CSCI 104
Qt Intro

Mark Redekopp
David Kempe

e Whatis QT?
— Pronounced “cute”

— An cross-platform application development framework
built by Nokia

— A toolkit for building Graphical User Interfaces (GUls)

— GUI toolkits are composed of many classes including many
widgets

* "Widget" is GUI-lingo for a 'control' or graphical component that a
user can interact with

* QT has bindings available for many languages
— C++, Python, Ruby, Java, etc.

* We are using QT v4.8.1

i, TS(“Viterbi -

QApplication

#include <QApplication>
#include <QPushButton>

* Every major QT widget has its own

header int main (int argc, char *argv|[])
{

. . " 1wy .
) Cbkpphcatuan QPushButton button ("Hello world!");
— The main class that controls all the button.show () ;
default GUI behavior and manages CEELED Epp. @XEe () £

.. }
application resources

— Every QT GUI application must have a
QApplication instance (and only one!)

— QApplication parses the command line
input and pulls out any display-related
parameters

— A QApplication must be created before
any GUI-related features can be used

- USCViterbi@
QPushButton

e (QPushButton

A button object that you can click on

* QPushButton button("Hello World!");

Creates a clickable button on the GUI

We can only do this now that we already
created a QApplication to handle all the
backend stuff

The button is clickable just by nature

The button will have the text “Hello
World” on it

There are all kinds of button
function/display attributes we could set
if we really wanted to

» Color, Size, Text/Image, Animation,
Border, etc.

School of Engineering

#include <QApplication>
#include <QPushButton>

int main (int argc, char *argv|[])

{
QApplication app(argc, argv);
QPushButton button ("Hello world!");

button.show () ;
return app.exec();

}

i, TS(“Viterbi -

Display Widgets

o bLﬂtOrIShOVVO' #include <QApplication>
’ #include <QPushButton>

— Widgets are always invisible by default
when they are created, you must call int main(int argc, char *argv[])

: {
ShOW() to dlsplay them QApplication app(argc, argv);

— Calling show() on a widget also calls show QPushButton button ("Hello world!");
on all the widgets it contains (all of its
. button.show () ;
children)

return app.exec();
* Some widgets are merely containers for }

other widgets (i.e. a display grid that
display other widgets in some tabular
format)

i, TS(“Viterbi -

Event-Driven Program Flow

* return app.exec();

— At this point, main() passes control

to the QT framework

exec() will not return until the window is
terminated

e (Question?

What happens to your code flow?

How do you get any other code to run?
Welcome to the world of event-driven
programs

* You write code (member functions) that is
'automatically’ called/executed when an
event occurs (e.g. click(), resize(),
mouseOver(), ...)

More on this later...

School of Engineering

#include <QApplication>
#include <QPushButton>

int main (int argc,
{

QApplication app(argc, argv);
QPushButton button ("Hello world!");

char *argvl([])

button.show () ;
return app.exec();

}

i, TS(“Viterbi >

End Result

I 1 #include ication
* All of this results in... hicls ORppluleriEieon

#include <QPushButton>

int main (int argc, char *argv|[])

{

QApplication app(argc, argv);
QPushButton button ("Hello world!");

button.show () ;

| Heuo world! | }return app.exec();

i, TS(“Viterbi

School of Engineering

Compiling Qt Applications

 We can'tjust type 'g++ -0 gtex qtex.cpp'. Why?

We have external dependencies that aren't part of standard C++

How will the compiler find the QT .h files?

How will the linker find the QT compiled code?

QT has to build Meta-Objects to handle communication between GUI pieces
The individual .cpp files need to compile and link separately in some cases

* 'make' and 'gmake' to the rescue

We've seen 'make' which helps us specify dependencies, compile order, and
compiler commands

'‘gmake’ will examine code in the current directory and help to automatically
generate a 'Makefile'

i, TS(“Viterbi -

School of Engineering

3-Step Qt Compiler Process

e Step 1: Generate a Qt project file with 'gmake'
— S gmake —project

— The command will make Qt examine all the source code in the current directory
and make a platform-independent project file (with a .pro extension) that specifies
dependencies between your .h and .cpp files

* Step 2: Generate the platform dependent Makefile
— S gmake

— This command will make QT read the .pro file from the current directory and
generate a Makefile that contains all the commands for compiling the code and
linking it with the QT libraries

e Step 3: Run 'make’
— S make

— If you have any compiler or linker errors, this is the step in the process where you
will see them

— If you only need to recompile, you only need to use this particular step of the 3
step process

i, TS(“Viterbi

School of Engineering

Qt Compilation Notes

 Keep each project in a separate directory (this is why we can run gmake
with no arguments)

e |fyou add new .h or .cpp files, you need to re-run the entire compilation
process (i.e. Make new .pro and Makefile files again)

* |f your object needs slots or signals, then you MUST put it into separate .h
and .cpp files

* |fyou're getting weird linker errors, try make clean or try rebuilding the
.pro file and the Makefile

* You may notice that when you compile some projects with QT, it actually
generate extra .cpp files
— These extra files are generated by QT's moc (Meta Object Compiler)

— QT makes extensive use of the preprocessor to generate code that makes
things like its signals and slots mechanisms work

— Don't bother changing these files. They'll just get overwritten next time you
compile.

Qt Organization

* For your programming purposes, the QT windowing
framework consists of three major parts (in reality,
it's MUCH more complicated than this):

— Widgets
— Layouts
— Signals & Slots

Qt Widgets

* What is a widget?
— A user interface object that can process input, emit signals
and draw graphics

— A widget can be styled to have a vastly different
appearance than its default

— Most widgets generate signals that can be received by
pieces of your code called slots

QT comes pre-packaged with a ton of pre-made
widgets to suit most of your GUI-building needs

— Buttons, Containers, Menus, etc.

Qt Button Examples

IE- Cancel } Push Buttons
Browse... Tool Buttons

E Case sensitive Checkboxes

‘o Search from the cursor Radio Buttons

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

- 00000000 USCViterbi
Container Examples

Package selection

E Update system
" ! Update applications

" | Update documentation

Group Boxes

Contents

Frames can be used to
group widgets
together and separate
them from other
widgets on the form.

Frames

School of Engineering

EStyrIes | Margins }

) Heading
f*) Paragraph
() List

"
[Footnote

Tabbed Displays

Ardparty.qdoc m
aboutgr.gdoc

accelerators.qdoc
activeqt-dumpcpp.qdoc
activegqi-dumpdoc.qdoc
activegqr-idc.qdoc
activeqt-testcon.gqdoc
activeqr.qdoc
annotated.gdoc !

—4 IERR

Scrolled Displays

-

m.ﬁ-l.i-'.i-l.i-l.i-'.i-l.i-l.i-'.l}

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

i, TS(“Viterbi 9

School of Engineering

User Input Widget Examples

Enter your name Text Entl’y
Macintosh style B Combo Boxes
s Sliders
k2.01 g Spin Boxes

0 =y B

. Fri 5at
35 27 28 29 30 31 gl .
e 3 4 5 6 7 8 9
7 10 11 12 13 14 15 16 Calendars
ig 17 18 19 20 21 22 23
39 24 25 26 27 28 29 30
40 1 2 3 4 5 6 7

Images from http://doc.trolltech.com/4.3/gallery-macintosh.html

Qt Layouts

* What is a layout?

— A layout describe how widgets are organized and
positioned in a user interface

* The jobs of a QT layout
— Positioning of widgets in GUI
— Choosing sensible default and minimum sizes
— Handling window resize events

— Automatic updates when content changes
* Font size, text or other widget changes
* Add or removal of new widgets
* Showing and hiding of existing widgets

More About Layouts

e QT layouts and widgets share numerous parent/child
relationships
— Widgets can contain other widgets (usually in a layout)

— Widgets can have one primary layout (which may contain
many other child layouts)

— Layouts can contain widgets
— Layouts can contain other layouts
— There can be a gigantic graph of parent and child
relationships in a GUI
 The best way to make a complex layout is usually to
combine many simpler layouts

* FYI: Getting a layout right is HARD

Sample Layouts

* QVBoxLayout One
— Layout all children in a vertical column =
— (top to bottom or bottom to top)
* QHBoxLayout Three
— Layout all children in a horizontal row =
— (left to right or right to left)
Five
one || Two || Three || Four || Five

Images from http://gt.nokia.com/doc/4.5/layout.html

i, TS(“Viterbi

Layout Example Code

#include <QApplication>
#include <QPushButton>

int main(int argc, char *argv|[])
{
QApplication app(argc, argv);
QWidget *window = new Qwidget;

QPushButton *buttonl = new QPushButton ("One") ;
QPushButton *button?2 = new QPushButton ("Two") ;
QPushButton *button3 new QpushButton ("Three");

QHBoxLayout *layout = new QHBoxLayout;
layout->addwWidget (buttonl) ;
layout->addwWidget (button?2) ;
layout->addWidget (button3) ;

window->setLayout (layout) ;
window->show () ;
return app.exec();

Code from http://gt.nokia.com/doc/4.5/layout.html

More Layouts

e QGridLayout ~ One || Two
— !_ayout wifjgets | Three
ina 2D grid |
— Widgets can Four] [Five

span multiple
rows/columns

* QFormlLayout

One
— Layout children
in a 2-column - Twa
riptiv
descriptive m——

label-field style.

Images from http://gt.nokia.com/doc/4.5/layout.html

Event-Based Programming

* GUIl-based programs follow a different paradigm than
basic command line programs

— The window will sit there indefinitely until the user does
something

— Your code no longer functions on line-by-line flow, it is
triggered by events

* |In QT, all widgets are capable of firing events and
receiving events
— Signals are used to notify (emit) widgets of an event
— Slots are used to receive (listen for) widget events
— connect is used to tie together a signal & a slot
— Signals & slots can have M-to-N connections

i, TS(“Viterbi (=2

Qt Signals and Slots

e Signals and Slots provide communication between various
object in your application
— Often when one widget changes, you need another widget to know
about it
* Asignal emitter and a slot receiver never need to know about
each other!
— Widgets emit signals whether or not any other widgets are listening
* e.g. QPushButton has a clicked() signal

— Widgets slots listen for signals whether or not there are any being
emitted
e Aslotis just a normal class member function!
* e.g. Create a widget with a handleClick() slot

i, TS(“Viterbi)

QT Signals & Slots

connect(Object1, signall, Object2, slot1)
connect(Object1, signall, Object2, slot2)

Object1

signall
signal2

Object2

signall

sloti
slot2

\A /

Object3

signal connect(Object1, signal2, Object4, slot1)

slot

>
. . : >
connect(Object3, signall, Object4, slot3)

Image from http://doc.trolltech.com/4.6/signalsandslots.html

i, TS(“Viterbi

Qt Signal/Slot Example

School of Engineering

{

#include <QApplication>
#include <QPushButton>
int main(int argc, char *argv|[])

QApplication app(argc, argv);
QPushButton button ("QUIT") ;

//connect (objectl pointer, objectl signal,

// object2 pointer, object2 slot)
QO0bject: :connect (&button, SIGNAL (clicked()),
sapp, SLOT (quit ()));

button.show() ;
return app.exec();

Code from http://gt.nokia.com/doc/4.5/layout.html

e Using event-driven programming in QT involves three
major parts:

1. A widget with a SIGNAL to emit events when they
occur (e.g. clicked() on QPushButton)

2. A widget with a SLOT to receive events that have
been emitted (e.g. quit() on QApplication)

* 3. A connect statement to wire the signal and slot
together so that when the signal is emitted, the slot
receives it

Qt Tutorial

* Aset of 14 example QT tutorials can all be found
online here:

http://doc.qt.digia.com/4.3/tutorial.html or

http://web.njit.edu/all topics/Prog Lang Docs/html/qgt/tuto
rial.html

e Official? Qt Page
— http://doc.gt.digia.com/stable/
— http://qt-project.org/doc/qt-4.8/

e Other resources

— http://www.zetcode.com/gui/qt4/

http://doc.qt.digia.com/4.3/tutorial.html
http://web.njit.edu/all_topics/Prog_Lang_Docs/html/qt/tutorial.html
http://doc.qt.digia.com/stable/
http://qt-project.org/doc/qt-4.8/
http://www.zetcode.com/gui/qt4/

NEXT PART

i, TS(“Viterbi

School of Engineering

Examples

* Onyour VM

— Do a pull on your homework-resources repo and look for the gtex
folder
— OR
* S mkdir gtex
* Scd qgtex
* S wget http://ee.usc.edu/~redekopp/cs104/qtex.tar

* S tar xvf qtex.tar

* 4 examples
— Reflex (signals & slots)
— Formex (Form example)

* Inheritance...deriving new widgets
* Layouts

— Lec_ttt (Tic-Tac-Toe example)

— Multiwin (Multi window example)

http://ee.usc.edu/~Redekopp/cs104/qtex.tar

i, TS(“Viterbi

School of Engineering

Reflex

« Hammer defines a signal function
— Assignal is a function that has no body

— When you "call"/"emit" it, it will trigger other "connected" functions
to be called

e emit hit(hard)
e Knee defines a slot function

— A slot function must match the prototype of the signal function that it
will be connected to

— You can do whatever you want in this function
* You must connect signals to slots via connect()
— See reflex.cpp

* You can have multiple slot functions connected to 1 signal

— Exercise: in reflex.cpp declare another 'knee' and connect it's reflex to
the hammer's signal

Formex

* This program provides QLineEdit textboxes
and buttons to prompt the user for their name
and age and then saves that data out to a text
file named 'data.txt’

* Think about layouts as tables within other
tables

* http://doc.qgt.io/qt-4.8/widgets-and-
layouts.html

http://doc.qt.io/qt-4.8/widgets-and-layouts.html

- 01 USCViterbi @
Layouts

* Four different layouts are commonly used
— QVBoxLayout
— QHBoxLayout
— QFormlLayout
— QGridLayout
* Each widget (or derived class) can have only one Layout
— Set by calling: widget->setlLayout(pointer to the layout) method
* But alayout may contain either widgets or OTHER LAYOUTS in each of its
entries
— Set by calling: layout->addLayout(pointer to child layout)
— Set by calling: layout->addWidget(pointer to the child widget)
* So for each widget think about whether you want to add items vertically

or horizontally and pick a Vbox or Hbox Layout and then add child layouts
within that context

- USCViterbi @
More Notes

e Widgets have a virtual function sizeHint()
— Qsize sizeHint() const;

— If you want your widget to start at a particular size, add this to your
class and simply have it return a Qsize object which is just pixel rows x
columns

— Qsize MYCLASS::sizeHint() const { return QSize(400, 400); }

* Defining your own signals
— Signals go in the "signals:" section of your class
— They are just prototypes (you don't write an implementation)
— Use the 'emit' keyword followed by a "call" to this signal function
— Whatever slot has been connected to this signal will in turn be called

* Events are not slots (think of them as "slots" that are pre-
connected to certain actions/signals)

— Just override them and usually call the BaseClass version

P USCViterbi
Tic-Tac-Toe Example

* Scdlec ttt

* Look up instructions on the 3 steps from our
previous Qt lecture to setup and
build/compile the project

- USCV1terb1
Overall structure

 TTTButton models a single square in the grid
and contains its type: Blank, Circle, Cross

. Board models the NxN tic-tac-toe grid

. models the other controls of the game
and Ul

TTTButton

e |s a derived PushButton

 TTTButton models a single square in the grid
and contains its type: Blank, Circle, Cross

— setType() calls repaint()

— Repaint() triggers paintEvent() which TTTButton
overrides

 Examine TTTButton::paintEvent()

— What if we don't call the base class version or
change the ordering?

Q OBJECT macro

* Helps Qt preprocessor define the .moc files
(meta-objects)

— If your class derives from a Qt widget/other GUI
control or uses signals and slots you should place
it in the definition

* Declare on a line (w/o a semicolon to follow)

- USCViterbi @
TTTBoard

* Isderived from QWidget (because it contains other widgets, receives user input,
and needs to be drawn/painted)

* Stores the TTT buttons and implements the move Al and win/lose/draw logic
 Examine GridLayout component which controls the display of the tic-tac-toe grid
» finished() signal (no definition)

— Signals have no definitions in a .cpp file

— Notice the emit statement in
e Connecting the clicks on buttons via buttonClicked

— Notice the many-to-one relationship of TTT_Button::clicked() to
TTT_Board::buttonClicked()

— Look at buttonClicked() how do we determine which button was actually clicked?

* updateButtons
— Notice setEnabled() call...What does that do?

e Models the overall Ul and main window

* |s derived from QWidget (because it contains other widgets,
receives user input, and needs to be drawn/painted)

* QVBoxLayout
— Each widgeth is added via addWidget and gets slotted vertically

e (Qlabel: On screen text
e QComboBox

— Items have an ID and a display string usually
— Selected value from the user can be obtained with currentindex()

e QPushButton

— Notice we connect the signals and slots (some from TTT_Board, others
from ourselves (i.e. TTT))

* newsState() controls the string printed on the status label

* |nstantiates a TTT widget and shows it (then
enters the execution loop).

WIDGET REFERENCE

Overview

* The following slides represent a few commonly used
widgets and some of their useful functions and
signals

e Recall: A SLOT function can be called anytime as a

normal function OR it can be connected as a SLOT
(OR both)

* The online documentation for the Qt library is THE
source to go to. Either google your widgets name or
go here: http://qt-project.org/doc/qt-4.8/

— http://doc.qt.io/qt-4.8/widgets-and-layouts.html

http://qt-project.org/doc/qt-4.8/
http://doc.qt.io/qt-4.8/widgets-and-layouts.html

QLineEdit

* Provides a generic text box functionality

* Helpful methods

— text()

e Returns a QString of the text currently written in the
textbox

e Can convert a QString to a C++ string using toStdString()
— setText(QString)

* Changes the text displayed in the textbox to the
argument provided

— clear()

* Deletes the text currently in the box

i, TS(“Viterbi

School of Engineering

QComboBox

* Provides a DropDownBox functionality (list of items that can
be displayed when you click the down array and then 1 item
can be selected)

* Helpful methods
— currentText()

e Returns a QString of the selected item's text

— addltem(QString)

* Adds the string argument to the list of items to be displayed in the drop
down box

e Useful Signals that you can connect to

— currentindexChanged(QString)

* This signal will be emitted whenever a new item is selected in the drop
down box...It will pass the text string of the newly selected item

i, TS(“Viterbi

QListWidget

e Provides a scrollable list of selectable text items

* Helpful Methods
— clear()

* Removes all the items in the list
— insertltem(int pos, QString str)
e Adds the text item, str, at position, pos, in the list
— currentltem()
e Returns a QListWidgetltem™* of the currently selected item
— item(int row)
e Returns a QListWidgetltem™ of the item on the row given by the argument

* Helpful signals

— itemClicked(QListWidgetltem™ item)

* Will call connected SLOT functions whenever an item is clicked in the QListWidget and
pass a pointer to the QListWidgetltem that was clicked.

* You can retrieve the text of the clicked item by calling"item->text ()"

e Other helpful functions
— itemDoubleClicked(), removeltemWidget(), indexFromItem()

QPushButton

* Push/Command button functionality

* Helpful signals:
— clicked()

e Will call associated SLOT functions when clicked

QRadioButton

* Implements a 1-of-n selection...each radio
outton has an automatically associated text
abel to help the user

* All radio buttons with the same parent widget
(usually a layout) will be mutually exclusive
(only 1 can be on)

* Usually grouped radio buttons should be in a
QGroupBox

— setChecked(bool val)

e Sets the radio button value to 'val' (true = on, false =

P of o) ¥

i, TS(“Viterbi

School of Engineering

QGroupBox

Provides a visual grouping of widgets in a boxed frame with a title
— Title is the argument to the constructor of the QGroupBox

Make a layout with everything you want to be in this framed area and
then set the layout

— QGroupBox* gb = new QGroupBox("Your Title")
— // make a layout with all widgets you want in the framed area
— gb->setlLayout(your_layout);

Package selection!

Package selection Package selection
Update system # Update system X| Update system
(] Update appications | Update applications "] Update applications

[[] Update documentation

_ Update documentation || Update documentation

A Windows XP style group box A Macintosh style group box A Plastique style group box

http://qt-project.org/doc/qt-4.8/qgroupbox.htmi

- 00000000 USCViterbi ,
QFormLayout

* Remember QFormLayout adds a text label and
an arbitrary widget in a row-based layout

Other Useful Controls

e QCheckBox

— Similar to radio buttons but without the
restriction of 1-of-n being selected (many can be
selected at a time)

e QTextEdit

— For displaying multi-line text with auto line-
wrapping, etc.

