CSCI 104
Sorting Algorithms

Mark Redekopp
David Kempe
Algorithm Efficiency

SORTING
Sorting

• If we have an unordered list, sequential search becomes our only choice
• If we will perform a lot of searches it may be beneficial to sort the list, then use binary search
• Many sorting algorithms of differing complexity (i.e. faster or slower)
• Sorting provides a "classical" study of algorithm analysis because there are many implementations with different pros and cons
Applications of Sorting

• Find the set_intersection of the 2 lists to the right
 – How long does it take?

• Try again now that the lists are sorted
 – How long does it take?
Sorting Stability

• A sort is stable if the order of equal items in the original list is maintained in the sorted list
 – Good for searching with multiple criteria
 – Example: Spreadsheet search
 • List of students in alphabetical order first
 • Then sort based on test score
 • I'd want student's with the same test score to appear in alphabetical order still
• As we introduce you to certain sort algorithms consider if they are stable or not
Bubble Sorting

• Main Idea: Keep comparing neighbors, moving larger item up and smaller item down until largest item is at the top. Repeat on list of size n-1
• Have one loop to count each pass, (a.k.a. i) to identify which index we need to stop at
• Have an inner loop start at the lowest index and count up to the stopping location comparing neighboring elements and advancing the larger of the neighbors
Bubble Sort Algorithm

```cpp
void bsort(vector<int> mylist) {
    int i;
    for(i=mylist.size()-1; i > 0; i--){
        for(j=0; j < i; j++){
            if(mylist[j] > mylist[j+1]) {
                swap(j, j+1)
            }  
        }  
    }
}
```

Pass 1

```
7 3 8 6 5 1
|
| j i
3 7 8 6 5 1
|
| swap
3 7 8 6 5 1
|
| no swap
3 7 6 8 5 1
|
| swap
3 7 6 5 8 1
|
| swap
3 7 6 5 1 8
|
| swap
```

Pass 2

```
3 7 6 5 1 8
|
| j i
3 7 6 5 1 8
|
| no swap
3 7 6 5 1 8
|
| swap
3 6 7 5 1 8
|
| swap
3 6 7 5 1 8
|
| swap
3 6 5 1 7 8
|
| swap
3 7 6 5 1 8
|
| swap
```

Pass n-2

```
3 1 5 6 7 8
|
| j i
3 1 5 6 7 8
|
| swap
1 3 5 6 7 8
|
| swap
```

Bubble Sort
Bubble Sort Analysis

• Best Case Complexity:
 – When already ________________ but still have to ________________
 – O(____)

• Worst Case Complexity:
 – When ________________
 – O(____)

```cpp
void bsort(vector<int> mylist) {
    int i;
    for(i=mylist.size()-1; i > 0; i--){
        for(j=0; j < i; j++){
            if(mylist[j] > mylist[j+1]) {
                swap(j, j+1)
            }
        }
    }
}
```
Bubble Sort Analysis

- **Best Case Complexity:**
 - When already sorted (no swaps) but still have to do all compares
 - $O(n^2)$

- **Worst Case Complexity:**
 - When sorted in descending order
 - $O(n^2)$

```cpp
void bsort(vector<int> mylist)
{
    int i;
    for(i=mylist.size()-1; i > 0; i--){
        for(j=0; j < i; j++){
            if(mylist[j] > mylist[j+1]) {
                swap(j, j+1)
            }
        }
    }
}
```
Loop Invariants

• Loop invariant is a statement about what is true either before an iteration begins or after one ends

• Consider bubble sort and look at the data after each iteration (pass)
 – What can we say about the patterns of data after the k-th iteration?

```cpp
void bsort(vector<int> mylist)
{
  int i;
  for(i=mylist.size()-1; i > 0; i--){
    for(j=0; j < i; j++){  
      if(mylist[j] > mylist[j+1]) {  
        swap(j, j+1)
      }  
    }
  }
}
```
Loop Invariants

• What is true after the k-th iteration?
• All data at indices n-k and above ____________
 – ∀i, i ≥ n – k:
• All data at indices below n-k are ________________
 – ∀i, i < n – k:

```java
void bsort(vector<int> mylist)
{
    int i;
    for(i=mylist.size()-1; i > 0; i--)
    {
        for(j=0; j < i; j++)
        {
            if(mylist[j] > mylist[j+1]) { swap(j, j+1) }
        }
    }
}
```
Loop Invariants

- What is true after the k-th iteration?
- All data at indices n-k and above are sorted
 \[\forall i, i \geq n - k: a[i] \leq a[i + 1] \]
- All data at indices below n-k are less than the value at n-k
 \[\forall i, i < n - k: a[i] \leq a[n - k] \]

```cpp
void bsort(vector<int> mylist) {
    int i;
    for (i = mylist.size() - 1; i > 0; i--){
        for (j = 0; j < i; j++){
            if (mylist[j] > mylist[j+1]) {
                swap(j, j+1)
            }
        }
    }
}
```
Selection Sort

- Selection sort does away with the many swaps and just records where the min or max value is and performs one swap at the end.
- The list/array can again be thought of in two parts:
 - Sorted
 - Unsorted
- The problem starts with the whole array unsorted and slowly the sorted portion grows.
- We could find the max and put it at the end of the list or we could find the min and put it at the start of the list:
 - Just for variation let's choose the min approach.
Selection Sort Algorithm

```c
void ssort(vector<int> mylist)
{
    for(i=0; i < mylist.size()-1; i++){
        int min = i;
        for(j=i+1; j < mylist.size(); j++){
            if(mylist[j] < mylist[min]) {
                min = j
            }
        }
        swap(mylist[i], mylist[min])
    }
}
```

Pass 1

```
7 3 8 6 5 1
    i  j
```

Pass 2

```
1 3 8 6 5 7
    i  j
```

Pass n-2

```
1 3 5 6 7 8
    i  j
```

Pass n-1

```
1 3 5 6 7 8
    i  j
```
Selection Sort

Value

List Index

Courtesy of wikipedia.org
Selection Sort Analysis

• Best Case Complexity:
 – ____________________
 – O(__)

• Worst Case Complexity:
 – ____________________
 – O(__)

```cpp
void ssort(vector<int> mylist) {
    for (i=0; i < mylist.size()-1; i++) {
        int min = i;
        for (j=i+1; j < mylist.size(); j++) {
            if (mylist[j] < mylist[min]) {
                min = j
            }
        }
        swap(mylist[i], mylist[min])
    }
}
```
Selection Sort Analysis

• Best Case Complexity:
 – Sorted already
 – $O(n^2)$

• Worst Case Complexity:
 – When sorted in descending order
 – $O(n^2)$

```c
void ssort(vector<int> mylist)
{
    for(i=0; i < mylist.size()-1; i++){
        int min = i;
        for(j=i+1; j < mylist.size(); j++){
            if(mylist[j] < mylist[min]) {
                min = j
            }
        }
        swap(mylist[i], mylist[min])
    }
}
```

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \theta(1)$$
$$= \sum_{i=0}^{n-2} \theta(n - i - 1)$$

Let $m = n - i - 1$, then solve for the bounds of the summation:
$$= \sum_{i=1}^{n-1} \theta(m) = \theta(n^2)$$
Loop Invariant

• What is true after the k-th iteration?

• All data at indices less than k are

 – ∀i, i < k:

• All data at indices k and above are

 – ∀i, i ≥ k:
Loop Invariant

• What is true after the k-th iteration?

• All data at indices less than k are sorted
 – \(\forall i, i < k: a[i] \leq a[i + 1] \)

• All data at indices k and above are greater than the value at k-1
 – \(\forall i, i \geq k: a[k - 1] \leq a[i] \)

void ssort(vector<int> mylist)
{
 for(i=0; i < mylist.size()-1; i++){
 int min = i;
 for(j=i+1; j < mylist.size(); j++){
 if(mylist[j] < mylist[min]) {
 min = j
 }
 }
 swap(mylist[i], mylist[min])
 }
}
Insertion Sort Algorithm

• Imagine we pick up one element of the array at a time and then just insert it into the right position

• Similar to how you sort a hand of cards in a card game
 – You pick up the first (it is by nature sorted)
 – You pick up the second and insert it at the right position, etc.
void isort(vector<int> mylist)
{
 for(int i=1; i < mylist.size(); i++){
 int val = mylist[i];
 hole = i
 while(hole > 0 && val < mylist[hole-1]){
 mylist[hole] = mylist[hole-1];
 hole--;
 }
 mylist[hole] = val;
 }
}
Insertion Sort

<table>
<thead>
<tr>
<th>Value</th>
<th>List Index</th>
</tr>
</thead>
</table>

Courtesy of wikipedia.org
Insertion Sort Analysis

• Best Case Complexity:
 – Sorted already
 – _______________

• Worst Case Complexity:
 – When sorted in descending order
 – _______________

```cpp
void isort(vector<int> mylist) {
    for(int i=1; i < mylist.size()-1; i++) {
        int val = mylist[i];
        hole = i;
        while(hole > 0 && val < mylist[hole-1]) {
            mylist[hole] = mylist[hole-1];
            hole--;
        }
        mylist[hole] = val;
    }
}```
Insertion Sort Analysis

• Best Case Complexity:
  – Sorted already
  – O(n)

• Worst Case Complexity:
  – When sorted in descending order
  – O(n²)

```cpp
void isort(vector<int> mylist) {
 for(int i=1; i < mylist.size()-1; i++){
 int val = mylist[i];
 hole = i;
 while(hole > 0 && val < mylist[hole-1]){
 mylist[hole] = mylist[hole-1];
 hole--;
 }
 mylist[hole] = val;
 }
}
```
Loop Invariant

• What is true after the k-th iteration?

• All data at indices less than _____________ – ∀i,

• Can we make a claim about data at k+1 and beyond?

```cpp
void isort(vector<int> mylist)
{
 for(int i=1; i < mylist.size()-1; i++){
 int val = mylist[i];
 hole = i
 while(hole > 0 && val < mylist[hole-1]){
 mylist[hole] = mylist[hole-1];
 hole--;
 }
 mylist[hole] = val;
 }
}
```
Loop Invariant

• What is true after the k-th iteration?
• All data at indices less than k+1 are sorted
  – ∀i, i < k: a[i] ≤ a[i + 1]
• Can we make a claim about data at k+1 and beyond?
  – No, it's not guaranteed to be smaller or larger than what is in the sorted list

```cpp
void isort(vector<int> mylist)
{
 for(int i=1; i < mylist.size()-1; i++)
 {
 int val = mylist[i];
 hole = i
 while(hole > 0 && val < mylist[hole-1]){
 mylist[hole] = mylist[hole-1];
 hole--;
 }
 mylist[hole] = val;
 }
}
```
MERGESORT
Exercise

- [http://bits.usc.edu/websheets/?folder=cpp/cs104&start=merge&auth=Google#](http://bits.usc.edu/websheets/?folder=cpp/cs104&start=merge&auth=Google#)
  - merge
Merge Two Sorted Lists

- Consider the problem of merging two sorted lists into a new combined sorted list
- Can be done in O(n)
- Can we merge in place or need an output array?
Recursive Sort (MergeSort)

- Break sorting problem into smaller sorting problems and merge the results at the end
- MergeSort(0..n)
  - If list is size 1, return
  - Else
    - MergeSort(0..n/2 - 1)
    - MergeSort(n/2 .. n)
    - Combine each sorted list of n/2 elements into a sorted n-element list
Recursive Sort (MergeSort)

- Run-time analysis
  - # of recursion levels = \( \log_2(n) \)
  - Total operations to merge each level =
    - \( n \) operations total to merge two lists over all recursive calls at a particular level
- MergeSort = \( O(n \log_2(n)) \)
  - Usually has high constant factors due to extra array needed for merge
MergeSort Run Time

- Let's prove this more formally:
- $T(1) = \Theta(1)$
- $T(n) =$
MergeSort Run Time

- Let's prove this more formally:
  - $T(1) = \Theta(1)$
  - $T(n) = 2 \cdot T(n/2) + \Theta(n)$

\[
\begin{align*}
\text{k=1} & \quad T(n) = 2 \cdot T(n/2) + \Theta(n) \\
\text{k=2} & \quad = 2 \cdot 2 \cdot T(n/4) + 2 \cdot \Theta(n) \\
\text{k=3} & \quad = 8 \cdot T(n/8) + 3 \cdot \Theta(n) \\
& \quad = 2^k \cdot T(n/2^k) + k \cdot \Theta(n)
\end{align*}
\]

Stop @ $T(1)$
[i.e. $n = 2^k$]

\[
\begin{align*}
\text{k=log}_2n & \quad = 2^k \cdot T(n/2^k) + k \cdot \Theta(n) = 2^{\log_2(n)} \cdot \Theta(1) + \log_2 \cdot \Theta(n) = n + \log_2 \cdot \Theta(n) \\
& \quad = \Theta(n \cdot \log_2 n)
\end{align*}
\]
Recursive Sort (MergeSort)

```cpp
void mergesort(vector<int>& mylist)
{
 vector<int> other(mylist); // copy of array
 // use other as the source array, mylist as the output array
 msort(other, myarray, 0, mylist.size());
}

void msort(vector<int>& mylist, vector<int>& output, int start, int end)
{
 // base case
 if(start >= end) return;
 // recursive calls
 int mid = (start+end)/2;
 msort(mylist, output, start, mid);
 msort(mylist, output, mid, end);
 // merge
 merge(mylist, output, start, mid, mid, end);
}

void merge(vector<int>& mylist, vector<int>& output, int s1, int e1, int s2, int e2)
{
 ...
}
```
Divide & Conquer Strategy

• Mergesort is a good example of a strategy known as "divide and conquer"

• 3 Steps:
  – Divide
    • Split problem into smaller versions (usually partition the data somehow)
  – Recurse
    • Solve each of the smaller problems
  – Combine
    • Put solutions of smaller problems together to form larger solution

• Another example of Divide and Conquer?
  – Binary Search
QUICKSORT
**Partition & QuickSort**

- Partition algorithm (arbitrarily) picks one number as the 'pivot' and puts it into the 'correct' location

```cpp
ing int partition(vector<int> mylist, int start, int end, int p)
{
 int pivot = mylist[p];
 swap(mylist[p], mylist[end]); // move pivot out of the way for now

 int left = start; int right = end-1;
 while(left < right){
 while(mylist[left] <= pivot && left < right)
 left++;
 while(mylist[right] >= pivot && left < right)
 right--;
 if(left < right)
 swap(mylist[left], mylist[right]);
 }
 if(mylist[right] > mylist[end]) { // put pivot in
 swap(mylist[right], mylist[end]); // correct place
 return right;
 } else { return end; }
}
```

**Partition(mylist, 0, 5, 5)**

```
3 6 8 1 5 7
l r p
3 6 8 1 5 7
l r p
3 6 5 1 8 7
l r p
3 6 5 1 8 7
l, r p
3 6 5 1 7 8
l, r p
```

Note: end is inclusive in this example
QuickSort

• Use the partition algorithm as the basis of a sort algorithm

• Partition on some number and the recursively call on both sides

```cpp
// range is [start,end] where end is inclusive
void qsort(vector<int>& mylist, int start, int end)
{
 // base case - list has 1 or less items
 if(start >= end) return;

 // pick a random pivot location [start..end]
 int p = start + rand() % (end+1);
 // partition
 int loc = partition(mylist,start,end,p)
 // recurse on both sides
 qsort(mylist,start,loc-1);
 qsort(mylist,loc+1,end);
}
```
QuickSort Analysis

• Worst Case Complexity:
  – When pivot chosen ends up being the maximum or minimum value:
    ________________
  – Runtime:

• Best Case Complexity:
  – Pivot point chosen ends up being the median value:
    ________________
  – Runtime:
QuickSort Analysis

• Worst Case Complexity:
  – When pivot chosen ends up being min or max item
  – Runtime:
    • $T(n) = \Theta(n) + T(n-1)$

• Best Case Complexity:
  – Pivot point chosen ends up being the median item
  – Runtime:
    • Similar to MergeSort
    • $T(n) = 2T(n/2) + \Theta(n)$
QuickSort Analysis

• Average Case Complexity: $O(n \times \log(n))$
  – _____________ choose a pivot
QuickSort Analysis

• Worst Case Complexity:
  – When pivot chosen ends up being max or min of each list
  – $O(n^2)$

• Best Case Complexity:
  – Pivot point chosen ends up being the middle item
  – $O(n \cdot \lg(n))$

• Average Case Complexity: $O(n \cdot \log(n))$
  – Randomly choose a pivot

• Pivot and quicksort can be slower on small lists than something like insertion sort
  – Many quicksort algorithms use pivot and quicksort recursively until lists reach a certain size and then use insertion sort on the small pieces
Comparison Sorts

• Big O of comparison sorts
  – It is mathematically provable that comparison-based sorts can never perform better than $O(n \times \log(n))$

• So can we ever have a sorting algorithm that performs better than $O(n \times \log(n))$?

• Yes, but only if we can make some meaningful assumptions about the input
OTHER SORTS
Sorting in Linear Time

• Radix Sort
  – Sort numbers one digit at a time starting with the least significant digit to the most.

• Bucket Sort
  – Assume the input is generated by a random process that distributes elements uniformly over the interval \([0, 1)\)

• Counting Sort
  – Assume the input consists of an array of size \(N\) with integers in a small range from 0 to \(k\).
Applications of Sorting

• Find the set_intersection of the 2 lists to the right
  – How long does it take?

• Try again now that the lists are sorted
  – How long does it take?
Other Resources

- http://www.youtube.com/watch?v=vxENKlcs2Tw


- http://www.math.ucla.edu/~rcompton/musical_sorting_algorithms/music_al_sorting_algorithms.html

- http://sorting.at/

- Awesome musical accompaniment: https://www.youtube.com/watch?v=ejpFmtYM8Cw