CSCI 104
Recursion –
Combinations & Backtracking
Mark Redekopp
Sandra Batista
Aaron Cote’
Recursion in CS 104

• Problem in which the solution can be expressed in terms of itself (usually a smaller instance/input of the same problem) and a base/terminating case

• Recursion is a key concept in this course
 – But it rarely comes easily to students. You must work at it!

• Many problems that would be VERY difficult to solve without recursion (i.e. only loops) have extremely elegant solutions to problems
 – Learn to look for those elegant solutions
 – In this class, assume the recursive approach has an elegant/simple solution
 – If you find yourself writing a large, complex recursive solution, assume you are doing something you should not!
 • Stop and reconsider how it should be done
Towers of Hanoi Problem

- Problem Statements: Move n discs from source pole to destination pole (with help of a 3rd alternate pole)
 - Cannot place a larger disc on top of a smaller disc
 - Can only move one disc at a time
Observation 1

- Observation 1: Disc 1 (smallest) can always be moved
- Solve the n=2 case:

Start

Move 1 from src to alt

Move 2 from src to dst

Move 1 from alt to dst
Observation 2

- Observation 2: If there is only one disc on the src pole and the dest pole can receive it the problem is trivial.

Move n-1 discs from src to alt

Move disc n from src to dst

Move n-1 discs from alt to dst
Recursive solution

• But to move n-1 discs from src to alt is really a smaller version of the same problem with
 – n => n-1
 – src=>src
 – alt =>dst
 – dst=>alt

• Towers(n,src,dst,alt)
 – Base Case: n==1 // Observation 1: Disc 1 always movable
 • Move disc 1 from src to dst
 – Recursive Case: // Observation 2: Move of n-1 discs to alt & back
 • Towers(n-1,src,alt,dst)
 • Move disc n from src to dst
 • Towers(n-1,alt,dst,src)
Recursive Box Diagram

Towers Function Prototype

Towers(disc,src,dst,alt)

Towers(3,a,b,c)
- Move D=3 a to b
 - Towers(2,c,b,a)
 - Move D=2 c to b
 - Towers(1,a,b,c)
 - Move D=1 a to b
 - Towers(1,c,a,b)
 - Move D=1 c to a
 - Towers(1,b,c,a)
 - Move D=1 b to c
 - Towers(2,a,c,b)
 - Move D=2 a to c
 - Towers(1,a,b,c)
 - Move D=1 a to b

GENERATING ALL COMBINATIONS
Recursion's Power

• The power of recursion often comes when each function instance makes *multiple* recursive calls

• As you will see this often leads to an exponential number of "combinations" being generated/explored in an easy fashion
Binary Combinations

If you are given the value, n, and a string with n characters could you generate all the combinations of n-bit binary?

Do so recursively!

Exercise: bin_combo_str
Recursion and DFS

• Recursion forms a kind of Depth-First Search

```cpp
// user interface
void binCombos(int len) {
    binCombos("", len);
}

// helper-function
void binCombos(string prefix, int len)
{
    if(prefix.length() == len )
        cout << prefix << endl;
    else {
        // recurse
        binCombos(prefix+"0", len);
        // recurse
        binCombos(prefix+"1", len);
    }
}
```

Options

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generally: Recursion must perform the same code sequence for each item. Where we need variation, use 'if' statements.

N = length

binCombos(...,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(...,3)
Set to 0; recurse;
Set to 1; recurse;

binCombos(...,3)
Base case
Generating All Combinations

- Recursion offers a simple way to generate all combinations of N items from a set of options, S
 - Example: Generate all 2-digit decimal numbers ($N=2$, $S=\{0,1,...,9\}$)

```cpp
void NDigDecCombos(string data, int n)
{
    if(data.size() == n )
        cout << data;
    else {
        for(int i=0; i < 10; i++){
            // recurse
            NDigDecCombos(data+(char)('0'+i),n);
        }
    }
}
```

<table>
<thead>
<tr>
<th>Options</th>
<th>N = length</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>09</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>99</td>
<td>9</td>
</tr>
</tbody>
</table>
Another Exercise

- Generate all string combinations of length n from a given list (vector) of characters

Options

| U | S | C |

Use recursion to walk down the 'places' At each 'place' iterate through & try all options
Recursion and Combinations

• Recursion provides an elegant way of generating all n-length combinations of a set of values, S.
 – Ex. Generate all length-n combinations of the letters in the set $S=${'U','S','C'} (i.e. for $n=2$: UU, US, UC, SU, SS, SC, CU, CS, CC)
• General approach:
 – Need some kind of array/vector/string to store partial answer as it is being built
 – Each recursive call is only responsible for one of the n "places" (say location, i)
 – The function will iteratively (loop) try each option in S by setting location i to the current option, then recurse to handle all remaining locations ($i+1$ to n)
 • Remember you are responsible for only one location
 – Upon return, try another option value and recurse again
 – Base case can stop when all n locations are set (i.e. recurse off the end)
 – Recursive case returns after trying all options
Exercises

• bin_combos_str
• Zero_sum
• Prime_products_print
• Prime_products
• basen_combos
• all_letter_combos
Recursive Backtracking Search

- Recursion allows us to "easily" enumerate all solutions/combinations to some problem
- Backtracking algorithms are often used to solve constraint satisfaction problems or optimization problems
 - Find (the best) solutions/combinations that meet some constraints
- Key property of backtracking search:
 - Stop searching down a path at the first indication that constraints won't lead to a solution
- Many common and important problems can be solved with backtracking approaches
- Knapsack problem
 - You have a set of products with a given weight and value. Suppose you have a knapsack (suitcase) that can hold N pounds, which subset of objects can you pack that maximizes the value.
 - Example:
 - Knapsack can hold 35 pounds
 - Product A: 7 pounds, $12 ea. Product B: 10 pounds, $18 ea.
 - Product C: 4 pounds, $7 ea. Product D: 2.4 pounds, $4 ea.
- Other examples:
 - Map Coloring, Satisfiability, Sudoku, N-Queens
N-Queens Problem

- Problem: How to place N queens on an NxN chess board such that no queens may attack each other
- Fact: Queens can attack at any distance vertically, horizontally, or diagonally
- Observation: Different queen in each row and each column
- Backtrack search approach:
 - Place 1st queen in a viable option then, then try to place 2nd queen, etc.
 - If we reach a point where no queen can be placed in row i or we've exhausted all options in row i, then we return and change row i-1
8x8 Example of N-Queens

• Now place 2nd queen
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that are not under attack from the previous 5
- BACKTRACK!!!
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
• So go back to row 5 and switch assignment to next viable option and progress back to row 6
8x8 Example of N-Queens

• Now place others as viable
• After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
• Now go back to row 5 and switch assignment to next viable option and progress back to row 6
• But still no location available so return back to row 5
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
- Now go back to row 5 and switch assignment to next viable option and progress back to row 6
- But still no location available so return back to row 5
- But now no more options for row 5 so return back to row 4
- BACKTRACK!!!!
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
- Now go back to row 5 and switch assignment to next viable option and progress back to row 6
- But still no location available so return back to row 5
- But now no more options for row 5 so return back to row 4
- Move to another place in row 4 and restart row 5 exploration
8x8 Example of N-Queens

- Now place others as viable
- After this configuration here, there are no locations in row 6 that is not under attack from the previous 5
- Now go back to row 5 and switch assignment to next viable option and progress back to row 6
- But still no location available so return back to row 5
- But now no more options for row 5 so return back to row 4
- Move to another place in row 4 and restart row 5 exploration
8x8 Example of N-Queens

• Now a viable option exists for row 6
• Keep going until you successfully place row 8 in which case you can return your solution
• What if no solution exists?
8x8 Example of N-Queens

• Now a viable option exists for row 6
• Keep going until you successfully place row 8 in which case you can return your solution
• What if no solution exists?
 – Row 1 queen would have exhausted all her options and still not find a solution
Backtracking Search

• Recursion can be used to generate all options
 – 'brute force' / test all options approach
 – Test for constraint satisfaction only at the bottom of the 'tree'

• But backtrack search attempts to 'prune' the search space
 – Rule out options at the partial assignment level

Brute force enumeration might test only when a complete assignment is made (i.e. all 4 queens on the board)
N-Queens Solution Development

- Let's develop the code
- 1 queen per row
 - Use an array where index represents the queen (and the row) and value is the column
- Start at row 0 and initiate the search [i.e. search(0)]
- Base case:
 - Rows range from 0 to n-1 so STOP when row == n
 - Means we found a solution
- Recursive case
 - Recursively try all column options for that queen
 - But haven't implemented check of viable configuration...

```c
int *q;  // pointer to array storing each queens location
int n;   // number of board / size

void search(int row)
{
    if(row == n)
        printSolution(); // solved!
    else {
        // remember q[row] is the column
        for(q[row]=0; q[row]<n; q[row]++){
            search(row+1);
        }
    }
}
```

Index = Queen i in row i
q[i] = column of queen i
N-Queens Solution Development

• To check whether it is safe to place a queen in a particular column, let's keep a "threat" 2-D array indicating the threat level at each square on the board
 – Threat level of 0 means SAFE
 – When we place a queen we'll update squares that are now under threat
 – Let's name the array 't'

• Dynamically allocating 2D arrays in C/C++ doesn't really work
 – Instead conceive of 2D array as an "array of arrays" which boils down to a pointer to a pointer

> Allocated on line 08

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 \\
1a0 & 0 & 0 & 0 \\
2c0 & 0 & 0 & 0 \\
1b4 & 0 & 0 & 0 \\
3e0 & 0 & 0 & 0 \\
\end{array}
\]

> Each entry is int *

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 \\
100 & 0 & 0 & 0 \\
210 & 0 & 0 & 0 \\
300 & 0 & 0 & 0 \\
\end{array}
\]

> Each allocated on an iteration of line 10

> Thus t is int **

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 \\
100 & 0 & 0 & 0 \\
210 & 0 & 0 & 0 \\
300 & 0 & 0 & 0 \\
\end{array}
\]

> t[2] = 0x1b4

> t[2][1] = 0

> int main()

```c
int *q; // pointer to array storing each queens location
int n; // number of board / size
int **t; // thread 2D array

int main()
{
    q = new int[n];
    t = new int*[n];
    for(int i=0; i < n; i++){
        t[i] = new int[n];
        for(int j = 0; j < n; j++){
            t[i][j] = 0;
        }
    }
    search(0); // start search
    // deallocate arrays
    return 0;
}
```

© 2015 by Mark Redekopp, All Rights Reserved
N-Queens Solution Development

- After we place a queen in a location, let's check that it has no threats.
- If it's safe then we update the threats (+1) due to this new queen placement.
- Now recurse to next row.
- If we return, it means the problem was either solved or more often, that no solution existed given our placement so we remove the threats (-1).
- Then we iterate to try the next location for this queen.

```c
int *q; // pointer to array storing // each queens location
int n; // number of board / size
int **t; // n x n threat array
void search(int row)
{
    if(row == n)
        printSolution(); // solved!
    else {
        for(q[row]=0; q[row]<n; q[row]++){
            // check that col: q[row] is safe
            if(t[row][q[row]] == 0){
                // if safe place and continue
                addToThreats(row, q[row], 1);
                search(row+1);
                // if return, remove placement
                addToThreats(row, q[row], -1);
            }
        }
    }
}
```
addToThreats Code

• Observations
 – Already a queen in every higher row so addToThreats only needs to deal with positions lower on the board
 • Iterate row+1 to n-1
 – Enumerate all locations further down in the same column, left diagonal and right diagonal
 – Can use same code to add or remove a threat by passing in change
• Can't just use 2D array of booleans as a square might be under threat from two places and if we remove 1 piece we want to make sure we still maintain the threat

```
void addToThreats(int row, int col, int change) {
    for(int j = row+1; j < n; j++){
        // go down column
        t[j][col] += change;
        // go down right diagonal
        if( col+(j-row) < n )
            t[j][col+(j-row)] += change;
        // go down left diagonal
        if( col-(j-row) >= 0)
            t[j][col-(j-row)] += change;
    }
}
```
N-Queens Solution

void addToThreats(int row, int col, int change)
{
 for(int j = row+1; j < n; j++){
 // go down column
 t[j][col] += change;
 // go down right diagonal
 if(col+(j-row) < n)
 t[j][col+(j-row)] += change;
 // go down left diagonal
 if(col-(j-row) >= 0)
 t[j][col-(j-row)] += change;
 }
}

bool search(int row)
{
 if(row == n){
 printSolution(); // solved!
 return true;
 }
 else {
 for(q[row]=0; q[row]<n; q[row]++){
 // check that col: q[row] is safe
 if(t[row][q[row]] == 0){
 // if safe place and continue
 addToThreats(row, q[row], 1);
 bool status = search(row+1);
 if(status) return true;
 // if return, remove placement
 addToThreats(row, q[row], -1);
 }
 }
 }
 return false;
}

00 | int *q; // queen location array
01 | int n; // number of board / size
02 | int **t; // n x n threat array
03 | int main()
04 | {
05 | q = new int[n];
06 | t = new int*[n];
07 | for(int i=0; i < n; i++){
08 | t[i] = new int[n];
09 | for(int j = 0; j < n; j++){
10 | t[i][j] = 0;
11 | }
12 | }
13 | // do search
14 | if(! search(0))
15 | cout << "No sol!" << endl;
16 | // deallocate arrays
17 | return 0;
18 | }
General Backtrack Search Approach

- Select an item and set it to one of its options such that it meets current constraints
- Recursively try to set next item
- If you reach a point where all items are assigned and meet constraints, done...return through recursion stack with solution
- If no viable value for an item exists, backtrack to previous item and repeat from the top
- If viable options for the 1st item are exhausted, no solution exists
- Phrase:
 - Assign, recurse, unassign

General Outline of Backtracking Sudoku Solver

```cpp
bool sudoku(int **grid, int r, int c) {
    if( allSquaresComplete(grid) )
        return true;
    }
    // iterate through all options
    for(int i=1; i <= 9; i++){
        grid[r][c] = i;
        if( isValid(grid) ){
            bool status = sudoku(...);
            if(status) return true;
        }
    }
    return false;
}
```

Assume r,c is current square to set and grid is the 2D array of values