CSCl 104
Exceptions

Mark Redekopp
David Kempe

Code for Today

* On your VM:

— S mkdir except
— S cd except

— S wget
http://ee.usc.edu/~redekopp/cs104/except.tar

— S tar xvf except.tar

http://ee.usc.edu/~redekopp/cs104/except.tar

Recall
e Remember the List ADT as

embodied by the 'vector'
class

e Now consider error
conditions

— What member functions
could cause an error?

— How do | communicate the
error to the user?

#ifndef INTVECTOR H
#define INTVECTOR H

class IntVector {

public:

IntVector () ;
~IntVector (),
void push back(int val);
void insert (int loc, int wval);
bool remove (int wval) ;
int pop(int loc);
int& at(int loc) const;
bool empty() const;
int size () const;
void clear () ;
int find(int wval) const;

}i
#fendif

Int_vector.h

i, TS("Viterbi -

School of Engineering
¢ What If I Insert #include "int vector.h"
vold IntVector::insert (int loc, int wval)
// Invalid location

to a non-existent |
location O e S 1 aos

insert(7, 99);

O 1 2 3 4 5 6 7

3051 (52(53|54(10]

We can hijack the return value and
return an error code.

But how does the client know what
those codes mean? What if |
change those codes?

Int_vector.cpp

i, TS("Viterbi -

get() Error
* What if | try to finoluds "int_vector.n"

int IntVector::get(int loc)

getanitematan «
invalid location) hat should T dos

School of Engineering

}
return data [loc];

get(7); |

3051 (52(53|54(10]

| can't use the return value, since
it's already being used.

Could provide another reference

parameter, but that's clunky. int ¢
int get(int loc, int &error); INt_Vveclor.cpp

EXCEPTIONS

Exception Handling

* When something goes wrong in one of your functions,
how should you notify the function caller?

— Return a special value from the function?

— Return a bool indicating success/failure?

— Set a global variable?

— Print out an error message?

— Print an error and exit the program?

— Set a failure flag somewhere (like “cin” does)?

— Handle the problem and just don't tell the caller?

What Should | do?

* There's something wrong with all those options...

— You should always notify the caller something happened.
Silence is not an option.

— What if something goes wrong in a Constructor?

* You don't have a return value available
— What if the function where the error happens isn't
equipped to handle the error
e All the previous strategies are passive. They require
the caller to actively check if something went wrong.

* You shouldn't necessarily handle the error
yourself...the caller may want to deal with it?

The "assert" Statement

 The assert statement allows you to make sure certain

conditions are true and immediately halt your program
if they're not

— Good sanity checks for development/testing
— Not ideal for an end product

#include <cassert>

int divide (int num, int denom)
{
assert (denom != 0);

// if false, exit program

return (num/denom) ;

}

i, TS("Viterbi

Exception Handling

e Use C++ Exceptions!!

e Give the function caller a choice on how (or if) they want to
handle an error

— Don't assume you know what the caller wants

* Decouple and CLEARLY separate the exception processing
logic from the normal control flow of the code

* They make for much cleaner code (usually)

// try function call

int retval = doit () ; Which portion of the if statement is
if (retval == 0) { for error handling vs. actual follow-
) on operations to be performed.

else if(retvVal < 0){

}

else {

}

i (5 Vierbi
The "throw" Statement

 Used when code has encountered a problem, but the current
code can't handle that problem itself

* 'throw'interrupts the normal flow of execution and can return a
value
— Like 'return’ but special
— If no piece of code deals with it, the program will terminate
— Gives the caller the opportunity to catch and handle it

* What can you give to the throw statement?
— Anything (int, string, etc.)! But some things are better than others...

int main () {
int x; cin >> x;
divide (5, x) ;
}
int divide (int num, int denom)
{ if (denom == 0)
throw denom;
return (num/denom) ;

}

i, TS("Viterbi 2

School of Engineering

The "try" and "catch"” Statements

* try & catch are the companions to throw

 Atry block surrounds the calling of any code that may throw
an exception

* A catch block lets you handle exceptions if a throw does
happen

— You can have multiple catch blocks...but think of catch like an

overloaded function where they must be differentiated based on
number and type of parameters.

int divide (int num, int denom) try |
{ X = divide (numerator, denominator) ;
if (denom == 0))
throw denom;
tch(int badVal
return (num/denom) ; ClEhEEla it MBI
) cerr << “Can't use value “ << badValue << endl;
x = 0;
}

i, TS("Viterbi)

School of Engineering

The "try" & "catch" Flow

* catch(...) is like an 'else' or default clause that will catch any thrown type

* This example is not good style...we would never throw something
deliberately in our try block...it just illustrates the concept

try {
cout << “This code is fine.” << endl;
throw 0; //some code that always throws
cout << “This will never print.” << endl;

}

catch (int &x) {

cerr << “The throw immediately comes here.” << endl;
}
catch(string &y) {

cerr << “We won't hit this catch.” << endl;

}

catch(...) {
cerr << "Printed if the type thrown doesn't match";
cerr << " any catch clauses" << endl;

}

cout << “Everything goes back to normal here.” << endl;

Catch & The Stack

* When an exception is
thrown, the program will
work its way up the
stack of function calls
until it hits a catch()
block

 |f no catch() block exists
in the call stack, the
program will quit

int divide (int num, int denom)
{

if (denom == 0)

throw denom;

return (num/denom) ;
}
int f1l(int x)
{

return divide (x, x-2);

}

int main ()
{
int res, a;
cin >> a;
try {
res = fl(a);
}
catch (int& v) {
cout << "Problem!" << endl;
}
}

Catch & The Stack

* When an exception is
thrown, the program will
work its way up the
stack of function calls
until it hits a catch()
block

 |f no catch() block exists
in the call stack, the
program will quit

int divide (int num, int denom)
{

if (denom == 0)

throw denom;

return (num/denom) ;
}
int f1l(int x)
{

return divide (x, x-2);

}

int main ()

{

int res, a = 2;
try |
res = fl(a);

}
catch (int& v) {

cout << "Problem!" << endl;
}
}

i, TS("Viterbi

Catch & The Stack Schoclof Egincsing

* When an exception is thrown, the program will work its way up the
stack of function calls until it hits a catch() block

* |If no catch() block exists in the call stack, the program will quit

int divide (int num, int denom)
{
if (denom == 0)
throw denom;
return (num/denom) ;

}
int f1(int x) divide Oxbe8
{ Oxbec Return throw

return divide(x, x-2); 004001ca0 link
}
int main () f1 Oxbf0 Not caught...
in mailn .

keep going

| Oxbf4 | oo4001844 | Fo

int res, a;

cin >> a; Oxbf8

X
t L [N
rze; = fl(a); main caught
) ' Oxbfc | oo400120 | Reurm

catch (inté& v) {
cout << "Caught here" << endl;
}
}

Catch & The Stack

* You can use catch() blocks
to actually resolve the
problem

int divide (int num, int denom)
{

if (denom == 0)

throw denom;

return (num/denom) ;
}
int f1(int x)
{

return divide (x, x-2);

}

int main ()
{
int res, a;
cin >> a;
while (1) {
try {
res = fl(a);
break;
}
catch (int& v) {
cin >> a;
}
}
}

i, TS("Viterbi

What Should You "Throw"

e Usually, don't throw primitive values (e.g. an “int”)
— throw 123;
— The value that is thrown may not always be meaningful
— Provides no other context (what happened & where?)

e Usually, don't throw “string”
— throw “Someone passed i1n a 0 and stuff broke!”;

— Works for a human, but not much help to an application

e Use aclass, some are defined already in <stdexcept> header file

— throw std::invalid argument ("Denominator can't be 0!");
throw std::runtime error ("Epic Faill!");

— Serves as the basis for building your own exceptions
— Have a method called “what()” with extra details

— http://www.cplusplus.com/reference/stdexcept/

— You can always make your own exception class too!

i, TS("Viterbi

School of Engineering

Exception class types

* exception

— logic_error (something that
could be avoided by the
programmer)

* invalid_argument
* length_error
e out_of range

— runtime_error (something
that can't be detected until
runtime)

* overflow_error

* underflow_error

#include <iostream>
#include <stdexcept>
using namespace std;
int divide (int num, int denom)
{
if (denom == 0)
throw invalid argument ("Div by 0");
return (num/denom) ;
}
int f1(int x)
{
return divide (x, x-2);

}

int main ()
{
int res, a;
cin >> a;
while (1) {
try {
res = fl(a);
break;
}
catch(invalid argumenté& e) {
cout << e.what () << endl;
cin >> a;
}
}

— ()5 \terbi
cin Error Handling (Old)

#include <iostream>
using namespace std;

int main ()

{
int number = 0;
cout << “Enter a number: “%;
cin >> number;

if(cin.fail()) {
cerr << “That was not a number.” << endl;
cin.clear () ;
cin.ignore (1000, '\n'");

i, TS("Viterbi «

cin Error Handling (New)

#include <iostream>
using namespace std;

int main ()

{

cin.exceptions (ios::failbit); //tell “cin” it should throw

int number = 0;
try {
cout << “Enter a number: v;
cin >> number; // cin may throw if can't get an int

}

catch(ios::failure& ex) {
cerr << “That was not a number.” << endl;
cin.clear () ;

// clear out the buffer until a '\n'
cin.ignore(std::numeric limits<int>::max(), '\n');

}

i, TS("Viterbi (=2

#include <iostream>
#include <vector>
using namespace std;

int main ()

{
int index = -1;
vector<int> list (5);

if(index < 0 || index >= list.size()) {
cerr << “Your index was out of range!” << endl;

}

else {
cout << “Walue is: " << list[index] << endl;

i, TS("Viterbi -«

School of Engineering

Vector Indexing (New Way)

#include <iostream>
#include <vector>
#include <stdexcept>
using namespace std;

int main ()

{

int index = -1;
vector<int> list (5);
try {

cout << “Walue is: ™ << list[index] << endl;
}
catch (out of range &ex)
cerr << “Your index was out of range!” << endl;

}

i, TS("Viterbi

School of Engineering

* Where does break go in each case?

* In 2"d option, if there is an exception, will we break?

— No, an exception immediately ejects from the try {...} and
goes to the catch {...}

do { do {
cout << "Enter an int: "; cin.exceptions (ios::failbit) ;
cin >> X; cout << "Enter an int: ";
if(! cin.fail()){ try {
break; cin >> x;
} break;
else { }
cin.clear():; catch(ios::failureé& ex) {
cin.ignore (1000, '\n'"); cerr << "Error" << endl;
} cin.clear ()
} while (1) ; cin.ignore (1000, '\n");
}
} while (1) ;

N (S Viterbi (=
Other "throw"/"catch" Notes

#include <iostream>

* Do not use throw from a Fincluds <stdexcept>
destructor. Your code will [t civRee (int mam, Ane denon)
. . . if (denom == 0)
go into an inconsistent (and throw invalid argunent ("Div by 0%);
return (num/denom) ;
unpleasant) state. Or just L e o
crash. e
try { y = divide(x, x-2); }
* You can re-throw an exception catch (invalid_arguments e) {
cout << "Caught first here!" << endl;
youlve Caught throw; // throws 'e' again

ol
— Useful if you want to take

intermediate action, but can't

int main ()

{

int res, a;

. cin >> a;
actually handle the exception e
. . try {
— Exceptions will propagate up res = £1(a);

break;

the call hierarchy]

catch(invalid argumenté& e) {

(”U nW|nd|ng the Ca” StaCk”) cout << "Caught again" << endl;

cin >> a;

} b}

i, TS("Viterbi

Other Exceptions Notes

* Think about where you want to handle the error
— If you can handle it, handle it...
— If you can't, then let the caller

#include <iostream>
#include <stdexcept>
using namespace std;

int f1l (char* filename)

{
ifstream ifile;
ifile.exceptions (ios::failbit) ;
// will throw if opening fails
ifile.open(filename) ;

// Should you catch exception here
// Or should you catch it in main()

}

int main (int argc, char* argv|[])
{
readFile (argv[1l]):;

