CSCI 104
Ilterators

Mark Redekopp
David Kempe

i, TS(“Viterbi -

School of Engineering

ITERATORS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi @
lteration

« Consider how you iterate over all the |ArrayList<int> mylist;

elements in a list for(int i=0; i < mylist.size(); ++i)
— Use a for loop and get() or { , _
cout << mylist.get(i) << endl;
operator(] }

* Foran array list this is fine since
each call to get() is O(1)

e For alinked list, calling get(i) L . g . .
requires taking i steps through the {°r(1"t i=0; i < mylist.size(); ++i)

linked list cout << mylist.get(i) << endl;
}

LinkedList<int> mylist;

— 0% call = 0 steps

— 1stcall =1 step

head
— 2" call = 2 steps
0x148
— 0+1+2+...4+n-2+n-1 = 0O(n?) 0x148 0x1c0 0x3e0
* You are repeating the work of 3 |ox1co O |ox3e0f> 5§ [NULL
walking the list...
get(0)
get(1)
get(2)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCViterbi®
Iteration: A Better Approach

e Solution: Don't use get(i)
e Use an iterator

— Stores internal state variable (i.e.
another pointer) that remembers
where you are and allows taking steps
efficiently

* |terator tracks the internal location
of each successive item

* [terators provide the semantics of a

School of Engineering

head |Mylist.begin() Mylist-end()‘
0x148 \l,
0x148 0x1c0 0x3e0 \
3 |oxico O |0x3e0> 5 |NULL
A A A
iterator
iterator
iterator

pointer (they look, smell, and act like
a pointer to the values in the list

* Assume
— Mylist.begin() returns an "iterator" to the
beginning itme
— Mylist.end() returns an iterator "one-
beyond" the last item

LinkedList<int> mylist;

iterator it = mylist.begin()
for(it = mylist.begin();

it = mylist.end();
++it)
{
cout << *it << endl;
}

— ++it (preferrer) or it++ moves iterator on
to the next value

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — ()5 Viterbi >
Why lIterators

e Can be more efficient

— Keep internal state variable for where you are in your iteration process
so you do NOT have to traverse (re-walk) the whole list every time you
want the next value

* Hides the underlying implementation details from the user

— User doesn't have to know whether its an array or linked list behind
the scene to know how to move to the next value
* To take a step with a pointer in array: ++ptr
* To take a step with a pointer in a linked list: ptr = ptr->next

— For some of the data structures like a BST the underlying structure is
more complex and to go to the next node in a BST is not a trivial task

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

REVIEW OF OPERATOR
OVERLOADING

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

S — ()5 Vierbi
A "Dumb" Pointer Class o

* Challenge: Use operator overloading to timplate ;typename ™
make a "Dumb" pointer class (i.e. show class DumbPtr

] _ { private:
how an object can do what a pointer T* p_;
can already do) public:

DumbPtr(T* p) : p_(p) { }
T& operator*() { return *p_; }

— Should return reference (T&) to item T* operator->() { return p_; }
pointed at DumbPtr& operator++() // pre-inc
{ ++p_; return *this; }
DumbPtr operator++(int) // post-inc

 Operator*

* Operator->

— Per C++ standard (just do it)...should { DumbPtr x; x.p_ = p_; ++p_; return x; }
return a pointer (T*) to item be bool operator==(const DumbPtr& rhs);
referenced { return p_ == rhs.p_; }

_ bool operator!=(const DumbPtr& rhs);
 Operator++() - Preincrement { return p_ != rhs.p_; }

— Should return reference to itself ¥

iterator& (i.e. return *this) Y)

* Operator++(int) - Postincrement int data[10];

DumbPtr<int> ptr(data);

for(int i=0; i < 10; i++){
cout << *ptr; ++ptr;

— Should return another iterator pointing
to current item will updating itself to

point at the next }
e QOperator==& != string s; DumbPtr<string> sptr(&s);
cout << sptr->size() << endl;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or g

i, TS(“Viterbi

School of Engineering

Pre- vs. Post-Increment

* Recall what makes a function signature unique is combination
of name AND number/type of parameters
— int f1() and void f1() are the same
— int f1(int) and void f1() are unique

 When you write: obj++ or ++obj the name of the function will
be the same: operator++

* To differentiate the designers of C++ arbitrarily said, we'll pass
a dummy int to the operator++() for POST-increment

* So the prototypes look like this...
— Preincrement: iterator& operator++();

— Postincrement: iterator operator++(int);
* Prototype the 'int' argument, but ignore it...never use it...
* It's just to differentiate pre- from post-increment

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -

School of Engineering

Pre- vs. Post-Increment

e Consider an expression like the following (a=1, b=5):

(a++ * b) + (a * ++b)

1*5 + 2%6

Operator++ has higher precedence than multiply (*), so we do it first but the
post increment means it should appear as if the old value of a is used

To achieve this, we could have the following kind of code:

a++ => {intx=a;a=a+l; returnx; }
* Make a copy of a (which we will use to evaluate the current expr.
* Increment a so its ready to be used the next time
* Return the copy of a that we made

Preincrement is much easier because we can update the value and then just
use it

++b =>{ b = b+1; return b;}

 Takeaway: Post-increment is "less efficient" because it causes a
copy to be made

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

More operator overloading...

DEFINING ITERATORS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi)

Building Our First Iterator

e Let's add an iterator to our Linked
List class

— Will be an object/class that holds some
data that allows us to get an item in our
list and move to the next item

— How do you iterate over a linked list
normally:
e Item<T>* temp = head;
* While(temp) temp = temp->next;
— So my iterator object really just needs to
model (contain) that 'temp' pointer

* [terator needs following operators:

- ->

- It

School of Engineering

head |Mylist.begin() Mylist-end()‘
0x148 \l,
0x148 0x1c0 0x3e0
3 |ox1co O |0x3e0> 5§ [NuLL
A A A
lt=head iterator
It = it->next iterator
It = it->next iterator

template <typename T>
struct Item {

T val;

Item<T>* next;

}s

template <typename T>
class LList {

public:
LList(); // Constructor
~LList(); // Destructor
private:
Item<T>* head_;
}s

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi 2

School of Engineering

Implementing Our First Iterator

template<typename T>

‘Mylist.begin() head Mylist.end() | class LList
{
0x148 public:
LList() { head_ = NULL; }
0x148 0x1c0 0x3e0
3 |ox1co O |ox3e0l> 5§ [NuLL class iterator {
A y \ private:
N\ lterator++ | Iterator++ | Iterator+ Item<T>* curr_;
public:
Iterator Iterator Iterator lterator | jterator& operator++() ;
(0x148) (0x1c0) (0x3e0) || (NULL) | jterator operator++(int);
T& operator*();
* We store the Item<T> pointer to T* operator->();

. de duri bool operator!=(const iterator & other);
our current 'tem/no e auring bool operator==(const iterator & other);
iteration }s

* We return the value in the Item private:
when we dereference the iterator Item<T>* head_;
. int size_;
* We update the pointer when we | };

increment the iterator " Note: Though class iterator is defined inside LList<T>, it
is completely separate and what's private to iterator
can't be access by LList<T> and vice versa

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or ¢

Outfitting LList to Support Iterators

USC Viterbi

School of Engineering

Mylist.begin()| head Mylist.end() | templatectypename T>
0x148 class LList
{
public:
Ox148 OxLc0 0x3e0
X xe x=e LList() { head_ = NULL; }
3 |ox1co O |ox3e0>{ 5 |NuLL
A / \ class iterator {
v Iterator++ Iterator++ | Iterator+ private:
lterator lterator lterator || Iterator | Ttem<T>* curr_;
(0x148) (0x1c0) || (0x3e0) || (NULL) |Public:
iterator& operator++() ;

* begin() and end() should return a
new iterator that points to the
head or end of the list

e But how should begin() and end()
seed the iterator with the correct
pointer?

iterator operator++(int);

T& operator*();

T* operator->();

bool operator!=(const iterator & other);
bool operator==(const iterator & other);

}s

iterator begin() { ??? }
iterator end() { ??? }

private:

}s

Item<T>* head_;
int size_;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Outfitting LList to Support Iterators

 We could add a public
constructor...

e But that's bad form, because then
anybody outside the LList could
create their own iterator pointing
to what they want it to point to...

— Only LList<T> should create iterators
— So what to do??

School of Engineering

template<typename T>
class LList

{

public:

LList() { head = NULL; }

class iterator {

private:
Item<T>* curr ;

public:
iterator (Item<T>* init)
iterator& operator++() ;
iterator operator++ (int) ;
T& operator* () ;
T* operator->() ;
bool operator!=(const iterator & other);
bool operator==(const iterator & other);

};

: curr (init) {}

iterator begin () { 2?2?22 }

iterator end() { ??? }

private:
Item<T>* head_;
int size_;

};

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi 9

School of Engineering

Friends and Private Constructors

template<typename T>

* Let's only have the iterator class class LList

grant access to its "trusted" friend: |1 Etﬂiz) ¢ head - NULL;)

Llist - ’
* Now LList<T> can access iterators c;ii\iaizfratw {

private data and member Item<T>* curr_;

functions puaiiz?tor(ltem<T> init) : curr_(init) {}
* And we can add a private friend class LList<T>;

constructor that only 'iterator' and W

'LList<T>' can use iterator operator++(int);

T& operator*();
T* operator->();
bool operator!=(const iterator & other);

— This prevents outsiders from creating
iterators that point to what they

choose bool operator==(const iterator & other);
* Now begin() and end can create 35
) & _()) iterator begin() { iterator it(head);
iterators via the private TN
constructor & return them iterator end() { iterator it(NULL);
return it; }
private:

Item<T>* head_;
int size_;

K
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Expanding to ArrayLists

 What internal state would an ArrayList iterator
store?

 What would begin() stuff the iterator with?

 What would end() stuff the iterator with that
would mean "1 beyond the end"?

i, TS(“Viterbi -

School of Engineering

Const Iterators

If a LList<T> is passed in as a const
argument, then begin() and end()
will violate the const'ness because
they aren't declared as const
member functions

— iterator begin() const;

— iterator end() const;

While we could change them, it
would violate the idea that the List
will stay const, because once
someone has an iterator they
really CAN change the List's
contents

Solution: Add a second iterator
type: const_iterator

template<typename T>
class LList
{ public:
LList() { head = NULL; }

class iterator {

};

// non-const member functions

iterator begin () { iterator it(head)’

return it; }
iterator end() { iterator it (NULL) ;
return it; }
private:
Item<T>* head ;
int size ;

};

void printMylist(const LList<int>& mylist)
{
LList<int>::iterator it;
for (it = mylist.begin(); // compile error
it '= mylist.end();
++it)
{ cout << *it << endl; }
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Const Iterators

. template<typename T>
* The const_iterator type should class LList

. { public:
return feferences and pointers to LList() { head_ = NULL; }
constT's

class iterator
e We should add an overloaded {

begin() and end() that are const };
member functions and return iterator begin();

) iterator end();
const_iterators

class const_iterator {
private:
ITtem<T>* curr_;
const_iterator(Item<T>* init);
public:
friend class LList<T>;
iterator& operator++() ;
iterator operator++(int);
T const & operator*();
T const * operator->();
bool operator!=(const iterator & other);
bool operator==(const iterator & other);
}s
const_iterator begin() const;
const_iterator end() const;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or disfributed.

i, TS(“Viterbi

School of Engineering

Const Iterators

* An updated example void printMyList(const LList<int>& mylist)

{
LList<int>::const_iterator it;
for(it = mylist.begin(); // no more error
it != mylist.end();
++it)
{ cout << *it << endl; }

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

= vs <

* It's common idiom to have the loop condition use = over <

 Some iterators don't support '<' comparison

— Why? Think about what we're comparing with our LList<T>::iterator

— We are comparing the pointer...Is the address of Item at location 1
guaranteed to be less-than the address of Item at location 27

void printMyList(const LList<int>& mylist)
{

LList<int>::const_iterator it;
for(it = mylist.begin(); it != mylist.end(); ++it)

{ cout << *it << endl; }

for(it = mylist.begin(); it < mylist.end(); ++it)
{ cout << *it << endl; }

head
0x148
0x148 0x2c0 0x1e0
3 |ox2co O |oxteo>{ 5 |NULL

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -«

Kinds of Iterators

School of Engineering

* This leads us to categorize iterators based on their capabilities
(of the underlying data organization)

* Access type

— Input iterators: Can only READ the value be pointed to
— Output iterators: Can only WRITE the value be pointed to
 Movement/direction capabilities
— Forward Iterator: Can only increment (go forward)
s ++it
— Bidirectional lterators: Can go in either direction
e ++it or --it
— Random Access lterators: Can jump beyond just next or previous
e it + 4 or it - 2
* Which movement/direction capabilities can our
LList<T>::iterator naturally support

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (]S C Viterbi (2
Recall: Implicit Type Conversion

* Would the following if condition
make sense?

e Nol! If statements want Boolean
variables

* But you've done things like this
before

— Operator>> returns an ifstream&

* So how does ifstream do it?
— With an "implicit type conversion
operator overload"

— Student::operator bool()

* Code to specify how to convert a
Student to a bool

— Student::operator int()

* Code to specify how to convert a
Student to an int

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, o

School of Engineering

class Student {

private: int id; double gpa;
}s
int main()
{
Student s1;
if(s1){ cout << "Hi" << endl; }
return O;
}

ifstream ifile(filename);

while(ifile >> x)

{ ... }

class Student {
private:
int id; double gpa;
public:
operator bool() { return gpa>= 2.0;}
operator int() { return id; }

}s

Student s1;
if(s1) // calls operator bool() and
int x = s1; // calls operator int()

i, TS(“Viterbi)

School of Engineering

Iterators With Implicit Conversions

e Can use operator bool() for iterator | template<typename T>
class LList

{ public:
LList() { head_ = NULL; }

class iterator {

private:

Item<T>* curr_;

public:

operator bool()

{ return curr_ != NULL; }

}s
}s

void printMyList(LList<int>& mylist)
{
LList<int>::iterator it = mylist.begin();
while(it){
cout << *it++ << endl;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Finishing Up

* |terators provide a nice abstraction between
user and underlying data organization

— Wait until we use trees and other data
organizations

* Due to their saved internal state they can be
more efficient than simpler approaches [like

get(i)]

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi 2

School of Engineering

Plugging the leaks

SMART POINTERS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

C++11, 14, 17

* Most of what we have taught you in this class are language
features that were part of C++ since the C++98 standard

* New, helpful features have been added in C++11, 14, and now

17 standards

— Beware: compilers are often a bit slow to implement the standards so
check the documentation and compiler version

— You often must turn on special compile flags to tell the compiler to
look for C++11 features, etc.
* For g++ you would need to add: -std=c++11 or -std=c++0x
* Many of the features in the these revisions to C++ are
originally part of 3 party libraries such as the Boost library

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— S5 Viterbi
Pointers or Objects? Both!

* |n C++, the dereference

operator (*) should appear Elass Thing
before...
— A pointer to an object ¥
— An actual object int main()
1 11 H {
* "Good" answer is Thing t1;
— A Pointer to an object Thing *ptr = &t1
e "Technically correct" answer... // Which is legal?
*-tl.
— (ARl 5
EITHER!!!! et

 Due to operator overloading we |}
can make an object behave as a
pointer

— Overload operator *, &, ->, ++,
etc.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A "Dumb" Pointer Class
* We can make a class Sl O S
operate like a pointer GRS
* Use template parameter as | "umb otr(r+ ») ¢ ooy {)
the type of data the s) 4 e By
pointer will point to et))/ prenine
}s

* Keep an actual pointer as
int main()

private data {
int data[1@0];

° Overload Operators dumb_ptr<int> ptr(data);

for(int i=0; i < 10; i++){

* This particular class doesn't cout << *ptr; ++ptr;
.)
really do anything useful }

— It just does what a normal

pointer would do

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A "Useful" Pointer Class

* | can add automatic
memory deallocation
so that when my local
"unique_ptr" goes
out of scope, it will
automatically delete
what it is pointing at

template <typename T>

class unique_ptr

{ private:
T* p_;
public:
unique_ptr(T* p) : p_(p) { }
~unique_ptr() { delete p_; }
T& operator*() { return *p ; }
T* operator->() { return p_; }
unique ptr& operator++() // pre-inc

{ ++p_; return *this; }

};

int main()
{
unique_ptr<Obj> ptr(new Obj);
/] ...
ptr->all words()
// Do I need to delete Obj?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A "Useful" Pointer Class

 What happens when
| make a copy?

 Can we make it
impossible for
anyone to make a
copy of an object?

— Remember C++
provides a default
"shallow" copy
constructor and
assignment operator

template <typename T>

class unique_ptr

{ private:
™ p_;
public:
unique_ptr(T* p) : p_(p) { }
~unique_ptr() { delete p_; }
T& operator*() { return *p ; }
T* operator->() { return p_; }
unique ptr& operator++() // pre-inc

{ ++p_; return *this; }

};

int main()
{
unique_ptr<Obj> ptr(new Obj);
unique_ptr<0Obj> ptr2 = ptr;
/] ...
ptr2->all words();
// Does anything bad happen here?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — ()5 Viterbi >
Hiding Functions

* Can we make it impossible for template <typename T>
anyone to make a copy of an Glasspuniquelptn
object? ¢ p;iv‘;ff:

public:

— Remember C++ provides a default
P unique_ptr(T* p) : p_(p) { }

"shallow" copy constructor and ~unique ptr() { delete p_; }
assignment operator T& operator*() { return *p ; }
e Yesll T* operator->() { return p_; }
es:: unique ptr& operator++() // pre-inc
— Put the copy constructor and { ++p_; return *this; }
— ; : private:
operator— d'edaratlon in the unique_ptr(const UsefultPtr& n);
pr'Vate SECtIOﬂ...nOW the unique_ptr\& Opepatop:(const
implementations that the compiler UsefultPtr& n);
provides will be private (not ¥
accessible) int main()
* You can use this technique to hide |[{ _ _
" " unique_ ptr<Obj> ptr(new Obj);
default constructors” or other unique_ptr<Obj> ptr2 = ptr;
functions // Try to compile this?
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

* Could we write a pointer class where

template <typename T>

we can make copies that somehow class shared_ptr
n " . { public:

kI?OW to only delete the underlying shared_ptr(T* p);:
object when the last copy of the smart ~shared_ptr();
pointer dies? U6 OPEFEER)7

shared ptr& operator++();
* Basicidea }
) shared_ptr<Obj> f1
— shared_ptr class will keep a count of { P] 2
how many copies are alive shared_ptr<0bj> ptr(new 0bj);

cout << "In F1\n" << *ptr << endl;

— shared_ptr destructor simply return ptr;

decrements this count }

* |f countis 0, delete the object
int main()

{
shared_ptr<Obj> p2 = f1();
cout << "Back in main\n" << *p2;
cout << endl;
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main()

e Basicidea

: . {
how many copies are alive shared_ptr<Obj> pl(new 0bj);
— Constructors/copies increment this doit(pl);
count return 0;
}
— shared_ptr destructor simply
decrements this count void doit(shared_ptr<Obj> p2)
: : {
If count is 0, delete the object (..)]
shared_ptr p shared_ptr<0Obj> p3 = p2;
ControlObjPtr }
\/ ControlObj }
RefCnt: 1
boint Actual
onter Object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

A "shared" Pointer Class

Basic idea

— shared_ptr class will keep a count of
how many copies are alive

— shared_ptr destructor simply
decrements this count

* |f countis 0, delete the object

shared_ptr p

ControlObjPtr
\/ ControlObj
RefCnt: 2
shared ptr p - Actual
Pointer ()bject

ControlObjPtr

.

N

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{
shared_ptr<Obj> pl(new Obj);
doit(pl);
return 0;
}
void doit(shared_ptr<Obj> p2)
{
if(...){
shared_ptr<Obj> p3 = p2;
}
}

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main()

e Basicidea

: . {

how many copies are alive shared_ptr<Obj> pl(new 0bj);
— shared_ptr destructor simply doit(pl);

decrements this count } U g

* |f countis 0, delete the object
void doit(shared_ptr<Obj> p2)

{.
if(...){
shared_ptr p shared_ptr<Obj> p3 = p2;
ControlObjPtr }
\/ ControlObj }
RefCnt: 3
shared ptr p : Actual
Pointer ()bject

ControlObjPtr 4—5\

shared _ptrp

ControlObjPtr

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

e Basicidea

School of Engineering

A "shared" Pointer Class

— shared_ptr class will keep a count of

how many copies are alive
— shared_ptr destructor simply

decrements this count

* |f countis 0, delete the object

shared_ptr p

ControlObjPtr

N

shared ptr p

ControlObj

RefCnt: 2

Pointer

ControlObjPtr

.

N

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Actual
Object

int main()

{
shared_ptr<Obj> pl(new Obj);

doit(pl);
return 0;

}

void doit(shared_ptr<Obj> p2)

{.
if(...){
shared_ptr<0Obj> p3 = p2;

} // p3 dies
}

- — USCViterbi @
i T . School of Engineering
A "shared" Pointer Class

— shared_ptr class will keep a count of int main()

e Basicidea

: . {

how many copies are alive shared_ptr<Obj> pl(new 0bj);
— shared_ptr destructor simply doit(pl);

decrements this count } U g

* |f countis 0, delete the object
void doit(shared_ptr<Obj> p2)

{.
if(...){
shared_ptr p shared_ptr<Obj> p3 = p2;
ControlObjPtr } // p3 dies
\/ ControlObj } // p2 dies
RefCnt: 1
- Actual
Pointer Object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

A "shared" Pointer Class

e Basicidea

— shared_ptr class will keep a count of
how many copies are alive

— shared_ptr destructor simply
decrements this count

* |f countis 0, delete the object

RefCnt: O

Pointer

int main()

{
shared_ptr<Obj> pl(new Obj);
doit(pl);
return 0;

} // pl dies

void doit(shared_ptr<Obj> p2)

{-
if(...){
shared_ptr<0Obj> p3 = p2;

} // p3 dies
} // p2 dies

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

C++ shared ptr

C++ std::shared_ptr/
boost::shared ptr

— Boost is a best-in-class C++ library of
code you can download and use with
all kinds of useful classes

Can only be used to point at dynamically
allocated data (since it is going to call
delete on the pointer when the reference
count reaches 0)

Compile in g++ using '-std=c++11' since
this class is part of the new standard
library version

#include <memory>
#include "obj.h"
using namespace std;

shared_ptr<0bj> f1()
{
shared_ptr<0Obj> ptr(new Obj);
10 oo
cout << "In F1\n" << *ptr << endl;
return ptr;

}

int main()
{
shared_ptr<Obj> p2 = f1();
cout << "Back in main\n" << *p2;
cout << endl;
return 0;

$ g++ -std=c++11 shared_ptrl.cpp obj.cpp

i, TS(“Viterbi

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

C++ shared ptr

Using shared_ptr's you can put
pointers into container objects
(vectors, maps, etc) and not have
to worry about iterating through
and deleting them

When myvec goes out of scope, it
deallocates what it is storing
(shared_ptr's), but that causes the
shared_ptr destructor to
automatically delete the Objs

Think about your project
homeworks...this might be (have
been) nice

#include <memory>
#include <vector>
#include "obj.h"
using namespace std;

int main()

{

vector<shared_ptr<Obj> > myvec;

shared_ptr<0Obj> pl(new Obj);
myvec.push_back(pl);

shared_ptr<0Obj> p2(new 0bj);
myvec.push_back(p2);

return 0;
// myvec goes out of scope...

$ g++ -std=c++11 shared_ptrl.cpp obj.cpp

I (/S C Viterbi (L0

School of Engineering

shared ptr vs. unique_ptr

* Both will perform automatic deallocation

* Unique_ptr only allows one pointer to the object at a time
— Copy constructor and assignment operator are hidden as private functions
— Obiject is deleted when pointer goes out of scope
— Does allow "move" operation
e |f interested read more about this on your own

* C++11 defines "move" constructors (not just copy constructors) and "rvalue
references" etc.

* Shared_ptr allow any number of copies of the pointer

— Object is deleted when last pointer copy goes out of scope

* Note: Many languages like python, Java, C#, etc. all use this idea of
reference counting and automatic deallocation (aka garbage collection) to
remove the burden of memory management from the programmer

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

References

e http://www.umich.edu/~eecs381/handouts/C
++11 smart ptrs.pdf

e http://stackoverflow.com/questions/3476938/
example-to-use-shared-ptr

http://www.umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf
http://stackoverflow.com/questions/3476938/example-to-use-shared-ptr

