 total items in
a hash table with table size of 5)?

» Average length of chain willbe c=n/m

— Need to keep o constant (usually a < 1)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hash Tables are Awesome!

Hash tables provide a very lucrative potential runtime.
However, they are probabilistic.

 There was a similar problem with Splay Trees: they
had a good average runtime, but a poor worst-case
runtime.

As of this moment, we do not have the necessary
mathematical framework to analyze either of these
structures.

* We're going to start remedying that... now.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

	Slide 1: CSCI 104 Hash Tables Intro
	Slide 2: Motivation
	Slide 3: Maps/Dictionaries
	Slide 4: Dictionary Implementation
	Slide 5: Hash Tables - Insert
	Slide 6: Hash Tables - Find
	Slide 7: Hash Tables - Remove
	Slide 8: Possible Hash Functions
	Slide 9: Hashing Efficiency
	Slide 10: Ordered vs. Unordered
	Slide 11: Table Size and Collisions
	Slide 12: Resolving Collisions
	Slide 13: Closed Addressing Methods
	Slide 14: Open Addressing and Linear Probing
	Slide 15: Probing Impact on Find
	Slide 16: Probing Impact on Find
	Slide 17: Removal
	Slide 18: Linear Probing & Primary Clustering
	Slide 19: Quadratic Probing
	Slide 20: Linear vs. Quadratic Probing
	Slide 21: Quadratic Probing Practice
	Slide 22: Double Hashing
	Slide 23: Double Hashing
	Slide 24: Double Hashing
	Slide 25: Rehashing
	Slide 26: Rehashing
	Slide 27: Probing Technique Summary
	Slide 28: Hash Function Goals
	Slide 29: Hashing Efficiency
	Slide 30: Hashing Efficiency
	Slide 31: Hash Tables are Awesome!

