
1

CSCI 104
Exceptions

Mark Redekopp

David Kempe

2

Code for Today

• On your VM:

– $ mkdir except

– $ cd except

– $ wget
http://ee.usc.edu/~redekopp/cs104/except.tar

– $ tar xvf except.tar

http://ee.usc.edu/~redekopp/cs104/except.tar

3

Recall
• Remember the List ADT as

embodied by the 'vector'
class

• Now consider error
conditions

– What member functions
could cause an error?

– How do I communicate the
error to the user?

#ifndef INTVECTOR_H

#define INTVECTOR_H

class IntVector {

 public:

 IntVector();

 ~IntVector();

 void push_back(int val);

 void insert(int loc, int val);

 bool remove(int val);

 int pop(int loc);

 int& at(int loc) const;

 bool empty() const;

 int size() const;

 void clear();

 int find(int val) const;

};

#endif

int_vector.h

4

Insert() Error
• What if I insert

to a non-existent
location

#include "int_vector.h"

void IntVector::insert(int loc, int val)

{

 // Invalid location

 if(loc > size_){

 // What should I do?

 }

}

int_vector.cpp

30 51 52 53 54

0 1 2 3 4 5

10

6 7

insert(7, 99);

We can hijack the return value and
return an error code.

But how does the client know what

those codes mean? What if I
change those codes?

5

get() Error
• What if I try to

get an item at an
invalid location

#include "int_vector.h"

int IntVector::get(int loc)

{

 // Invalid location

 if(loc >= size_){

 // What should I do?

 }

 return data_[loc];

}

int_vector.cpp

30 51 52 53 54

0 1 2 3 4 5

10

6 7

get(7);

I can't use the return value, since
it's already being used.

Could provide another reference

parameter, but that's clunky.
int get(int loc, int &error);

6

EXCEPTIONS

7

Exception Handling

• When something goes wrong in one of your functions,
how should you notify the function caller?

– Return a special value from the function?

– Return a bool indicating success/failure?

– Set a global variable?

– Print out an error message?

– Print an error and exit the program?

– Set a failure flag somewhere (like “cin” does)?

– Handle the problem and just don't tell the caller?

8

What Should I do?

• There's something wrong with all those options...

– You should always notify the caller something happened.
Silence is not an option.

– What if something goes wrong in a Constructor?
• You don't have a return value available

– What if the function where the error happens isn't
equipped to handle the error

• All the previous strategies are passive. They require
the caller to actively check if something went wrong.

• You shouldn't necessarily handle the error
yourself…the caller may want to deal with it?

9

The "assert" Statement

• The assert statement allows you to make sure certain
conditions are true and immediately halt your program
if they're not

– Good sanity checks for development/testing

– Not ideal for an end product

#include <cassert>

int divide(int num, int denom)

{

 assert(denom != 0);

 // if false, exit program

 return(num/denom);

}

10

Exception Handling

• Use C++ Exceptions!!

• Give the function caller a choice on how (or if) they want to
handle an error
– Don't assume you know what the caller wants

• Decouple and CLEARLY separate the exception processing
logic from the normal control flow of the code

• They make for much cleaner code (usually)

 // try function call

int retVal = doit();

if(retVal == 0){

}

else if(retVal < 0){

}

else {

}

Which portion of the if statement is
for error handling vs. actual follow-

on operations to be performed.

11

The "throw" Statement
• Used when code has encountered a problem, but the current

code can't handle that problem itself

• 'throw' interrupts the normal flow of execution and can return a
value
– Like 'return' but special

– If no piece of code deals with it, the program will terminate

– Gives the caller the opportunity to catch and handle it

• What can you give to the throw statement?
– Anything (int, string, etc.)! But some things are better than others...

int main(){

 int x; cin >> x;

 divide(5,x);

}

int divide(int num,int denom)

{ if(denom == 0)

 throw denom;

 return(num/denom);

}

12

The "try" and "catch" Statements

• try & catch are the companions to throw

• A try block surrounds the calling of any code that may throw
an exception

• A catch block lets you handle exceptions if a throw does
happen
– You can have multiple catch blocks…but think of catch like an

overloaded function where they must be differentiated based on
number and type of parameters.

try {

 x = divide(numerator,denominator);

}

catch(int badValue){

 cerr << “Can't use value “ << badValue << endl;

 x = 0;

}

int divide(int num,int denom)

{

 if(denom == 0)

 throw denom;

 return(num/denom);

}

13

The "try" & "catch" Flow
• catch(…) is like an 'else' or default clause that will catch any thrown type

• This example is not good style…we would never throw something
deliberately in our try block…it just illustrates the concept

try {

 cout << “This code is fine.” << endl;

 throw 0; //some code that always throws

 cout << “This will never print.” << endl;

}

catch(int &x) {

 cerr << “The throw immediately comes here.” << endl;

}

catch(string &y) {

 cerr << “We won't hit this catch.” << endl;

}

catch(...) {

 cerr << "Printed if the type thrown doesn't match";

 cerr << " any catch clauses" << endl;

}

cout << “Everything goes back to normal here.” << endl;

14

Catch & The Stack

• When an exception is
thrown, the program will
work its way up the
stack of function calls
until it hits a catch()
block

• If no catch() block exists
in the call stack, the
program will quit

int divide(int num, int denom)

{

 if(denom == 0)

 throw denom;

 return(num/denom);

}

int f1(int x)

{

 return divide(x, x-2);

}

int main()

{

 int res, a;

 cin >> a;

 try {

 res = f1(a);

 }

 catch(int& v) {

 cout << "Problem!" << endl;

 }

}

15

Catch & The Stack

• When an exception is
thrown, the program will
work its way up the
stack of function calls
until it hits a catch()
block

• If no catch() block exists
in the call stack, the
program will quit

int divide(int num, int denom)

{

 if(denom == 0)

 throw denom;

 return(num/denom);

}

int f1(int x)

{

 return divide(x, x-2);

}

int main()

{

 int res, a = 2;

 try {

 res = f1(a);

 }

 catch(int& v) {

 cout << "Problem!" << endl;

 }

}

16

Catch & The Stack
• When an exception is thrown, the program will work its way up the

stack of function calls until it hits a catch() block

• If no catch() block exists in the call stack, the program will quit

 int divide(int num, int denom)

{

 if(denom == 0)

 throw denom;

 return(num/denom);

}

int f1(int x)

{

 return divide(x, x-2);

}

int main()

{

 int res, a;

 cin >> a;

 try {

 res = f1(a);

 }

 catch(int& v) {

 cout << "Caught here" << endl;

 }

}

main
… … 0xbf8

00400120
Return

link
0xbfc

… … 0xbf0

004001844
Return

link
0xbf4

f1

… … 0xbe8

004001ca0
Return

link
0xbec

divide
throw

Not caught…

keep going

caught

17

Catch & The Stack
• You can use catch() blocks

to actually resolve the
problem

int divide(int num, int denom)

{

 if(denom == 0)

 throw denom;

 return(num/denom);

}

int f1(int x)

{

 return divide(x, x-2);

}

int main()

{

 int res, a;

 cin >> a;

 while(1){

 try {

 res = f1(a);

 break;

 }

 catch(int& v) {

 cin >> a;

 }

 }

}

18

What Should You "Throw"
• Usually, don't throw primitive values (e.g. an “int”)

– throw 123;

– The value that is thrown may not always be meaningful

– Provides no other context (what happened & where?)

• Usually, don't throw “string”
– throw “Someone passed in a 0 and stuff broke!”;

– Works for a human, but not much help to an application

• Use a class, some are defined already in <stdexcept> header file
– throw std::invalid_argument("Denominator can't be 0!");

throw std::runtime_error("Epic Fail!");

– Serves as the basis for building your own exceptions

– Have a method called “what()” with extra details

– http://www.cplusplus.com/reference/stdexcept/

– You can always make your own exception class too!

19

Exception class types
• exception

– logic_error (something that
could be avoided by the
programmer)
• invalid_argument

• length_error

• out_of_range

– runtime_error (something
that can't be detected until
runtime)
• overflow_error

• underflow_error

#include <iostream>

#include <stdexcept>

using namespace std;

int divide(int num, int denom)

{

 if(denom == 0)

 throw invalid_argument("Div by 0");

 return(num/denom);

}

int f1(int x)

{

 return divide(x, x-2);

}

int main()

{

 int res, a;

 cin >> a;

 while(1){

 try {

 res = f1(a);

 break;

 }

 catch(invalid_argument& e) {

 cout << e.what() << endl;

 cin >> a;

 }

 }

}

20

cin Error Handling (Old)

 #include <iostream>

using namespace std;

int main()

{

 int number = 0;

 cout << “Enter a number: “;

 cin >> number;

 if(cin.fail()) {

 cerr << “That was not a number.” << endl;

 cin.clear();

 cin.ignore(1000,'\n');

 }

}

21

cin Error Handling (New)

 #include <iostream>

using namespace std;

int main()

{

 cin.exceptions(ios::failbit); //tell “cin” it should throw

 int number = 0;

 try {

 cout << “Enter a number: “;

 cin >> number; // cin may throw if can't get an int

 }

 catch(ios::failure& ex) {

 cerr << “That was not a number.” << endl;

 cin.clear();

 // clear out the buffer until a '\n'

 cin.ignore(std::numeric_limits<int>::max(), '\n');

 }

}

22

Vector Indexing (Old Way)

 #include <iostream>

#include <vector>

using namespace std;

int main()

{

 int index = -1;

 vector<int> list(5);

 if(index < 0 || index >= list.size()) {

 cerr << “Your index was out of range!” << endl;

 }

 else {

 cout << “Value is: “ << list[index] << endl;

 }

}

23

Vector Indexing (New Way)

 #include <iostream>

#include <vector>

#include <stdexcept>

using namespace std;

int main()

{

 int index = -1;

 vector<int> list(5);

 try {

 cout << “Value is: “ << list[index] << endl;

 }

 catch(out_of_range &ex) {

 cerr << “Your index was out of range!” << endl;

 }

}

24

Notes

• Where does break go in each case?

• In 2nd option, if there is an exception, will we break?

– No, an exception immediately ejects from the try {…} and
goes to the catch {…}

do {

 cout << "Enter an int: ";

 cin >> x;

 if(! cin.fail()){

 break;

 }

 else {

 cin.clear();

 cin.ignore(1000,'\n');

 }

} while(1);

do {

 cin.exceptions(ios::failbit);

 cout << "Enter an int: ";

 try {

 cin >> x;

 break;

 }

 catch(ios::failure& ex) {

 cerr << "Error" << endl;

 cin.clear();

 cin.ignore(1000,'\n');

 }

} while(1);

25

Other "throw"/"catch" Notes
• Do not use throw from a

destructor. Your code will
go into an inconsistent (and
unpleasant) state. Or just
crash.

• You can re-throw an exception
you've caught

– Useful if you want to take
intermediate action, but can't
actually handle the exception

– Exceptions will propagate up
the call hierarchy
(“Unwinding the call stack”)

#include <iostream>

#include <stdexcept>

using namespace std;

int divide(int num, int denom)

{

 if(denom == 0)

 throw invalid_argument("Div by 0");

 return(num/denom);

}

int f1(int x)

{

 int y;

 try { y = divide(x, x-2); }

 catch(invalid_argument& e){

 cout << "Caught first here!" << endl;

 throw; // throws 'e' again

} }

int main()

{

 int res, a;

 cin >> a;

 while(1){

 try {

 res = f1(a);

 break;

 }

 catch(invalid_argument& e) {

 cout << "Caught again" << endl;

 cin >> a;

} } }

26

Other Exceptions Notes

• Think about where you want to handle the error
– If you can handle it, handle it…

– If you can't, then let the caller
#include <iostream>

#include <stdexcept>

using namespace std;

int f1(char* filename)

{

 ifstream ifile;

 ifile.exceptions(ios::failbit);

 // will throw if opening fails

 ifile.open(filename);

 // Should you catch exception here

 // Or should you catch it in main()

}

int main(int argc, char* argv[])

{

 readFile(argv[1]);

 ...

}

