
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Binary Search Trees and 

Balanced Binary Search Trees 
using AVL Trees

Mark Redekopp

David Kempe



2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BINARY SEARCH TREES
Properties, Insertion and Removal
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Binary Search Tree

• Binary search tree = binary tree where all nodes meet the 
binary search property which states:
– All values of nodes in left subtree are less-than (or equal in some 

implementations) than the parent’s value

– All values of nodes in right subtree are greater-than (or equal in some 
implementations) than the parent’s value

• BSTs generally implement maps/sets 
(where keys must be unique) and
support 3 primary operations:
– Insert

– Remove

– Find/Lookup

25

4718

7 20 32 56

If we wanted to print the values 

in sorted order would you use an

pre-order, in-order, or post-order 

traversal?
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BST-Find

• To find a node with a given key
– If node pointer is NULL, the key does NOT exist in the tree, STOP!

– Otherwise, check if current node's key equals the desired key

• If so, STOP! and return a pointer to that node

– If desired key is LESS-THAN current node's key, go LEFT

– If desired key is GREATER-THAN current node's key, go RIGHT

25

4718

7 32 56
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BST Insertion
• To insert an item walk the tree (go left if value is less than node, right if 

greater than node) until you find an empty location, at which point you 
insert the new value

• Practice:  Build a BST from the data values below

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

Important: To be efficient (useful) we need to keep the binary search tree 
balanced, but that is NOT guaranteed by the basic insert() algorithm.
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BST Insertion
• To insert an item, walk the tree (go left if value is less than node, right if 

greater than node) until you find an empty location, at which point you 
insert the new value

• Practice:  Build a BST from the data values below

• https://www.cs.usfca.edu/~galles/visualization/BST.html

25

4718

7 20 32 56

7

18

20

25

32

47

56

Insertion Order: 25, 18, 47, 7, 20, 32, 56 Insertion Order: 7, 18, 20, 25, 32, 47, 56

A major topic we will talk about is algorithms 

to keep a BST balanced as we do 

insertions/removals

https://www.cs.usfca.edu/~galles/visualization/BST.html
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Successors & Predecessors
• Let's take a quick tangent that will be necessary when we 

implement BST Removal

• Given a node in a BST
– Its predecessor is defined as the next smallest value in the tree

– Its successor is defined as the next biggest value in the tree

• Where would you expect to find a node's predecessor?

• Where would find a node's successor?

m // Node definition
struct TNode
{
int val;
TNode *left, *right;
Tnode *parent;

}; 
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Predecessors
• If left child exists, predecessor is the 

right most node of the left subtree

• Else walk up the ancestor chain until you 
traverse the first right child pointer (find 
the first node who is a right child of his 
parent…that parent is the predecessor)

– If you get to the root w/o finding a node 
who is a right child, there is no predecessor

50

30

25

20

10

60

Pred(50)

50

30

25

20

10

60

Pred(25)

If you have no left pointer, then realize that you must be 
someone's successor [ succ(pred(m)) = m].

Think about who, if they wanted to find their successor (go 
right once and left as far as you can), would land on you.

Code to check if you are the left child of your parent:



9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Predecessors
• If left child exists, predecessor is the 

right most node of the left subtree

• Else walk up the ancestor chain until 
you traverse the first right child 
pointer (find the first node who is a 
right child of his parent…that parent is 
the predecessor)

– If you get to the root w/o finding a node 
who is a right child, there is no 
predecessor
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Pred(50) = 30
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Pred(25)=20
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Successors
• If right child exists, successor is the 

left most node of the right subtree

• Else walk up the ancestor chain until 
you traverse the first left child pointer 
(find the first node who is a left child 
of his parent…that parent is the 
successor)

– If you get to the root w/o finding a node 
who is a left child, there is no successor
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Successors
• If right child exists, successor is the 

left most node of the right subtree

• Else walk up the ancestor chain until 
you traverse the first left child pointer 
(find the first node who is a left child 
of his parent…that parent is the 
successor)

– If you get to the root w/o finding a node 
who is a left child, there is no successor
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Succ(20) = 25
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20

BST Removal
• How we remove is based on the number of children the node has…

– First find the value to remove by walking the tree

– 0 children: If the value is in a leaf node, simply remove that leaf node

– 1 child: Promote the child into the node's location

– 2 children: Swap the value with its in-order successor or predecessor and then 
remove from its new location

• We can maintain the BST properties by putting a value's successor or predecessor in its 
place

• After swap, we have converted to 0-children or 1-child case (i.e.  non-leaf node's 
successor or predecessor is guaranteed to not have 2 children) which we then perform
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Remove 25

Leaf node so 

just delete it

Remove 20

20 is a non-leaf so can't delete it 

where it is…swap w/ successor 

or predecessor

…or swap with 

successor

Either swap with 

predecessor
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promote child22

25
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Worst Case BST Efficiency
• Insertion

– Balanced: _________

– Unbalanced: _________

• Removal

– Balanced: ________

– Unbalanced: _________

• Find/Search

– Balanced: __________

– Unbalanced: __________

#include<iostream>

// Node definition
template <typename T>
struct TNode
{

T val;
TNode *left, *right;
Tnode *parent;

}; 

// Bin. Search Tree
template <typename T>
class BST
{
public:
BTree();
~BTree();
virtual bool empty();
virtual void insert(const T& v);
virtual void remove(const T& v);
virtual T* find(const T& v);
protected:
TNode<T>* root_;
};
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BST Efficiency
• Insertion

– Balanced: O(log n)

– Unbalanced: O(n)

• Removal

– Balanced : O(log n)

– Unbalanced: O(n)

• Find/Search

– Balanced : O(log n)

– Unbalanced: O(n)

#include<iostream>

// Node definition
template <typename T>
struct TNode
{

T val;
TNode *left, *right;
Tnode *parent;

}; 

// Bin. Search Tree
template <typename T>
class BST
{
public:
BTree();
~BTree();
virtual bool empty();
virtual void insert(const T& v);
virtual void remove(const T& v);
virtual T* find(const T& v);
protected:
TNode<T>* root_;
};
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Trees & Maps/Sets
• C++ STL "maps" and "sets" use binary search trees 

internally to store their keys (and values)  that can grow
or contract as needed 

• This allows O(log n) time to find/check membership

– BUT ONLY if we keep the tree balanced!

"Jordan" Student

object

key value

"Frank" Student

object

"Percy" Student

object

"Anne" Student

object

"Greg" Student

object

"Tommy" Student

object

Map::find("Greg") Map::find("Mark")

Returns iterator to 

corresponding 

pair<string, Student>

Returns iterator to end() 

[i.e. NULL]
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TREE ROTATIONS
The key to balancing…
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BST Subtree Ranges
• Consider a binary search tree, what range of values could be in 

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

z

y

c

d

x

a

b

y

d

z
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x

b
(             ) (             )

(             )

(             )

(-inf, inf)

(             )

(             )

(-inf,inf)

(             )

(             )

(             )(             )

(             )

(             )

What values 

might be in 

the subtree

rooted here
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BST Subtree Ranges
• Consider a binary search tree, what range of values could be in 

the subtree rooted at each node
– At the root, any value could be in the "subtree"

– At the first left child?

– At the first right child?

(-inf, inf)

z

y

c

d

x

a

b

y

(-inf, z)

(-inf, y) (y,z)

(z, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)

a

x

b
(-inf, x) (x,y)
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Right Rotation
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

y

___ ___

z

Right 

rotate of 

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

___ ___
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Right Rotation
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

y

c d

z

Right 

rotate of 

z

(-inf, inf)

z

y

c

d

(-inf, z)

(-inf, y) (y,z)

(z, inf)

a

x

b
(-inf, x) (x,y)

x

a b

(-inf, x) (x,y) (y,z) (z, inf)
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Left Rotation
• Define a left rotation as taking a right child, making it 

the parent and making the original parent the new left 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

Left 

rotate of 

x

y

___ ___

zx

___ ___

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)
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Left Rotation
• Define a left rotation as taking a right child, making it 

the parent and making the original parent the new left 
child

• Where do subtrees a, b, c and d belong? 

– Use their ranges to reason about it… 

Left 

rotate of 

x

y

c d

zx

a b

(-inf, x) (x,y) (y,z) (z, inf)

x

a

b

y

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

d

z

c

(y,z) (z,inf)
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Rotations
• Define a right rotation as taking a left child, making it 

the parent and making the original parent the new right 
child

• Where do subtrees a, b, and c belong? 

– Use their ranges to reason about it… 

(-inf, inf)

y

x

a b

c

x

a

b c

y

Left rotate 

of x

Right rotate 

of y(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)
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Implementing Rotations

• Take a moment and identify how many and which 
pointers need to be updated to perform the below 
right rotation

(-inf, inf)

y

x

a b

c

x

a

b c

y

Right rotate 

of y(-inf, y)

(-inf, x) (x,y)

(y, inf)

(-inf, inf)

(x, inf)(-inf, x)

(y, inf)(x, y)

p p
1.

2.

3.

4.

…
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Rotation's Effect on Height
• When we rotate, it serves to re-balance the tree

y

z

Right rotate 

of z

z

y

cx

x

h h

h

h

h+2

h h+1

h h h h

Let's always specify the parent node involved in a rotation (i.e. the 
node that is going to move DOWN).  
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AVL TREES
Self-balancing tree proposed by Adelson-Velsky and Landis



27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

AVL Trees
• A binary search tree where the height difference between left and right subtrees 

of a node is at most 1

– Binary Search Tree (BST): Left subtree keys are less than the root and right subtree keys 
are greater

• Two implementations:

– Height:  Just store the height of the tree rooted at that node

– Balance:  Define b(n) as the balance of a node = Right – Left Subtree Height

• Legal values are -1, 0, 1

• Balances require at most 2-bits if we are trying to save memory. 

• Let's use balance for this lecture.

20

3010

-1

0 -1

121 25050

30 80 150

20

3010

4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance 

factors
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Adding a New Node

• Once a new node is added, can its parent be out of balance?
– No, assuming the tree is "in-balance" when we start.  

– Thus, our parent has to have

• A balance of 0

• A balance of 1 if we are a new left child or -1 if a new right child

– Otherwise, it would not be our parent or the parent would have been 
out of balance already

• Cases for a newly inserted LEFT child

12

10

-1

0

120

200100

120 12+1

200

To be a newly inserted LEFT child -

Option 1 
To be a newly inserted LEFT child -

Option 2 
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Losing Balance

• If our parent is NOT out of balance, is it possible our 
grandparent is out of balance?

• Sure, so we need a way to re-balance it

12

10

0

0

150

120

15-1 101

-2 2

-1
-1
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To Zig or Zag

• The rotation(s) required to 
balance a tree is/are 
dependent on the 
grandparent, parent, child 
relationships

• We can refer to these as 
the zig-zig (left-left or right-
right) case and zig-zag case 
(left-right or right-left)

• Zig-zig requires 1 rotation

• Zig-zag requires 2 rotations 
(first converts to zig-zig)

20

12

10

-2

-1

0

10

12

20

2

1

0

120

200100

20

10

12

-2

1

0

10

20

12

2

-1

0

120

200100

Left-left or Right-right

(a.k.a. Zig-zig)

[Single left/right rotation at grandparent]

Left-right or Right-left

(a.k.a. Zig-zag)

[Left/right rotation at parent followed by rotation in 

opposite direction at grandparent]

g g

g

p p

g

p p
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Disclaimer

• There are many ways to structure an 
implementation of an AVL tree…the following 
slides represent just 1

– Focus on the bigger picture ideas as that will allow 
you to more easily understand other 
implementations
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Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and 
inserting the new node as its child), set balance 
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)

12

10

0

0

121

200100

12-1

200100

-1
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Insert-fix(p, n)

• Precondition:  p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g  [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g); 
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) ==  0 then b(p) = 0; b(g) =  0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) =  0; b(n) = 0;

Note: If you 
perform a 

rotation to fix a 
node that is out 
of balance you 
will NOT need 
to recurse. You 

are done!

General Idea: 
Work up ancestor 

chain updating 
balances of the 

ancestor chain or 
fix a node that is 
out of balance.
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Insertion 
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Empty Insert 10 Insert 20

10 10

20

Insert 30

10

20

30

20

3010

Zig-zig => 

b(g) = b(p) = 0

Insert 15

10 violates balance

Insert 25

0 1

0

2

1

0

0

0 0

20

3010

-1

1 0

150

20

3010

0

1 -1

150 250

20

3010

0

2 -1

15-1 250

120

Insert 12

g

p

n

g

p

n

Zig-zag & b(n) = 0 => 

b(g) = b(p) = b(n) = 0

20

3012

0

0 -1

150 250100
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Insertion 
• Insert 10, 20, 30, 15, 25, 12, 5, 3, 8

Insert 5
Zig-zig => 

b(g) = b(p) = 0

Insert 8 Zig-zag & b(n) = -1 => 

b(g) = 1 & b(p) = b(n) = 0

20

3012

-1

-1 -1

150 25010-1

50

Insert 3
20

3012

-1

-1 -1

150 25010-2

5-1

30

20

3012

-1

-1 -1

150 25050

30 100

20

3012

-1

-2 -1

150 2505+1

30 10-1

80

g

p

n

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 1 
• Insert key=28

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 2 
• Insert key=17

20

3010

-1

0 -1

121 25050

30 80 150
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Insertion Exercise 3 
• Insert key=2

20

3010

-1

0 -1

121 25050

30 80 150
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Remove Operation

• Remove operations may also require rebalancing via 
rotations

• The key idea is to update the balance of the nodes 
on the ancestor pathway

• If an ancestor gets out of balance then perform 
rotations to rebalance

– Unlike insert, performing rotations during removal does 
not mean you are done, but need to continue recursing

• There are slightly more cases to worry about but not 
too many more
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Removal: A First Look

• Let's try removal just by intuition…

– Walk up ancestor chain updating balances

– Fix any out-of-balance node by performing rotations

Remove 25

20

3010

-1

-1 -1

120 25050

30 80

20

3010

-2

-1 0

12050

30 80

Update Balances Perform rotations using 

"taller" of children

20

30

10

0

0

0120

50

30 80
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Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who 
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL, 

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to 
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to 
balance of its parent

– diff will be the amount added to updated the balance of p 

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1   // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) ==  0   // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done! 

– Case 1c: b(c) == +1   // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0,  b(c) = -1, b(g) = 0

• If b(g) was  0 then b(n) = 0,  b(c) =  0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) =  0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff ==  0: then b(n) = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n
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Why this Works (Zig-zig version)
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Why this Works (Zig-zag version)
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tree, thus the necessity to continue 

calling removeFix
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Remove Examples
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Remove Examples
Remove 30

20

3010

-1

-1 -1

120 2505

80

1

n

20

2510

-2

-1 0

1205

80

1

n

c

g

Zig-zig & b(c) = -1 => 

b(n) = b(c) = 0

10

20

0

0

120

5

80

1

c

25

n

0

20

2510

-1

-1 0

1205

80

1

n



47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Remove Examples
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Remove Example 1
Remove 8
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Remove Example 1
Remove 8
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Remove Example 2
Remove 10
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Remove Example 2
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Remove Example 3

Remove 30

20

3010

-1

1 -1

15-1 2518

121

-1

5

14

28

350

170

0

0 0



53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Remove Example 3
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else if b(c) == 1  (zig-zag case)
• rotateLeft(c) then rotateRight(n)

• Let g = right(c), b(g) = 0

• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);
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Remove Example 3 (cont)

Remove 30 (cont.)
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• rotateLeft(c) then rotateRight(n)
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• If b(g) == +1 then b(n) = 0, b(c) = -1, b(g) = 0

• If b(g) == 0 then b(n) = b(c) = 0, b(g) = 0

• If b(g) == -1 then b(n) = +1, b(c) = 0, b(g) = 0

• removeFix(parent(p), ndiff);
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Remove Exercise
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Online Tool

• https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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FOR PRINT
Distribute these 4 to students
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Insert(n)

• If empty tree => set n as root, b(n) = 0, done!

• Else insert n (by walking the tree to a leaf, p, and 
inserting the new node as its child), set balance 
to 0, and look at its parent, p

– If b(p) was -1, then b(p) = 0. Done!

– If b(p) was +1, then b(p) = 0. Done!

– If b(p) was 0, then update b(p) and call insert-fix(p, n)
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121

200100

12-1

200100

-1
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Insert-fix(p, n)

• Precondition:  p and n are balanced: {-1,0,-1}

• Postcondition: g, p, and n are balanced: {-1,0,-1}

• If p is null or parent(p) is null, return

• Let g = parent(p)

• Assume p is left child of g  [For right child swap left/right, +/-]
– b(g) += -1 // Update g's balance to new accurate value for now

– Case 1: b(g) == 0, return

– Case 2: b(g) == -1, insertFix(g, p) // recurse

– Case 3: b(g) == -2

• If zig-zig then rotateRight(g); b(p) = b(g) = 0

• If zig-zag then rotateLeft(p); rotateRight(g); 
– Case 3a: b(n) == -1 then b(p) = 0; b(g) = +1; b(n) = 0;

– Case 3b: b(n) ==  0 then b(p) = 0; b(g) =  0; b(n) = 0;

– Case 3c: b(n) == +1 then b(p)= -1; b(g) =  0; b(n) = 0;

Note: If you 
perform a 

rotation to fix a 
node that is out 
of balance you 
will NOT need 
to recurse. You 

are done!

General Idea: 
Work up ancestor 

chain updating 
balances of the 

ancestor chain or 
fix a node that is 
out of balance.
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Remove
• Find node, n, to remove by walking the tree

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step

– Recall if a node has 2 children we swap with its successor or predecessor who 
can have at most 1 child and then remove that node

• Let p = parent(n)

• If p is not NULL, 

– If n is a left child, let diff = +1

– If n is a left child to be removed, the right subtree now has greater height, so add diff = +1 to 
balance of its parent

– if n is a right child, let diff = -1

– If n is a right child to be removed, the left subtree now has greater height, so add diff = -1 to 
balance of its parent

– diff will be the amount added to updated the balance of p 

• Delete n and update pointers

• “Patch tree” by calling removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before altering the tree
– Let p = parent(n) and if p is not NULL let ndiff (nextdiff) = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• Case 1: b(n) + diff == -2

– [Perform the check for the mirror case where b(n) + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– Case 1a: b(c) == -1   // zig-zig case

• rotateRight(n), b(n) = b(c) = 0, removeFix(p, ndiff)

– Case 1b: b(c) ==  0   // zig-zig case

• rotateRight(n), b(n) = -1, b(c) = +1 // Done! 

– Case 1c: b(c) == +1   // zig-zag case

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If b(g) was +1 then b(n) = 0,  b(c) = -1, b(g) = 0

• If b(g) was  0 then b(n) = 0,  b(c) =  0, b(g) = 0

• If b(g) was -1 then b(n) = +1, b(c) =  0, b(g) = 0

• removeFix(p, ndiff);

• Case 2: b(n) + diff == -1: then b(n) = -1; // Done!

• Case 3: b(n) + diff ==  0: then b(n) = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n
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OLD ALTERNATE METHOD
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Insert

• Root => set balance, done!

• Insert, v, and look at its parent, p

– If b(p) = -1, then b(p) = 0. Done!

– If b(p) = +1, then b(p) = 0. Done!

– If b(p) = 0, then update b(p) and call insert-fix(p)
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Insert-Fix

• For input node, v
– If v is root, done.

– Invariant:  b(v) = {-1, +1}

• Find p = parent(v) and assume v = left(p) [i.e. left child]
– If b(p) = 1, then b(p) = 0. Done!

– If b(p) = 0, then b(p) = -1. Insert-fix(p).

– If b(p) = -1 and b(v) = -1 (zig-zig), then b(p) = 0, b(v) = 0, rightRotate(p) 
Done!

– If b(p) = -1 and b(v) = 1 (zig-zag), then 
• u = right(v), b(u) = 0, leftRotate(n), rightRotate(p)

• If b(u) = -1, then b(v) = 0, b(p) = 1

• If b(u) = 1, then b(v) = -1, b(p) = 0

• Done!
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Remove

• Let n = node to remove (perform BST find) 

• If n has 2 children, swap positions with in-order successor (or 
predecessor) and perform the next step
– If you had to swap, let n be the node with the original value that just 

swapped down to have 0 or 1 children guaranteed

• Let p = parent(n)

• If n is not in the root position (i.e. p is not NULL) determine its 
relationship with its parent
– If n is a left child, let diff = +1

– if n is a right child, let diff = -1

• Delete n and "patch" the tree (update pointers including root)

• removeFix(p, diff);
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RemoveFix(n, diff)
• If n is null, return

• Compute next recursive call's arguments now before we alter the tree
– Let p = parent(n) and if p is not NULL let ndiff = +1 if n is a left child and -1 otherwise

• Assume diff = -1 and follow the remainder of this approach, mirroring if diff = +1

• If (n.balance + diff == -2)   
– [Perform the check for the mirror case where n.balance + diff == +2, flipping left/right and -1/+1]

– Let c = left(n), the taller of the children

– If c.balance == -1 or 0   (zig-zig case)

• rotateRight(n)

• if c.balance was -1 then n.balance = c.balance = 0, removeFix(p, ndiff)

• if c.balance was 0 then n.balance = -1, c.balance = +1, done! 

– else if c.balance == 1  (zig-zag case)

• Let g = right(c)

• rotateLeft(c) then rotateRight(n)

• If g.balance was +1 then n.balance = 0, c.balance = -1, g.balance = 0

• If g.balance was 0 then n.balance = c.balance = 0, g.balance = 0

• If g.balance was -1 then n.balance = +1, c.balance = 0, g.balance = 0

• removeFix(p, ndiff);

• else if  (n.balance + diff == -1) then n.balance = -1, done!

• else (if n.balance + diff == 0) n.balance = 0, removeFix(p, ndiff)

Note: 
p = parent of n

n = current node
c = taller child of n
g = grandchild of n


