
1

CSCI 104
Polymorphism

Mark Redekopp

David Kempe

2

POLYMORPHISM
Virtual functions, Abstract classes, and Interfaces

3

Assignment of Base/Declared
• Can we assign a derived object into a base

object?

• Can we assign a base object into a derived?

• Think hierarchy & animal classification?

– Can any dog be assigned as a mammal

– Can any mammal be assigned as a dog

• We can only assign a derived into a base
(since the derived has EVERYTHING the
base does)
– p = s; // Base = Derived…GOOD

– s = p; // Derived = Base…BAD

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

class Person {

public:

void print_info(); // print name, ID

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

int main(){

Person p("Bill",1);

Student s("Joe",2,5);

// Which assignment is plausible

p = s; // or

s = p;

}

4

Inheritance
• A pointer or reference to a derived class

object is type-compatible with (can be
assigned to) a base-class type
pointer/reference
– Person pointer or reference can also point to Student

or Faculty object (i.e. a Student is a person)

– All methods known to Person are supported by a
Student object because it was derived from Person

– Will apply the function corresponding to the type of
the pointer

• For second and third call to print_info() we
would like to have Student::print_info() and
Faculty::print_info() executed since the actual
object pointed to is a Student/Faculty

• BUT…it will call Person::print_info()

• This is called 'static binding'
– Which version is called is based on the static type of

the pointer being used

class Person {

public:

void print_info(); // print name, ID

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

class Faculty : public Person {

public:

void print_info(); // print tenured

bool tenure;

};

int main(){

Person *p = new Person("Bill",1);

Student *s = new Student("Joe",2,5);

Faculty *f = new Faculty("Ken",3,0);

Person *q;

q = p; q->print_info();

q = s; q->print_info();

q = f; q->print_info();

}

Name=Bill, ID=1

Name=Joe, ID=2

Name=Ken, ID=3

5

Virtual Functions & Dynamic Binding

• Member functions can be
declared 'virtual'

• 'Virtual' declaration allows
derived classes to redefine
the function and which
version is called is determined
by the type of object pointed
to/referenced rather than the
type of pointer/reference
– This is known as dynamic

binding

class Person {

public:

virtual void print_info();

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

class Faculty : public Person {

public:

void print_info(); // print tenured

bool tenure;

};

int main(){

Person *p = new Person("Bill",1);

Student *s = new Student("Joe",2,5);

Faculty *f = new Faculty("Ken",3,0);

Person *q;

q = p; q->print_info();

q = s; q->print_info();

q = f; q->print_info();

// calls print_info

// for objected pointed to, not type of q

}

Name=Bill, ID=1

Name=Joe, ID=2, Major = 5

6

Polymorphism
• Idea of polymorphism says

that one set of code should
operate appropriately (call
appropriate functions of
derived classes) on all derived
types of objects

int main()

{

Person* p[5];

p[0] = new Person("Bill",1);

p[1] = new Student("Joe",2,5);

p[2] = new Faculty("Ken",3,0);

p[3] = new Student("Mary",4,2);

p[4] = new Faculty("Jen",5,1);

for(int i=0; i < 5; i++){

p[i]->print_info();

// should print most specific info

// based on type of object

}

}

Name=Bill, ID=1

Name=Joe, ID=2, Major = 5

Name = Ken, ID=3, Tenured=0

Name = Mary, ID=4, Major=2

Name = Jen, ID=5, Tenured=1

7

Summary

• No virtual declaration:

– Member function that is called is based on the

– Static binding

• With virtual declaration:

– Member function that is called is based on the

– Dynamic Binding

8

Summary

• No virtual declaration:

– Member function that is called is based on the
type of the pointer/reference

– Static binding

• With virtual declaration:

– Member function that is called is based on the
type of the object pointed at (referenced)

– Dynamic Binding

9

Virtual Destructors

• Classes that will be used as a base class should have a virtual destructor
(http://www.parashift.com/c++-faq-lite/virtual-functions.html#faq-20.7)

class Student{

virtual ~Student() { }

string major();

...

}

class StudentWithGrades : public Student

{

public:

StudentWithGrades(...)

{ grades = new int[10]; }

~StudentWithGrades { delete [] grades; }

int *grades;

}

int main()

{

Student *s = new StudentWithGrades(...);

cout << s->major();

delete s; // What destructor gets called?

return 0;

}

class Student{

~Student() { }

string major();

...

}

class StudentWithGrades : public Student

{

public:

StudentWithGrades(...)

{ grades = new int[10]; }

~StudentWithGrades { delete [] grades; }

int *grades;

}

int main()

{

Student *s = new StudentWithGrades(...);

cout << s->major();

delete s; // What destructor gets called?

return 0;

}

~Student() gets called and doesn’t delete

grades array
~StudentWithGrades() gets called and does

delete grades array

http://www.parashift.com/c++-faq-lite/virtual-functions.html

10

Abstract Classes
• In software development we may want

to create a base class that serves only
as a requirement/interface that
derived classes must
implement/adhere to

• College students take tests and play
sports so it makes sense to ensure that
is defined for any type of
CollegeStudent
– But depending on which college you go to

you may do these activities differently

– But…until we know the university we don’t
know how to write take_test() and
play_sports()…these are abstract

• Make this an abstract base class (i.e.
interface for future derived classes)

class CollegeStudent {

public:

string get_name();

virtual void take_test();

virtual string play_sports();

protected:

string name;

};

class CollegeStudent {

public:

string get_name();

virtual void take_test() = 0;

virtual string play_sports() = 0;

protected:

string name;

};

Abstract Base Class…No object of

type CollegeStudent will be allowed.

It only serves as an interface that

derived classes will have to implement.

Valid class. Objects of type

CollegeStudent can be declared.

11

Abstract Classes
• An abstract class is one that

defined pure virtual functions

– Prototype only

– Make function body
" = 0; "

– Functions that are not
implemented by the base class
but must be implemented by the
derived class

• No objects of the abstract
type are allowed to be
instantiated

class CollegeStudent {

public:

string get_name() { return name; }

virtual void take_test() = 0;

virtual string play_sports() = 0;

protected:

string name;

};

class TrojanStudent : public CollegeStudent {

public:

void take_test() { cout << "Got an A."; }

string play_sports(){return string("WIN!");}

};

class BruinStudent : public CollegeStudent {

public:

void take_test() { cout << "Uh..uh..C-."; }

string play_sports(){return string("LOSE");}

};

int main() {

vector<CollegeStudent *> mylist;

mylist.push_back(new TrojanStudent());

mylist.push_back(new BruinStudent());

for(int i=0; i < 2; i++){

mylist[i]->take_test();

cout << mylist[i]->play_sports() << endl;

}

return 0;

}

Output:
Got an A. WIN!
Uh..uh..C-. LOSE

12

When to Use Inheritance
• Main use of inheritance is to

setup interfaces (abstract
classes) that allow for new,
derived classes to be written in
the future that provide
additional functionality but still
works seamlessly with original
code

#include "student.h"

class MITStudent : public CollegeStudent {

public:

void take_test() { cout << "Got an A+."; }

string play_sports()

{ return string("What are sports?!?"); }

};

int main() {

vector<CollegeStudent *> mylist;

mylist.push_back(new TrojanStudent());

mylist.push_back(new MITStudent());

for(int i=0; i < 2; i++){

sports_simulator(mylist[i]);

}

return 0;

}

#include "student.h"

void sports_simulator(CollegeStudent *stu){

...

stu->play_sports();

};

g++ -c sportsim.cpp

outputs sportsim.o (10 years ago)

g++ main.cpp sportsim.o

program will run fine today with new MITStudent

13

Abstract Classes
• No objects of the abstract

type are allowed to be
instantiated

• But the abstract base class
can define common
functions, have data
members, etc. that all
derived classes can use via
inheritance
– Ex. 'color' of the Animal

class Animal {

public:

Animal(string c) : color(c) { }

virtual ~Animal()

string get_color() { return c; }

virtual void make_sound() = 0;

protected:

string color;

};

class Dog : public Animal {

public:

void make_sound() { cout << "Bark"; }

};

class Cat : public Animal {

public:

void make_sound() { cout << "Meow"; }

};

class Fox : public Animal {

public:

void make_sound() { cout << "???"; }

};

int main(){

Animal* a[3];

a[0] = new Animal;

// WON'T COMPILE...abstract class

a[1] = new Dog("brown");

a[2] = new Cat("calico");

cout << a[1]->get_color() << endl;

cout << a[2]->make_sound() << endl;

}

Output:
brown
meow

14

A List Interface
• Consider the List Interface

shown to the right

• This abstract class (contains
pure virtual functions) allows
many possible derived
implementations
– Linked List

– Bounded Dynamic Array

– Unbounded Dynamic Array

• Any derived implementation will
have to conform to these public
member functions

#ifndef ILISTINT_H

#define ILISTINT_H

class IListInt {

public:

virtual bool empty() const = 0;

virtual int size() const = 0;

virtual void push_back(const int& new_val) = 0;

virtual void insert(int newPosition,

const int& new_val) = 0;

virtual void remove(int loc) = 0;

virtual int const & get(int loc) const = 0;

virtual int& get(int loc) = 0;

};

#endif

g++ main.cpp sportsim.o

program will run fine today with new MITStudent

15

Derived Implementations

• Consider the List Interface
shown to the right

• This abstract class (contains
pure virtual functions) allows
many possible derived
implementations
– Linked List

– Static Array

– Unbounded Dynamic Array

• Any derived implementation will
have to conform to these public
member functions

#ifndef ILISTINT_H

#define ILISTINT_H

class IListInt {

public:

virtual bool empty() const = 0;

virtual int size() const = 0;

...

};

#endif
ilistint.h

#include "ilistint.h"

class LListInt : public IListInt {

public:

bool empty() const { return head_ == NULL; }

int size() const { ... }

...

};
llistint.h

#include "ilistint.h"

class ArrayList : public IListInt {

public:

bool empty() const { return size_ == 0; }

int size() const { return size_; }

...

};
alistint.h

16

Usage

• Recall that to take advantage
of dynamic binding you must
use a base-class pointer or
reference that points-to or
references a derived object

• What's the benefit of this?

#include <iostream>

#include "ilistint.h"

#include "alistint.h"

using namespace std;

void fill_with_data(IListInt* mylist)

{

for(int i=0; i < 10; i++){ mylist->push_back(i); }

}

void print_data(const IListInt& mylist)

{

for(int i=0; i < mylist.size(); i++){

cout << mylist.get(i) << endl;

}

}

int main()

{

IListInt* thelist = new AListInt();

fill_with_data(thelist);

print_data(*thelist);

return 0;

}

17

Usage

• What's the benefit of this?
– We can drop in a different

implementation WITHOUT
changing any other code other
than the instantiation!!!

– Years later I can write a new List
implementation that conforms to
iList and drop it in and the
subsystems [e.g. fill_with_data()
and print_data()] should work
just fine.

#include <iostream>

#include "ilistint.h"

#include "alistint.h"

using namespace std;

void fill_with_data(IListInt* mylist)

{

for(int i=0; i < 10; i++){ mylist->push_back(i); }

}

void print_data(const IListInt& mylist)

{

for(int i=0; i < mylist.size(); i++){

cout << mylist.get(i) << endl;

}

}

int main()

{

// IListInt* thelist = new AListInt();

IListInt* thelist = new LListInt();

fill_with_data(thelist);

print_data(*thelist);

return 0;

}

18

Polymorphism & Private Inheritance

• If for some reason
you use private
inheritance, then the
derived class is no
longer type
compatible with the
base class

– Can't have a base class
pointer reference a
derived object

class Person {

public:

virtual void print_info();

string name; int id;

};

class Student : public Person {

public:

void print_info(); // print major too

int major; double gpa;

};

// if we use private inheritance

// for some reason

class Faculty : private Person {

public:

void print_info(); // print tenured

bool tenure;

};

int main(){

Student *s = new Student("Joe",2,5);

Faculty *f = new Faculty("Ken",3,0);

Person *q;

q = s; q->print_info();

q = f; q->print_info(); // won't work!!!

f->print_info(); // works

}

19

Exercise

• Download the skeleton file

• $ wget http://ee.usc.edu/~redekopp/cs104/shapes.cpp

• Examine the given code:

– Examine the abstract base class declaration of Shape

– Examine the derived implementation of a RightTriangle class

– Examine the main() function that implements an iterative menu selection process for
users to create Shapes and add them to a list (vector) of Shape *’s

– After exiting the menu, the Shapes in the list will be printed out along with their
perimeter and area.

• Write classes to model a Rectangle, Square, and Circle taking in appropriate
parameters in the constructor [see the menu output and comments to infer what
those parameters/data member should be] and implementing appropriate
member functions.

• Add code in the main()’s if…else if statements to allocate appropriate objects and
enter them into the shapeList

• Compile, run and test the program (sample input and output is shown below).

• Debug any errors.

http://ee.usc.edu/~redekopp/cs104/shapes.cpp

20

Exercise

• Sample input and output:
Inputs:

1 3 4 (Right triangle with b=3, h=4)

2 3 4 (Rectangle with b=3, h=4)

3 4 (Square with side = 4)

4 2 (Circle with radius = 2)

0 (Quit and print)

Outputs:

Right Triangle: Area=6 Perim=12

Rectangle: Area=12 Perim=14

Square: Area=16 Perim=16

Circle: Area=12.5664 Perim=12.5664

21

Another Exercise

• Consider a video game with a heroine who has a score and
fights 3 different types of monsters {A, B, C}

• Upon slaying a monster you get a different point value:
– 10 pts. = monster A

– 20 pts. = monster B

– 30 pts. = monster C

• You can check if you've slayed a monster via an 'isDead()' call
on a monster and then get the value to be added to the
heroine's score via 'getScore()'

• The game keeps objects for the heroine and the monsters

• How would you organize your Monster class(es) and its data
members?

22

Using Type Data Member

• Can use a 'type' data member
and code

• Con: Adding new monster
types requires modifying
Monster class code as does
changing point total

class Player {

public:

int addToScore(int val) { _score += val; }

private:

int _score;

};

class Monster {

public:

Monster(int type) : _type(type) {}

bool isDead(); // returns true if the monster is dead

int getValue() {

if(_type == 0) return 10;

else if(_type == 1) return 20;

else return 30;

}

private:

int _type; // 0 = A, 1 = B, 2 = C

};

int main()

{

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];

// init monsters of various types

...

while(1){

// Player action occurs here

for(int i=0; i < numMonsters; i++){

if(monsters[i]->isDead())

p.addToScore(monserts[i]->getValue())

}

}

}

23

Using Score Data Member

• Can use a 'value' data member
and code

• Pro: Monster class is now
decoupled from new types or
changes to point values

class Player {

public:

int addToScore(int val) { _score += val; }

private:

int _score;

};

class Monster {

public:

Monster(int val) : _value(val) { }

bool isDead();

int getValue() {

return _value;

}

private:

int _value;

};

int main()

{

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];

monsters[0] = new Monster(10); // Type A Monster

monsters[1] = new Monster(20); // Type B Monster

...

while(1){

// Player action occurs here

for(int i=0; i < numMonsters; i++){

if(monsters[i]->isDead())

p.addToScore(monserts[i]->getValue())

}

}

}

24

Using Inheritance
• Go back to the requirements:

– "Consider a video game with a heroine
who has a score and fights 3 different

types of monsters {A, B, C}"

– Anytime you see 'types', 'kinds', etc.
an inheritance hierarchy is probably a
viable and good solution

– Anytime you find yourself writing big
if..elseif…else statement to determine
the type of something, inheritance
hierarchy is probably a good solution

• Usually prefer to distinguish types
at creation and not in the class
itself

class Player {

public:

int addToScore(int val) { _score += val; }

private:

int _score;

};

class Monster {

public:

Monster(int val) : _value(val) { }

bool isDead();

int getValue() {

return _value;

}

private:

int _value;

};

int main()

{

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];

monsters[0] = new Monster(10); // Type A Monster

monsters[1] = new Monster(20); // Type B Monster

...

while(1){

// Player action occurs here

for(int i=0; i < numMonsters; i++){

if(monsters[i]->isDead())

p.addToScore(monserts[i]->getValue())

}

}

}

25

Using Polymorphism
• So sometimes seeding an object

with different data values allows
the polymorphic behavior

• Other times, data is not
enough…code is needed

• Consider if the score of a monster
is not just hard coded based on
type but type and other data
attributes
– If Monster type A is slain with a single

shot your points are multiplied by the
base score and their amount of time
they are running around on the screen

– However, Monster type B alternates
between berserk mode and normal
mode and you get different points
based on what mode they are in when
you slay them

class Player {

public:

int addToScore(int val) { _score += val; }

private:

int _score;

};

class Monster {

public:

Monster(int val) : _value(val) { }

bool isDead();

int getValue() {

return _value;

}

private:

int _value;

};

int main()

{

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];

monsters[0] = new Monster(10); // Type A Monster

monsters[1] = new Monster(20); // Type B Monster

...

while(1){

// Player action occurs here

for(int i=0; i < numMonsters; i++){

if(monsters[i]->isDead())

p.addToScore(monserts[i]->getValue())

}

}

}

26

Using Polymorphism
• Can you just create different

classes?

• Not really, can't carry them
around in a single container/array

class MonsterA {

public:

bool isDead();

int getValue()

{

// code for Monster A with multipliers & head shots

}

};

class MonsterB {

public:

bool isDead();

int getValue()

{

// code for Monster B with berserker mode, etc.

}

};

int main()

{

Player p;

int numMonsters = 10;

// can't have a single array of "Monsters"

// Monster** monsters = new Monster*[numMonsters];

// Need separate arrays:

MonsterA* monsterAs = new MonsterA*[numMonsters];

MonsterB* monsterBs = new MonsterB*[numMonsters];

27

Using Polymorphism
• Will this work?

• No, static binding!!
– Will only call Monster::getValue() and

never MonsterA::getValue() or
MonsterB::getValue()

class Monster {

int getValue()

{

// generic code

}

};

class MonsterA : public Monster {

public:

bool isDead();

int getValue()

{

// code for Monster A with multipliers & head shots

}

};

class MonsterB : public Monster {

public:

bool isDead();

int getValue()

{

// code for Monster B with berserker mode, etc.

}

};

int main()

{

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];

// now try to create and store MonsterA's and B's in this

// array

};

28

Using Polymorphism
• Will this work?

• Yes!!

• Now I can add new Monster types
w/o changing any Monster classes

• Only the creation code need
change

class Monster {

bool isDead(); // could be defined once for all monsters

virtual int getValue() = 0;

};

class MonsterA : public Monster {

public:

int getValue()

{

// code for Monster A with multipliers & head shots

}

};

class MonsterB : public Monster {

public:

int getValue()

{

// code for Monster B with berserker mode, etc.

}

};

int main()

{

Monster** monsters = new Monster*[numMonsters];

monsters[0] = new MonsterA; // Type A Monster

monsters[1] = new MonsterB; // Type B Monster

...

while(1){

// Player action occurs here

for(int i=0; i < numMonsters; i++){

if(monsters[i]->isDead())

p.addToScore(monserts[i]->getValue())

} }

return 0;

}

29

Google Project Organization

WebPage
+ all_words()

SearchEng
+ add_parse_page()

+ add_from_index()

PageParser

main()
Search.cpp

Calls, has,

references

Inherits

Provided classes

Your classes

+parse()

add_parse_page(),

and_search(), etc.

MDPageParser
+ parse()

- wordIndex

1 *

1

1

Note: Keep UI

here

Note: Keep

search operations

here

30

Amazon Project Organization

Product
+ keywords()

Book
+ keywords()

Clothing
+ keywords()

Movie
+ keywords()

DataStore
+ search()

YourDataStore
+ search()

- products_

DBParser

Product

Parser
+ makeProduct()

ProductBook

Parser
+ makeProduct()

main()
amazon.cpp

ProductClothing

Parser
+ makeProduct()

ProductMovie

Parser
+ makeProduct()

Calls, has,

references

Inherits

Provided classes

Your classes

+parse()
addProduct()

search(), etc.

