
1

CSCI 104
Graph Representation and Traversals

Mark Redekopp

David Kempe

Sandra Batista

2

GRAPH REPRESENTATIONS

3

Graph Notation
• A graph is a collection of vertices

(or nodes) and edges that
connect vertices a

b

d

c

h

e
f

g

a

b

c

d

e

f

g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11

• Let V be the set of vertices

• Let E be the set of edges

• Let |V| or n refer to the number

of vertices

• Let |E| or m refer to the

number of edges

An edge

A vertex

4

Graphs in the Real World

• Social networks

• Computer networks / Internet

• Path planning

• Interaction diagrams

• Bioinformatics

5

Basic Graph Representation
• Can simply store edges in a list

– Unsorted

– Sorted

a

b

d

c

h

e
f

g

a

b

c

d

e

f

g

h

V

(a,c)

(a,e)

(b,h)

(b,c)

(c,e)

(c,d)

(c,g)

(d,f)

(e,f)

(f,g)

(g,h)

E

|V|=n=8 |E|=m=11

6

Graph ADT

• What operations would you want to perform on a
graph?

• addVertex() : Vertex

• addEdge(v1, v2)

• getAdjacencies(v1) : List<Vertices>
– Returns any vertex with an edge from v1 to itself

• removeVertex(v)

• removeEdge(v1, v2)

• edgeExists(v1, v2) : bool
#include<iostream>
using namespace std;

template <typename V, typename E>
class Graph{

};

Perfect for templating the data associated

with a vertex and edge as V and E

7

More Common Graph Representations
• Graphs are really just a list of lists

– List of vertices each having their own list of
adjacent vertices

• Alternatively, sometimes graphs are also
represented with an adjacency matrix

– Entry at (i,j) = 1 if there is an edge between
vertex i and j, 0 otherwise

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation
How would you express this

using the ADTs you've learned?

8

Graph Representations
• Let |V| = n = # of vertices and

|E| = m = # of edges

• Adjacency List Representation
– O(_______________) memory storage

– Existence of an edge requires O(_____________) time

• Adjacency Matrix Representation
– O(_______________) storage

– Existence of an edge requires O(_________) lookup

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

How would you express this

using the ADTs you've learned?

9

Graph Representations
• Let |V| = n = # of vertices and |E| = m = # of edges

• Adjacency List Representation
– O(|V| + |E|) memory storage

– Define degree to be the number of edges incident on a vertex (deg(a)
= 2, deg(c) = 5, etc.

– Existence of an edge requires searching the adjacency list in O(deg(v))

• Adjacency Matrix Representation
– O(|V|2) storage

– Existence of an edge requires O(1) lookup (e.g. matrix[i][j] == 1)

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

10

Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

11

Graph Representations
• Can 'a' get to 'b' in two hops?

• Adjacency List

– For each neighbor of a…

– Search that neighbor's list for b

• Adjacency Matrix

– Take the dot product of row a & column b

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 1 0 0 0 0 1

c 1 1 0 1 1 0 1 0

d 0 0 1 0 0 1 0 0

e 1 0 1 0 0 1 0 0

f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1

h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

c,ea

b

c

d

e

f

g

h

c,h

a,b,d,e,g

c,f

a,c,f

d,e,g

c,f,h

b,g

int sum = 0;
for(int i=0; i < n; i++){
sum += adj[src][i]*adj[i][dst];

}
if(sum > 0) // two-hop path exists

12

Directed vs. Undirected Graphs
• In the previous graphs, edges were undirected (meaning

edges are 'bidirectional' or 'reflexive')

– An edge (u,v) implies (v,u)

• In directed graphs, links are unidirectional

– An edge (u,v) does not imply (v,u)

– For Edge (u,v): the source is u, target is v

• For adjacency list form, you may need 2 lists per
vertex for both predecessors and successors

a

b

d

c

h

e
f

g

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
rc

e

Target

c,ea

b

c

d

e

f

g

h

h

b,d,e,g

f

f

f

g

L
is

t
o

f
V

e
rt

ic
e

s

A
d
ja

c
e
n
c
y
 L

is
ts

13

Directed vs. Undirected Graphs
• In directed graph with edge (src,tgt) we define

– Successor(src) = tgt

– Predecessor(tgt) = src

• Using an adjacency list representation may
warrant two lists predecessors and successors

a

b

d

c

h

e
f

g

c,ea

b

c

d

e

f

g

h

h

b,d,e,g

f

f

f

g

L
is

t
o
f

V
e
rt

ic
e
s

a b c d e f g h

a 0 0 1 0 1 0 0 0

b 0 0 0 0 0 0 0 1

c 0 1 0 1 1 0 1 0

d 0 0 0 0 0 1 0 0

e 0 0 0 0 0 1 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0

h 0 0 0 0 0 0 1 0

Adjacency Matrix Representation

S
o
u
rc

e

Target

c

a

c

a,c

d, e, g

c,h

b

Succs

(Outgoing)

Preds

(Incoming)

14

Graph Runtime, |V| = n, |E| =m
Operation vs

Implementation
for Edges

Add edge Delete Edge Test Edge Enumerate
edges for single

vertex

Unsorted array
or Linked List

Sorted array

Adjacency List

Adjacency
Matrix

15

Graph Runtime, |V| = n, |E| =m
Operation vs

Implementation
for Edges

Add edge Delete Edge Test Edge Enumerate
edges for single

vertex

Unsorted array
or Linked List

Θ(1) Θ(m) Θ(m) Θ(m)

Sorted array Θ(m) Θ(m) Θ(log m)
[if binary search

used]

Θ(log
m)+Θ(deg(v))

[if binary search
used]

Adjacency List Time to find List
for a given

vertex + Θ(1)

Time to find List
for a given vertex

+ Θ(deg(v))

Time to find List
for a given

vertex +
Θ(deg(v))

Time to find List
for a given

vertex +
Θ(deg(v))

Adjacency
Matrix

Θ(1) Θ(1) Θ(1) Θ(v)

16

TREES

A graph with restrictions

17

Tree Definitions – Part 1
• Definition: A connected, acyclic (no cycles) graph with:

– A root node, r, that has 0 or more subtrees

– Exactly one path between any two nodes

• In general:

– Nodes have exactly one parent (except for the root which
has none) and 0 or more children

• d-ary tree

– Tree where each node has at most d children

– Binary tree = d-ary Tree with d=2

parent

Right child

siblings

DescendantLeaf

Left child

Ancestor

Terms:
• Parent(i): Node directly

above node i

• Child(i): Node directly below

node i

• Siblings: Children of the

same parent

• Root: Only node with no

parent

• Leaf: Node with 0 children

• Height: Number of nodes on

longest path from root to any

leaf

• Subtree(n): Tree rooted at

node n

• Ancestor(n): Any node on

the path from n to the root

• Descendant(n): Any node in

the subtree rooted at n

root

subtree

A 3-ary

(trinary)

tree

18

Tree Definitions – Part 2
• Tree height: maximum # of nodes on a path from root to

any leaf

• Full d-ary tree, T, where

– Every vertex has 0 or d children and all leaf nodes are at the
same level (i.e. adding 1 more node requires increasing the
height of the tree)

• Complete d-ary tree

– Top h-1 levels are full AND bottom level is filled left-to-right

– Each level is filled left-to-right and a new level is not started
until the previous one is complete

• Balanced d-ary tree

– Tree where, for EVERY node, the subtrees for each child
differ in height by at most 1

Full

Complete, but not full

Full

Complete, but not fullDAPS, 6th Ed. Figure 15-8

19

Tree Height

• A full or complete binary tree of n nodes has height,
h= 𝑙𝑜𝑔2(𝑛 + 1)
– This implies the minimum height of any tree with n nodes is

𝑙𝑜𝑔2(𝑛 + 1)

• The maximum height of a tree with n nodes is, ___

15 nodes => height log2(16) = 4

5 nodes => height = __

20

TREE IMPLEMENTATIONS

Array-based and Link-based

21

Array-Based Complete Binary Tree

• Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

• Can you find the mathematical relation for finding the index of node i's
parent, left, and right child?

– Parent(i) = __________

– Left_child(i) = ___________

– Right_child(i) = ___________

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = _______

Left_child(5) = ________

Right_child(5) = _________

22

Array-Based Complete Binary Tree

• Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

• Can you find the mathematical relation for finding node i's parent, left,
and right child?

– Parent(i) = i/2

– Left_child(i) = 2*i

– Right_child(i) = 2*i + 1

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = 5/2 = 2

Left_child(5) = 2*5 = 10

Right_child(5) = 2*5+1 = 11

Non-complete binary trees require much

more bookeeping to store in arrays…usually

link-based approaches are preferred

23

0-Based Indexing

• Now let's assume we start the root at index 0 of the array

• Can you find the mathematical relation for finding the index of node i's
parent, left, and right child?

– Parent(i) = __________

– Left_child(i) = ___________

– Right_child(i) = ___________

7

918

19 35 14 10

28 39 36 43 16 17

7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12

parent(5) = _______

Left_child(5) = ________

Right_child(5) = _________

24

D-ary Array-based Implementations

• Arrays can be used to store
d-ary complete trees

– Adjust the formulas derived
for binary trees in previous
slides in terms of d

7

18 9 19

35 21 26

A 3-ary (trinary) tree

7 18 9 19

0 1 2 3 4

35 21 26

5 6

25

Link-Based Approaches

• For an arbitrary (non-
complete) d-ary tree we
need to use pointer-based
structures
– Much like a linked list but

now with two pointers per
Item

• Use NULL pointers to
indicate no child

• Dynamically allocate and
free items when you
add/remove them

#include<iostream>
using namespace std;

template <typename T>
struct Item {

T val;
Item<T>* left,right;
Item<T>* parent;

};
// Bin. Search Tree
template <typename T>
class BinTree
{
public:
BinTree();
~BinTree();
void add(const T& v);
...
private:
Item<T>* root_;
};

T

val

Item<T>*

right

Item<T> blueprint:

class

BinTree<T>:

Item<T>*

left

0x0 root_

Item<T>*

parent

26

Link-Based Approaches
• Add(5)

• Add(6)

• Add(7)

0x1c0 root_

val

7

right

NULL

Left

NULL

0x0e0

0x1c0 root_

val

5

right

NULL

Left

NULL

class

LinkedBST:
0x0 root_

1

2
0x1c0 root_

val

5

right

0x2a0

Left

NULL

val

6

right

NULL

Left

NULL

0x2a0

3 4

0x1c00x1c0 parent

NULL
parent

NULL

parent

0x1c0

val

5

right

0x2a0

Left

NULL

val

6

right

0x0e0

Left

NULL

0x2a0

0x1c0
parent

NULL

parent

0x1c0

parent

0x2a0

