CSCl 104
Graph Representation and Traversals

Mark Redekopp
David Kempe
Sandra Batista

GRAPH REPRESENTATIONS

* A graph is a collection of vertices

USCViterbi @

School of Engine

Graph Notation

(or nodes) and edges that
connect vertices

<

o Q -~ 0® O O T 9

|V[=n=8

E

(a,c)
(a.e)
(b,h)
(b,c)
(c.e)
(c,d)
(c.9)
(d,f)
(e.f)
(f.0)
(9,h)

IE|=m=11

Let V be the set of vertices

Let E be the set of edges

Let [V| or n refer to the number
of vertices

Let |E| or m refer to the
number of edges

e USCViterbi 9

Graphs in the Real World

* Social networks

 Computer networks / Internet
e Path planning

* |Interaction diagrams

* Bioinformatics

USCViterbi @

School of Eng

Basic Graph Representation

e Can simply store edges in a list

— Unsorted
— Sorted

>oQ -0 QO O T QD | <

|V[=n=8

(a,c)
(a.e)
(b,h)
(b,c)
(c.e)
(c,d)
(c.9)
(d,f)
(e.f)
(f.0)
(9,h)

IE|=m=11

Graph ADT

 What operations would you want to perform on a
graph?

 addVertex() : Vertex

 addEdge(vl, v2)

« getAdjacencies(vl) : List<Vertices>
— Returns any vertex with an edge from vl to itself

 removeVertex(v)
* removeEdge(vl, v2)

. . #include<iostream>
¢ EdgeEX].StS(Vl, VZ) . bOOl using namespace std;
template <typename V, typename E>
class Graph{

Perfect for templating the data associated
with a vertex and edge as V and E

USC Viterbi (7

School of Engineering

More Common Graph Representations

Graphs are really just a list of lists

— List of vertices each having their own list of
adjacent vertices

Alternatively, sometimes graphs are also
represented with an adjacency matrix

— Entry at (i,j) = 1 if there is an edge between
vertex i and j, 0 otherwise

a b c d e f g h
a LGeE
" a 0 0 1 0 1 0 0 0
D b Cah (7))
O A b 0 0 1 0 0 o0 0 1
5 ¢ |ab.d.eqg =
Q C 1 1 0 1 1 0 1 0
> c,f >
d ’ O
— - d 0 0 1 0 0 1 0 0
O e |ack 3
= e 1 0 1 0 0 1 0 0
4l f [deg S,
j) f 0 0o 0 1 1 0 1 0
g c,f,h <
- g 0 0 1 0 0 1 0 1
b,g h 0 1 0 0 0o o0 1 0

How would you express this

using the ADTS you've learned? Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

Let |V| = n = # of vertices and
|E| = m =# of edges

Adjacency List Representation

- Of) memory storage

— Existence of an edge requires O() time

Adjacency Matrix Representation

- Of) storage
— Existence of an edge requires O() lookup
a b c d e f g h
a LGeE
" a 0 0 1 0 1 0 0 O
o b [c.h %)
O a b o o0 1 0 ©0 o0 o0 1
5 ¢ |ab.d.eqg =
() C 1 1 0 1 1 0 1 0
> d [cd)
Y— c d 0 0 1 0 0 1 0 0
O e |ack 3
0 e 1 0 1 0 0 1 0 0
4l f [ded S,
= f 0 0 0 1 1 0 1 0
g c,f,h <
h g 0 0 1 0 0 1 0 1
b’g h 0 1 0 0 0 0 1 0

How would you express this

using the ADTS you've learned? Adjacency Matrix Representation

USC Viterbi 2

School of Engineering

Graph Representations

 Let |V| =n=#o0of vertices and |E| = m = # of edges

* Adjacency List Representation
— O(|V]| + |E|) memory storage
— Define degree to be the number of edges incident on a vertex (deg(a)
=2, deg(c) =5, etc.
— Existence of an edge requires searching the adjacency list in O(deg(v))

* Adjacency Matrix Representation
— O(]V]?) storage
— Existence of an edge requires O(1) lookup (e.g. matrix[i][j]==1)

a b c d e f g h
a LGeE
" a 0 0 1 0 1 0 0 0
D b Cah (7))
O A b 0 0 1 0 0 o0 0 1
5 ¢ |ab.d.eqg =
Q C 1 1 0 1 1 0 1 0
> c,f >
d ’ O
— - d 0 0 1 0 0 1 0 0
O e |ack 3
= e 1 0 1 0 0 1 0 0
4l f [ded S,
j) f 0 0o 0 1 1 0 1 0
g c,f,h <
H g 0 0 1 0 0 1 0 1
b,g h 0 1 0 0 0o o0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

e Can'a'getto'b'intwo hops?

e Adjacency List
— For each neighbor of a...
— Search that neighbor's list for b
* Adjacency Matrix
— Take the dot product of row a & column b

a Lce a b C d e f g h
b c.h a 0 0 1 0 1 0 0 0
c a.b.d.e.q b 0 0 1 0 0 0 0 1
d C,f o 1 1 0 1 1 0 1 0
e a.cf d 0 0 1 0 0 1 0 0
f d.e.q e 1 0 1 0 0 1 0 0
g c.fh f 0 0 0 1 1 0 1 0

g 0 0 1 0 0 1 0 1
h b’g h 0 1 0 0 0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Graph Representations

e Can'a'getto'b'intwo hops?

e Adjacency List
— For each neighbor of a...
— Search that neighbor's list for b
* Adjacency Matrix
— Take the dot product of row a & column b

int sum = 0;
for(int i=0; i < n; i++){
sum += adj[src][i]*adj[i][dst];

} a b c d e f g h
N if(sum > @) // two-hop path exists 5 0 0 1 0 1 0 0 0
a LG¢€ b 0 0 1 0 0 0 0 1
b |C.h ¢c 1 1 0 1 1 0 1 o
c Labdeqg d 0o o 1 0 0 1 0 o0
d Lc.f e 1 0 1 0 0 1 0 0
e |acf f o 0 o0 1 1 0 1 0
f [d.eqQ g 0 0 1 0 o0 1 0 1
g |Gfh h o 1 o0 ©0 0 0 1 0
h |byg Adjacency Matrix Representation

USC Viterbi 2

School of Engineering

Directed vs. Undirected Graphs

In the previous graphs, edges were undirected (meaning
edges are 'bidirectional’ or 'reflexive')

— An edge (u,v) implies (v,u)
In directed graphs, links are unidirectional

— An edge (u,v) does not imply (v,u)

— For Edge (u,v): the source is u, target is v
For adjacency list form, you may need 2 lists per
vertex for both predecessors and successors

ce a b C d e f g h
a LC,
a 0 ©O0 1 0 1 o0 o0 o
S 2 b 0o 0O O0 0 ©O0 o0 o0 1
= b.d,e,q 82
v C A S A= 1
) ; > c 0 1 o0 1 1 o0 1 o
> d o o
- ‘ 2 ©d o 0 O o0 0 1 0 0
e) =
= f O Qe 0o 0 0 0 0o 1 0 0
— : '<5E' f 0o 0 O O O0O o0 ©0 o0
ﬁ g 0 0 0 O ©O0 1 o0 o
g h o o o0 ©O0 ©o0 0 1 0

Adjacency Matrix Representation

USC Viterbi

School of Engineering

Directed vs. Undirected Graphs

In directed graph with edge (src,tgt) we define b

— Successor(src) = tgt
— Predecessor(tgt) = src

Using an adjacency list representation may
warrant two lists predecessors and successors

Target

a (&€ a b c d e f g h

§ b Lh ¢ a 0 O0 1 0 1 0 0 o0
gl C bdeg |a b 0 0 0 O0 0 0 0 1
>l d f ¢ ¢c 0 1 o0 1 1 0 1 o0
4; e a,C Sd4 0o 0o o0 0 0 1 0 o0
O f d.e.g e 0 0 0 0 0 1 0 o0
g |f c,h 7 f 0o O 0O O O 0 0 O

h |g b g 0 0 0O O 0 1 0 o0
Succs Preds h 0 0 0 0 0 0 1 0

(Outgoing) (Incoming) Adjacency Matrix Representation

i, TS(“Viterbi

School of Engineering

E| =m

Graph Runtime, |V| =n,

Operation vs Add edge Delete Edge Test Edge Enumerate
Implementation edges for single
for Edges vertex

Unsorted array
or Linked List

Sorted array

Adjacency List

Adjacency
Matrix

i, TS(“Viterbi 9

School of Engineering

El] =m

Graph Runtime, |V| =n,

Operation vs Add edge Delete Edge Test Edge Enumerate
Implementation edges for single
for Edges vertex
Unsorted array O(1) O(m) O(m) O(m)

or Linked List

Sorted array ©(m) ©(m) O(log m) O(log
[if binary search | m)+O(deg(v))
used]
[if binary search
used]
Adjacency List | Time to find List | Time to find List | Time to find List | Time to find List
for a given for a given vertex for a given for a given
vertex + O(1) + O(deg(v)) vertex + vertex +
O(deg(v)) O(deg(v))
Adjacency O(1) O(1) O(1) O(v)

Matrix

A graph with restrictions

TREES

- USCViterbi@
Tree Definitions — Part 1

Definition: A connected, acyclic (no cycles) graph with:

— Aroot node, r, that has 0 or more subtrees
— Exactly one path between any two nodes
In general:

— Nodes have exactly one parent (except for the root which
has none) and 0 or more children

d-ary tree
— Tree where each node has at most d children
— Binary tree = d-ary Tree with d=2

A 3-ary
(trinary)
tree

parent

root

Left child Right child

siblings

Ancestor

Leaf Descendant

subtree

School of Engineering

Terms:

Parent(i): Node directly
above node i

Child(i): Node directly below
node i

Siblings: Children of the
same parent

Root: Only node with no
parent

Leaf: Node with O children
Height: Number of nodes on
longest path from root to any
leaf

Subtree(n): Tree rooted at
node n

Ancestor(n): Any node on
the path from n to the root
Descendant(n): Any node in
the subtree rooted at n

i, TS(“Viterbi

School of Engineering

Tree Definitions — Part 2

* Tree height: maximum # of nodes on a path from root to
any leaf ?,/ \‘I
* Full d-ary tree, T, where

— Every vertex has 0 or d children and all leaf nodes are at the Ful

same level (i.e. adding 1 more node requires increasing the
height of the tree)

* Complete d-ary tree
— Top h-1levels are full AND bottom level is filled left-to-right

— Each level is filled left-to-right and a new level is not started
until the previous one is complete
* Balanced d-ary tree
— Tree where, for EVERY node, the subtrees for each child

differ in height by at most 1 Full

FAAGD &

DAPS, 6t Ed. Figure 15-8 Complete, but not full

Complete, but not full

Tree Height

* A full or complete binary tree of n nodes has height,
h=[log,(n + 1)]

— This implies the minimum height of any tree with n nodes is
llog,(n + 1)]

* The maximum height of a tree with n nodesis,

40

15 nodes => height log,(16) = 4

5nodes => height =

Array-based and Link-based

TREE IMPLEMENTATIONS

i, TS(“Viterbi -«

School of Engineering

Array-Based Complete Binary Tree

* Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index 0 is empty)

e (Canyou find the mathematical relation for finding the index of node i's
parent, left, and right child?

— Parent(i) =
— Left_child(i) =
— Right_child(i) =

o 1 2 3 4 5 6 7 8 9 10 11 12 13

em| 7 18] 9 |19(35|14(10|28|39(36|43|16 |17

parent(5) =
Left_child(5) =
Right_child(5) =

i, TS(“Viterbi (=2

School of Engineering

Array-Based Complete Binary Tree

* Binary tree that is complete (i.e. only the lowest-level contains empty
locations and items added left to right) can be stored nicely in an array
(let’s say it starts at index 1 and index O is empty)

* Canyou find the mathematical relation for finding node i's parent, left,
and right child?
— Parent(i) =i/2

. Left_Chlld(I)=2*l o 1. 2 3 4 5 6 7 8 9 10 11 12 13

7 (18| 9 119|35|14(10(28|39|36|43|16 |17
~ Right_child(i) = 2%i + 1 S G —

parent(5) =5/2=2
Left_child(5) =2*5 =10
Right_child(5) = 2*5+1 = 11

Non-complete binary trees require much
more bookeeping to store in arrays...usually
link-based approaches are preferred

P USCViterbi
0-Based Indexing

* Now let's assume we start the root at index O of the array

e (Canyou find the mathematical relation for finding the index of node i's
parent, left, and right child?
— Parent(i) =
— Left_child(i) =
— Right_child(i) =

o 1 2 3 4 5 6 7 8 9 10 11 12

7118 9 |19(35|14|10|28|39(36|43|16 |17

parent(5) =
Left_child(5) =
Right_child(5) =

D-ary Array-based Implementationsgmg

* Arrays can be used to store
d-ary complete trees

— Adjust the formulas derived
for binary trees in previous :
slides in terms of d A seary (rinary) ree

0O 1 2 3 4 5 6

7118 9 |19(35|21|26

i, TS(“Viterbi -«

Link-Based Approaches

For an arbitrary (non-
complete) d-ary tree we
need to use pointer-based
structures

— Much like a linked list but
now with two pointers per
ltem

Use NULL pointers to

indicate no child

Dynamically allocate and
free items when you
add/remove them

#include<iostream>
using namespace std;

template <typename T>
struct Item {
T val;
Item<T>* left,right;
Item<T>* parent;
}s
// Bin. Search Tree
template <typename T>
class BinTree
{
public:
BinTree();
~BinTree();
void add(const T& v);

private:

Item<T>* root_;
}s
class
BinTree<T>: Ox0 | root

School of Engineering

Item<T> blueprint:

_______ | _parent i ______
tem<T>* T iltem<T>*

L__left__| val i __right__.

i, TS(“Viterbi

Link- Based Approaches

° Add(S) class
LinkedBsT: | 9XO | root
* Add(6)
e Add(7)
0x1cO| root__ 0x1cO| root__ 9 0x1c0| root_
y parent
0X1¢0 ["parent Ox1e0 —=rent Ox1e0| "\ L L .
NULL NULL Left val right
Left val right Left val right NULL 5 0x2a0
NULL 5 NULL NULL 5 OXZEIO\‘
parent parent
0x2a0 Ox1cO 0x2a0 Ox1cO
Left val right Left val right
NULL 6 NULL NULL 6 0x0e0
parent
0x0e0 0x2a0
Left val right
NULL 7 NULL

