
1

CSCI 104
Qt Intro

Mark Redekopp

David Kempe

2

Qt

• What is QT?

– Pronounced “cute”

– An cross-platform application development framework
built by Nokia

– A toolkit for building Graphical User Interfaces (GUIs)

– GUI toolkits are composed of many classes including many
widgets
• "Widget" is GUI-lingo for a 'control' or graphical component that a

user can interact with

• QT has bindings available for many languages

– C++, Python, Ruby, Java, etc.

• We are using QT v4.8.1

3

QApplication

• Every major QT widget has its own
header

– See QPushButton in the example

• QApplication

– The main class that controls all the
default GUI behavior and manages
application resources

– Every QT GUI application must have a
QApplication instance (and only one!)

– QApplication parses the command line
input and pulls out any display-related
parameters

– A QApplication must be created before
any GUI-related features can be used

#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

4

QPushButton

• QPushButton

– A button object that you can click on

• QPushButton button("Hello World!");

– Creates a clickable button on the GUI

– We can only do this now that we already
created a QApplication to handle all the
backend stuff

– The button is clickable just by nature

– The button will have the text “Hello
World” on it

– There are all kinds of button
function/display attributes we could set
if we really wanted to

• Color, Size, Text/Image, Animation,
Border, etc.

#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

5

Display Widgets
• button.show();

– Widgets are always invisible by default
when they are created, you must call
show() to display them

– Calling show() on a widget also calls show
on all the widgets it contains (all of its
children)

• Some widgets are merely containers for
other widgets (i.e. a display grid that
display other widgets in some tabular
format)

#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

6

Event-Driven Program Flow
• return app.exec();

– At this point, main() passes control
to the QT framework

– exec() will not return until the window is
terminated

• Question?

– What happens to your code flow?

– How do you get any other code to run?

– Welcome to the world of event-driven
programs

• You write code (member functions) that is
'automatically' called/executed when an
event occurs (e.g. click(), resize(),
mouseOver(), …)

– More on this later...

#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

7

End Result
• All of this results in… #include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("Hello world!");

button.show();

return app.exec();

}

8

Compiling Qt Applications

• We can't just type 'g++ -o qtex qtex.cpp'. Why?

– We have external dependencies that aren't part of standard C++

– How will the compiler find the QT .h files?

– How will the linker find the QT compiled code?

– QT has to build Meta-Objects to handle communication between GUI pieces

– The individual .cpp files need to compile and link separately in some cases

• 'make' and 'qmake' to the rescue

– We've seen 'make' which helps us specify dependencies, compile order, and
compiler commands

– 'qmake' will examine code in the current directory and help to automatically
generate a 'Makefile'

9

3-Step Qt Compiler Process
• Step 1: Generate a Qt project file with 'qmake'

– $ qmake –project

– The command will make Qt examine all the source code in the current directory
and make a platform-independent project file (with a .pro extension) that specifies
dependencies between your .h and .cpp files

• Step 2: Generate the platform dependent Makefile

– $ qmake

– This command will make QT read the .pro file from the current directory and
generate a Makefile that contains all the commands for compiling the code and
linking it with the QT libraries

• Step 3: Run 'make'

– $ make

– If you have any compiler or linker errors, this is the step in the process where you
will see them

– If you only need to recompile, you only need to use this particular step of the 3
step process

10

Qt Compilation Notes
• Keep each project in a separate directory (this is why we can run qmake

with no arguments)

• If you add new .h or .cpp files, you need to re-run the entire compilation
process (i.e. Make new .pro and Makefile files again)

• If your object needs slots or signals, then you MUST put it into separate .h
and .cpp files

• If you're getting weird linker errors, try make clean or try rebuilding the
.pro file and the Makefile

• You may notice that when you compile some projects with QT, it actually
generate extra .cpp files

– These extra files are generated by QT's moc (Meta Object Compiler)

– QT makes extensive use of the preprocessor to generate code that makes
things like its signals and slots mechanisms work

– Don't bother changing these files. They'll just get overwritten next time you
compile.

11

Qt Organization

• For your programming purposes, the QT windowing
framework consists of three major parts (in reality,
it's MUCH more complicated than this):

– Widgets

– Layouts

– Signals & Slots

12

Qt Widgets

• What is a widget?

– A user interface object that can process input, emit signals
and draw graphics

– A widget can be styled to have a vastly different
appearance than its default

– Most widgets generate signals that can be received by
pieces of your code called slots

• QT comes pre-packaged with a ton of pre-made
widgets to suit most of your GUI-building needs

– Buttons, Containers, Menus, etc.

13

Qt Button Examples

Push Buttons

Tool Buttons

Checkboxes

Radio Buttons

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

14

Container Examples

Group Boxes Tabbed Displays

Scrolled DisplaysFrames

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

15

User Input Widget Examples

Text Entry

Combo Boxes

Sliders

Spin Boxes

Calendars

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

16

Qt Layouts

• What is a layout?

– A layout describe how widgets are organized and
positioned in a user interface

• The jobs of a QT layout

– Positioning of widgets in GUI

– Choosing sensible default and minimum sizes

– Handling window resize events

– Automatic updates when content changes
• Font size, text or other widget changes

• Add or removal of new widgets

• Showing and hiding of existing widgets

17

More About Layouts

• QT layouts and widgets share numerous parent/child
relationships

– Widgets can contain other widgets (usually in a layout)

– Widgets can have one primary layout (which may contain
many other child layouts)

– Layouts can contain widgets

– Layouts can contain other layouts

– There can be a gigantic graph of parent and child
relationships in a GUI

• The best way to make a complex layout is usually to
combine many simpler layouts

• FYI: Getting a layout right is HARD

18

Sample Layouts

• QVBoxLayout
– Layout all children in a vertical column

– (top to bottom or bottom to top)

• QHBoxLayout
– Layout all children in a horizontal row

– (left to right or right to left)

Images from http://qt.nokia.com/doc/4.5/layout.html

19

Layout Example Code
#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QWidget *window = new Qwidget;

QPushButton *button1 = new QPushButton("One");

QPushButton *button2 = new QPushButton("Two");

QPushButton *button3 = new QpushButton("Three");

QHBoxLayout *layout = new QHBoxLayout;

layout->addWidget(button1);

layout->addWidget(button2);

layout->addWidget(button3);

window->setLayout(layout);

window->show();

return app.exec();

}

Code from http://qt.nokia.com/doc/4.5/layout.html

20

More Layouts
• QGridLayout

– Layout widgets
in a 2D grid

– Widgets can
span multiple
rows/columns

• QFormLayout

– Layout children
in a 2-column
descriptive
label-field style.

Images from http://qt.nokia.com/doc/4.5/layout.html

21

Event-Based Programming

• GUI-based programs follow a different paradigm than
basic command line programs

– The window will sit there indefinitely until the user does
something

– Your code no longer functions on line-by-line flow, it is
triggered by events

• In QT, all widgets are capable of firing events and
receiving events

– Signals are used to notify (emit) widgets of an event

– Slots are used to receive (listen for) widget events

– connect is used to tie together a signal & a slot

– Signals & slots can have M-to-N connections

22

Qt Signals and Slots

• Signals and Slots provide communication between various
object in your application
– Often when one widget changes, you need another widget to know

about it

• A signal emitter and a slot receiver never need to know about
each other!
– Widgets emit signals whether or not any other widgets are listening

• e.g. QPushButton has a clicked() signal

– Widgets slots listen for signals whether or not there are any being
emitted

• A slot is just a normal class member function!

• e.g. Create a widget with a handleClick() slot

23

QT Signals & Slots

Image from http://doc.trolltech.com/4.6/signalsandslots.html

24

Qt Signal/Slot Example
#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QPushButton button("QUIT");

//connect(object1 pointer, object1 signal,

// object2 pointer, object2 slot)

QObject::connect(&button, SIGNAL(clicked()),

&app, SLOT(quit()));

button.show();

return app.exec();

}

Code from http://qt.nokia.com/doc/4.5/layout.html

25

QT Signals & Slots Summary

• Using event-driven programming in QT involves three
major parts:

• 1. A widget with a SIGNAL to emit events when they
occur (e.g. clicked() on QPushButton)

• 2. A widget with a SLOT to receive events that have
been emitted (e.g. quit() on QApplication)

• 3. A connect statement to wire the signal and slot
together so that when the signal is emitted, the slot
receives it

26

Qt Tutorial

• A set of 14 example QT tutorials can all be found
online here:

http://doc.qt.digia.com/4.3/tutorial.html or

http://web.njit.edu/all_topics/Prog_Lang_Docs/html/qt/tuto
rial.html

• Official? Qt Page

– http://doc.qt.digia.com/stable/

– http://qt-project.org/doc/qt-4.8/

• Other resources

– http://www.zetcode.com/gui/qt4/

http://doc.qt.digia.com/4.3/tutorial.html
http://web.njit.edu/all_topics/Prog_Lang_Docs/html/qt/tutorial.html
http://doc.qt.digia.com/stable/
http://qt-project.org/doc/qt-4.8/
http://www.zetcode.com/gui/qt4/

27

NEXT PART

28

Examples
• On your VM

– Do a pull on your homework-resources repo and look for the qtex
folder

– OR

• $ mkdir qtex

• $ cd qtex

• $ wget http://ee.usc.edu/~redekopp/cs104/qtex.tar

• $ tar xvf qtex.tar

• 4 examples
– Reflex (signals & slots)

– Formex (Form example)

• Inheritance…deriving new widgets

• Layouts

– Lec_ttt (Tic-Tac-Toe example)

– Multiwin (Multi window example)

http://ee.usc.edu/~Redekopp/cs104/qtex.tar

29

Reflex

• Hammer defines a signal function
– A signal is a function that has no body

– When you "call"/"emit" it, it will trigger other "connected" functions
to be called

• emit hit(hard)

• Knee defines a slot function
– A slot function must match the prototype of the signal function that it

will be connected to

– You can do whatever you want in this function

• You must connect signals to slots via connect()
– See reflex.cpp

• You can have multiple slot functions connected to 1 signal
– Exercise: in reflex.cpp declare another 'knee' and connect it's reflex to

the hammer's signal

30

Formex

• This program provides QLineEdit textboxes
and buttons to prompt the user for their name
and age and then saves that data out to a text
file named 'data.txt'

• Think about layouts as tables within other
tables

• http://doc.qt.io/qt-4.8/widgets-and-
layouts.html

http://doc.qt.io/qt-4.8/widgets-and-layouts.html

31

Layouts

• Four different layouts are commonly used

– QVBoxLayout

– QHBoxLayout

– QFormLayout

– QGridLayout

• Each widget (or derived class) can have only one Layout

– Set by calling: widget->setLayout(pointer to the layout) method

• But a layout may contain either widgets or OTHER LAYOUTS in each of its
entries

– Set by calling: layout->addLayout(pointer to child layout)

– Set by calling: layout->addWidget(pointer to the child widget)

• So for each widget think about whether you want to add items vertically
or horizontally and pick a Vbox or Hbox Layout and then add child layouts
within that context

32

More Notes

• Widgets have a virtual function sizeHint()
– Qsize sizeHint() const;

– If you want your widget to start at a particular size, add this to your
class and simply have it return a Qsize object which is just pixel rows x
columns

– Qsize MYCLASS::sizeHint() const { return QSize(400, 400); }

• Defining your own signals
– Signals go in the "signals:" section of your class

– They are just prototypes (you don't write an implementation)

– Use the 'emit' keyword followed by a "call" to this signal function

– Whatever slot has been connected to this signal will in turn be called

• Events are not slots (think of them as "slots" that are pre-
connected to certain actions/signals)
– Just override them and usually call the BaseClass version

33

Tic-Tac-Toe Example

• $ cd lec_ttt

• Look up instructions on the 3 steps from our
previous Qt lecture to setup and
build/compile the project

34

Overall structure

• TTTButton models a single square in the grid
and contains its type: Blank, Circle, Cross

• TTTBoard models the NxN tic-tac-toe grid

• TTT models the other controls of the game
and UI

35

TTTButton

• Is a derived PushButton

• TTTButton models a single square in the grid
and contains its type: Blank, Circle, Cross

– setType() calls repaint()

– Repaint() triggers paintEvent() which TTTButton
overrides

• Examine TTTButton::paintEvent()

– What if we don't call the base class version or
change the ordering?

36

Q_OBJECT macro

• Helps Qt preprocessor define the .moc files
(meta-objects)

– If your class derives from a Qt widget/other GUI
control or uses signals and slots you should place
it in the definition

• Declare on a line (w/o a semicolon to follow)

37

TTTBoard

• Is derived from QWidget (because it contains other widgets, receives user input,
and needs to be drawn/painted)

• Stores the TTT buttons and implements the move AI and win/lose/draw logic

• Examine GridLayout component which controls the display of the tic-tac-toe grid

• finished() signal (no definition)

– Signals have no definitions in a .cpp file

– Notice the emit statement in

• Connecting the clicks on buttons via buttonClicked

– Notice the many-to-one relationship of TTT_Button::clicked() to
TTT_Board::buttonClicked()

– Look at buttonClicked() how do we determine which button was actually clicked?

• updateButtons

– Notice setEnabled() call…What does that do?

38

TTT

• Models the overall UI and main window

• Is derived from QWidget (because it contains other widgets,
receives user input, and needs to be drawn/painted)

• QVBoxLayout
– Each widgeth is added via addWidget and gets slotted vertically

• QLabel: On screen text

• QComboBox
– Items have an ID and a display string usually

– Selected value from the user can be obtained with currentIndex()

• QPushButton
– Notice we connect the signals and slots (some from TTT_Board, others

from ourselves (i.e. TTT))

• newState() controls the string printed on the status label

39

main

• Instantiates a TTT widget and shows it (then
enters the execution loop).

40

WIDGET REFERENCE

41

Overview

• The following slides represent a few commonly used
widgets and some of their useful functions and
signals

• Recall: A SLOT function can be called anytime as a
normal function OR it can be connected as a SLOT
(OR both)

• The online documentation for the Qt library is THE
source to go to. Either google your widgets name or
go here: http://qt-project.org/doc/qt-4.8/

– http://doc.qt.io/qt-4.8/widgets-and-layouts.html

http://qt-project.org/doc/qt-4.8/
http://doc.qt.io/qt-4.8/widgets-and-layouts.html

42

QLineEdit

• Provides a generic text box functionality

• Helpful methods

– text()

• Returns a QString of the text currently written in the
textbox

• Can convert a QString to a C++ string using toStdString()

– setText(QString)

• Changes the text displayed in the textbox to the
argument provided

– clear()

• Deletes the text currently in the box

43

QComboBox

• Provides a DropDownBox functionality (list of items that can
be displayed when you click the down array and then 1 item
can be selected)

• Helpful methods
– currentText()

• Returns a QString of the selected item's text

– addItem(QString)

• Adds the string argument to the list of items to be displayed in the drop
down box

• Useful Signals that you can connect to
– currentIndexChanged(QString)

• This signal will be emitted whenever a new item is selected in the drop
down box…It will pass the text string of the newly selected item

44

QListWidget
• Provides a scrollable list of selectable text items

• Helpful Methods

– clear()

• Removes all the items in the list

– insertItem(int pos, QString str)

• Adds the text item, str, at position, pos, in the list

– currentItem()

• Returns a QListWidgetItem* of the currently selected item

– item(int row)

• Returns a QListWidgetItem* of the item on the row given by the argument

• Helpful signals

– itemClicked(QListWidgetItem* item)

• Will call connected SLOT functions whenever an item is clicked in the QListWidget and
pass a pointer to the QListWidgetItem that was clicked.

• You can retrieve the text of the clicked item by calling "item->text()"

• Other helpful functions

– itemDoubleClicked(), removeItemWidget(), indexFromItem()

45

QPushButton

• Push/Command button functionality

• Helpful signals:

– clicked()

• Will call associated SLOT functions when clicked

46

QRadioButton

• Implements a 1-of-n selection…each radio
button has an automatically associated text
label to help the user

• All radio buttons with the same parent widget
(usually a layout) will be mutually exclusive
(only 1 can be on)

• Usually grouped radio buttons should be in a
QGroupBox

– setChecked(bool val)

• Sets the radio button value to 'val' (true = on, false =
off)

47

QGroupBox

• Provides a visual grouping of widgets in a boxed frame with a title

– Title is the argument to the constructor of the QGroupBox

• Make a layout with everything you want to be in this framed area and
then set the layout

– QGroupBox* gb = new QGroupBox("Your Title")

– // make a layout with all widgets you want in the framed area

– gb->setLayout(your_layout);

http://qt-project.org/doc/qt-4.8/qgroupbox.html

48

QFormLayout

• Remember QFormLayout adds a text label and
an arbitrary widget in a row-based layout

49

Other Useful Controls

• QCheckBox

– Similar to radio buttons but without the
restriction of 1-of-n being selected (many can be
selected at a time)

• QTextEdit

– For displaying multi-line text with auto line-
wrapping, etc.

