
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Recursion –

Combinations & Backtracking
Mark Redekopp

Aaron Cote’

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion in CS 104

• Problem in which the solution can be expressed in terms of
itself (usually a smaller instance/input of the same problem)
and a base/terminating case

• Recursion is a key concept in this course
– But it rarely comes easily to students. You must work at it!

• Many problems that would be VERY difficult to solve without
recursion (i.e. only loops) have extremely elegant solutions to
problems
– Learn to look for those elegant solutions

– In this class, assume the recursive approach has an elegant/simple
solution

– If you find yourself writing a large, complex recursive solution, assume
you are doing something you should not!

• Stop and reconsider how it should be done

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Simple vs. Multiple Recursion
• "Simple" recursion refers to functions

that contain just ONE recursive call
– Can be head or tail recursion (explained

soon)

– Can easily be replaced by a loop

• The power of recursion usually comes
when the function makes 2 OR MORE
recursive calls (aka "multiple recursion")
– Elegant recursive solutions that would be

MUCH harder to implement iteratively
(usually need a separate stack data structure)

• We'll focus on multiple recursion

void print(Item* p)
{

if(p == NULL) return;
else {

cout << p->val << endl;
print(p->next);

}
}

Simple Recursion

(1 recursive call)

void postorder(TNode* t)
{ if(t == NULL) return

postorder(t->left)
postorder(t->right)
process(t) // print val.

}

Multiple Recursion

(2 or more recursive calls)

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Steps to Formulating Recursive
Solutions

1. Solve a few instances of the problem to discover the
recursive structure

2. Identify how the problem can be decomposed into smaller
problems of the same form
– Does solving the problem on an input of smaller value or size help

formulate the solution to the larger

3. Identify the base case
– An input for which the answer is trivial

4. Assume the recursive call for the smaller problem
"magically" computes the correct solution(s) to those
problem(s) and identify how to combine those solution(s)
from the smaller problem(s) into the solution for the larger
problem

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Towers of Hanoi Problem
• Problem Statements: Move n discs from source pole to

destination pole (with help of a 3rd alternate pole)
– Cannot place a larger disc on top of a smaller disc

– Can only move one disc at a time

3
2
1

A

(src)

B

(dst)

C

(alt)

A

(src)

B

(dst)

C

(alt)

Start (n=3) Goal (n=3)

3
2
1

A B C

Not allowed

3
2
1

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Observation 1
• Observation 1: Disc 1 (smallest) can always be moved

• Solve the n=2 case:
A (src) B (dst) C (alt)

1

A B C

2 1

A B C

2
1

A B C

2
1

2

Move 1 from src to alt Move 2 from src to dst

Move 1 from alt to dst

Start

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Observation 2
• Observation 2: If there is only one disc on the src pole and the

dest pole can receive it the problem is trivial

3

3

A (src) B (dst) C (alt)

2
1

A B C

2
1

A B C

3

2
1

A B C

3

Move n-1 discs from src to alt Move disc n from src to dst

Move n-1 discs from alt to dst

2
1

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive solution
• But to move n-1 discs from src to alt is really a smaller version of

the same problem with
– n => n-1

– src=>src

– alt =>dst

– dst=>alt

• Towers(n,src,dst,alt)
– Base Case: n==1 // Observation 1: Disc 1 always movable

• Move disc 1 from src to dst

– Recursive Case: // Observation 2: Move of n-1 discs to alt & back

• Towers(n-1,src,alt,dst)

• Move disc n from src to dst

• Towers(n-1,alt,dst,src)

3

A (src) B (dst) C (alt)

2
1

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Box Diagram

Towers(3,a,b,c)

Towers(2,a,c,b)

Towers(1,a,b,c) Move D=1 a to b

Move D=2 a to c

Towers(1,b,c,a) Move D=1 b to c

Move D=3 a to b

Towers(2,c,b,a)

Towers(1,c,a,b) Move D=1 c to a

Move D=2 c to b

Towers(1,a,b,c) Move D=1 a to b

Towers(disc,src,dst,alt)

Towers Function Prototype

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GENERATING ALL COMBINATIONS

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion's Power

• The power of recursion often comes when
each function instance makes multiple
recursive calls

• As you will see this often leads to an
exponential number of "combinations" being
generated/explored in an easy fashion

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Combinations

• If you are given the value, n,
and a string with n
characters could you
generate all the
combinations of n-bit
binary?

• Do so recursively!

0
1

00
01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1-bit

Bin.
2-bit

Bin.

3-bit

Bin.

4-bit

Bin.

Exercise: bin_combo_str

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{

binCombos("", len);
}

// helper-function
void binCombos(string prefix,

int len)
{

if(prefix.length() == len)
cout << prefix << endl;

else {
// recurse
binCombos(_____________, len);
// recurse
binCombos(_____________, len);

}
}

__ __ __

0

1

Options

N = length
Generally: Recursion must

perform the same code
sequence for each item.

Where we need variation,
use 'if' statements.

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Generating All Combinations
• Recursion offers a simple way to generate all N-length

combinations of from a set of options, S
– Example: Generate all 2-digit decimal numbers (N=2, S={0,1,…,9})

void NDigDecCombos(string data, int n)
{

if(data.size() == n)
cout << data;

else {
for(int i=0; i < 10; i++){
// recurse
NDigDecCombos(data+(char)('0'+i),n);
}

}
}

T
D

C
(d

a
ta

)

0

…

__ __

0

Options
N = length

1
2
…
9

1

2

9

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

T
D

C
(d

a
ta

)
T

D
C

(d
a

ta
)

00

01

02

09

90

91

92

99

0
1
2
…
9

0
1
2
…
9

0
1
2
…
9

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Exercise

• Generate all string
combinations of
length n from a
given list (vector)
of characters

#include <iostream>
#include <string>
#include <vector>
using namespace std;

void all_combos(vector<char>& letters, int n)
{

// ???
}

int main() {
vector<char> letters = {'U', 'S', 'C'};

all_combos(letters, 4);

return 0;
}

__ __ __ __

U

S

C

Options

N = length

Use recursion to walk down the 'places'

At each 'place' iterate through & try all options

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion and Combinations

• Recursion provides an elegant way of generating all n-length
combinations of a set of values, S.
– Ex. Generate all length-n combinations of the letters in the set S={'U','S','C'}

(i.e. for n=2: UU, US, UC, SU, SS, SC, CU, CS, CC)

• General approach:
– Need some kind of array/vector/string to store partial answer as it is being

built

– Each recursive call is only responsible for one of the n "places" (say location, i)

– The function will iteratively (loop) try each option in S by setting location i to
the current option, then recurse to handle all remaining locations (i+1 to n)

• Remember you are responsible for only one location

– Upon return, try another option value and recurse again

– Base case can stop when all n locations are set (i.e. recurse off the end)

– Recursive case returns after trying all options

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercises

• bin_combos_str

• Zero_sum

• Prime_products_print

• Prime_products

• basen_combos

• all_letter_combos

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Backtracking Search
• Recursion allows us to "easily" enumerate all solutions/combinations to some problem

• Backtracking algorithms are often used to solve constraint satisfaction problems or
optimization problems

– Find (the best) solutions/combinations that meet some constraints

• Key property of backtracking search:

– Stop searching down a path at the first indication that constraints won't lead to a
solution

• Many common and important problems can be solved with backtracking approaches

• Knapsack problem

– You have a set of products with a given weight and value. Suppose you have a knapsack
(suitcase) that can hold N pounds, which subset of objects can you pack that maximizes the
value.

– Example:

• Knapsack can hold 35 pounds

• Product A: 7 pounds, $12 ea. Product B: 10 pounds, $18 ea.

• Product C: 4 pounds, $7 ea. Product D: 2.4 pounds, $4 ea.

• Other examples:

– Map Coloring, Satisfiability, Sudoku, N-Queens

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N-Queens Problem
• Problem: How to place N queens on

an NxN chess board such that no
queens may attack each other

• Fact: Queens can attack at any
distance vertically, horizontally, or
diagonally

• Observation: Different queen in
each row and each column

• Backtrack search approach:
– Place 1st queen in a viable option then,

then try to place 2nd queen, etc.

– If we reach a point where no queen can
be placed in row i or we've exhausted all
options in row i, then we return and
change row i-1

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place 2nd queen

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration
here, there are no locations
in row 6 that are not under
attack from the previous 5

• BACKTRACK!!!

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration
here, there are no locations
in row 6 that is not under
attack from the previous 5

• So go back to row 5 and
switch assignment to next
viable option and progress
back to row 6

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here,
there are no locations in row 6
that is not under attack from
the previous 5

• Now go back to row 5 and
switch assignment to next
viable option and progress back
to row 6

• But still no location available so
return back to row 5

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there are
no locations in row 6 that is not under
attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so return
back to row 5

• But now no more options for row 5 so
return back to row 4

• BACKTRACK!!!!

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so
return back to row 5

• But now no more options for row 5
so return back to row 4

• Move to another place in row 4 and
restart row 5 exploration

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now place others as viable

• After this configuration here, there
are no locations in row 6 that is not
under attack from the previous 5

• Now go back to row 5 and switch
assignment to next viable option and
progress back to row 6

• But still no location available so
return back to row 5

• But now no more options for row 5
so return back to row 4

• Move to another place in row 4 and
restart row 5 exploration

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now a viable option exists

for row 6

• Keep going until you
successfully place row 8 in
which case you can return
your solution

• What if no solution exists?

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

8x8 Example of N-Queens
• Now a viable option exists

for row 6

• Keep going until you
successfully place row 8 in
which case you can return
your solution

• What if no solution exists?

– Row 1 queen would have
exhausted all her options
and still not find a solution

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Backtracking Search
• Recursion can be used to

generate all options
– 'brute force' / test all options

approach

– Test for constraint satisfaction
only at the bottom of the 'tree'

• But backtrack search
attempts to 'prune' the search
space
– Rule out options at the partial

assignment level

Brute force enumeration might

test only when a complete

assignment is made (i.e. all 4

queens on the board)

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N-Queens Solution Development
• Let's develop the code

• 1 queen per row

– Use an array where index represents the
queen (and the row) and value is the column

• Start at row 0 and initiate the search [i.e.
search(0)]

• Base case:

– Rows range from 0 to n-1 so STOP when row
== n

– Means we found a solution

• Recursive case

– Recursively try all column options for that
queen

– But haven't implemented check of viable
configuration…

int *q; // pointer to array storing
// each queens location

int n; // number of board / size

void search(int row)
{
if(row == n)
printSolution(); // solved!

else {
// remember q[row] is the column
for(q[row]=0; q[row]<n; q[row]++){
search(row+1);

// alternatively
// for(int col = 0; col < n; col++){
// q[row] = col;
// search(row+1);
// }
}

q[i] = column of queen i 2 0 3 1

0 1 2 3Index = Queen i in row i

i

0

1

2

3

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N-Queens Solution Development
• To check whether it is safe to place a queen

in a particular column, let's keep a "threat"
2-D array indicating the threat level at each
square on the board
– Threat level of 0 means SAFE

– When we place a queen we'll update squares that are
now under threat

– Let's name the array 't'

• Dynamically allocating 2D arrays in C/C++ doesn't
really work
– Instead conceive of 2D array as an "array of arrays" which

boils down to a pointer to a pointer

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // thread 2D array

int main()
{
q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j = 0; j < n; j++){
t[i][j] = 0;

}
}
search(0); // start search
// deallocate arrays
return 0;

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

1a0

0 0 0

2c0

1b4

3e0

0

0 0 0 0

0 1 2 3

0

1

2

3

410

0 0 0 0

0 0 0 0

Each entry

is int *

Thus t is

int **

t

t[2] = 0x1b4

t[2][1] = 0

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Allocated

on line 08

Each allocated

on an iteration

of line 10

0 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N-Queens Solution Development
• After we place a queen in a location, let's

check that it has no threats

• If it's safe then we update the threats (+1)
due to this new queen placement

• Now recurse to next row

• If we return, it means the problem was
either solved or more often, that no
solution existed given our placement so we
remove the threats (-1)

• Then we iterate to try the next location for
this queen

int *q; // pointer to array storing
// each queens location

int n; // number of board / size
int **t; // n x n threat array
void search(int row)
{
if(row == n)
printSolution(); // solved!

else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){
// if safe place and continue
addToThreats(row, q[row], 1);
search(row+1);
// if return, remove placement
addToThreats(row, q[row], -1);

} } }

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 0 0 0

0 0 0 0

0 1 2 3

0 0 0 0

0 0 0 0

t

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 0 1 0

1 0 0 1

t

0

1

2

3

0 0 0 0

0 0 0 0

0 1 2 3

0 0 0 0

0 0 0 0

t

0

1

2

3

Safe to place

queen in upper left

Now add threats Upon return,

remove threat and

iterate to next option

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

addToThreats Code
• Observations

– Already a queen in every higher row so
addToThreats only needs to deal with positions
lower on the board

• Iterate row+1 to n-1

– Enumerate all locations further down in the
same column, left diagonal and right diagonal

– Can use same code to add or remove a threat
by passing in change

• Can't just use 2D array of booleans as a
square might be under threat from two places
and if we remove 1 piece we want to make
sure we still maintain the threat

void addToThreats(int row, int col, int change)
{
for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

q[i] = column of queen i 0

0 1 2 3Index = Queen i in row i

i

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 0 1 0

1 0 0 1

t

0

1

2

3

0 1 1 1

1 1 0 0

0 1 2 3

1 1 2 1

2 0 1 1

t

0

1

2

3

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

N-Queens Solution
void addToThreats(int row, int col, int change)
{
for(int j = row+1; j < n; j++){
// go down column
t[j][col] += change;
// go down right diagonal
if(col+(j-row) < n)

t[j][col+(j-row)] += change;
// go down left diagonal
if(col-(j-row) >= 0)

t[j][col-(j-row)] += change;
}

}

bool search(int row)
{
if(row == n){
printSolution(); // solved!
return true;

}
else {
for(q[row]=0; q[row]<n; q[row]++){
// check that col: q[row] is safe
if(t[row][q[row]] == 0){
// if safe place and continue
addToThreats(row, q[row], 1);
bool status = search(row+1);
if(status) return true;
// if return, remove placement
addToThreats(row, q[row], -1);

}
}
return false;

} }

int *q; // queen location array
int n; // number of board / size
int **t; // n x n threat array

int main()
{
q = new int[n];
t = new int*[n];
for(int i=0; i < n; i++){
t[i] = new int[n];
for(int j = 0; j < n; j++){
t[i][j] = 0;

}
}
// do search
if(! search(0))

cout << "No sol!" << endl;
// deallocate arrays
return 0;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

General Backtrack Search Approach
• Select an item and set it to one of its

options such that it meets current
constraints

• Recursively try to set next item

• If you reach a point where all items are
assigned and meet constraints,
done…return through recursion stack
with solution

• If no viable value for an item exists,
backtrack to previous item and repeat
from the top

• If viable options for the 1st item are
exhausted, no solution exists

• Phrase:
– Assign, recurse, unassign

bool sudoku(int **grid, int r, int c)
{
if(allSquaresComplete(grid))
return true;

}
// iterate through all options
for(int i=1; i <= 9; i++){
grid[r][c] = i;
if(isValid(grid)){
bool status = sudoku(...);
if(status) return true;

}
}
return false;

}

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

General Outline of Backtracking

Sudoku Solver

Assume r,c is current square to

set and grid is the 2D array of

values

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Runtime of All Combinations

• T(nr,nc) = ______________

• T(0,nc) = 1

int *q; // pointer to array storing
// each queens location

int n; // number of board / size

void search(int row)
{
if(row == n)
printSolution(); // solved!

else {
// remember q[row] is the column
for(q[row]=0; q[row]<n; q[row]++){
search(row+1);

}
}

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursion and DFS

• Recursion forms a kind of Depth-First Search

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Base case

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse;

binCombos(…,3)

Set to 0; recurse;

Set to 1; recurse; 0

00

000

1

01 10 11

001 010 011 100 101 110 111

// user interface
void binCombos(int len)
{

binCombos("", len);
}

// helper-function
void binCombos(string prefix,

int len)
{

if(prefix.length() == len)
cout << prefix << endl;

else {
// recurse
binCombos(prefix+"0" len);
// recurse
binCombos(prefix+"1", len);

}
}

__ __ __

0

1

Options

N = length
Generally: Recursion must

perform the same code
sequence for each item.

Where we need variation,
use 'if' statements.

