
1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104
Recursive Graph & Tree
Traversals Algorithms

Mark Redekopp

David Kempe

2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Traversal Algorithms

• Traversals should visit (and potentially
apply some operation or processing to)
each node once

60

80

30

25 50

20

10

a

b

d

c

h

e
f

g

3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

RECURSIVE TREE TRAVERSALS

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Guiding Recursive Principle

• A useful principle when trying to
develop recursive solutions is that
the recursive code should handle
only 1 element, which might be:
1. An element in an array

2. A node a linked list

3. A node in a tree

4. One choice in a sequence of choices

• Then use recursion to handle the
remaining elements

• And finally combine the solution(s)
to the recursive call(s) with the one
element being handled

50 51 52 53 54

0 1 2 3 4

val next

3 0x1c0

val next

9 0x380

0x148

0x148 0x1c0

val next

7
0x0

NULL

0x380

f(n) f(n-1)

f(head) f(head->next)

f(n)

f(left)

f(right)

1

2

3

5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recursive Tree Traversals
• A traversal iterates over all nodes of the tree

– Usually using a depth-first, recursive approach

• Three general traversal orderings
– Pre-order [Process root then visit subtrees]

– In-order [Visit left subtree, process root, visit right subtree]

– Post-order [Visit left subtree, visit right subtree, process root]

60

80

30

25 50

20

10

Preorder(TNode* t)
{ if t == NULL return

process(t) // print val.
Preorder(t->left)
Preorder(t->right)

}

60 20 10 30 25 50 80

Inorder(TNode* t)
{ if t == NULL return

Inorder(t->left)
process(t) // print val.
Inorder(t->right)

}

Postorder(TNode* t)
{ if t == NULL return

Postorder(t->left)
Postorder(t->right)
process(t) // print val.

}

10 20 25 30 50 60 80

10 25 50 30 20 80 60

// Node definition
struct TNode
{
int val;
TNode *left, *right;

};

6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 1: Count Nodes

• Write a recursive function to count how many nodes are in
the binary tree
– Only process 1 node at a time

– Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

– For in- or post-order traversals, determine how to use/combine results
from recursion on children

f(n)

f(left)

f(right)

// Node definition
struct Tnode {

int val;
TNode *left, *right;

};

int count(TNode* root)
{

if(root == NULL) _______________;
else {

} }

7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 2: Prefix Sums

• Write a recursive function to have each node store the sum of
the values on the path from the root to each node.
– Only process 1 node at a time

– Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

4

3 8

5 7

f(n)

f(left) f(right)

void prefixH(TNode* root, int psum)

void prefix(TNode* root)
{
prefixH(root, 0);

}

void prefixH(TNode* root, int psum)
{
if(root == NULL) ________________;
else {

}
}

4

7 12

12 14

8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

GENERAL GRAPH TRAVERSALS

9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BREADTH-FIRST SEARCH

10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex that
we'll call u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

Depth 0: a

a

b

d

c

h

e
f

g

0

11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

0

1

1

12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

0

1

1

2

2

2

2

13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

• Given a graph with vertices, V, and
edges, E, and a starting vertex, u

• BFS starts at u (‘a’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

• Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

a

b

d

c

h

e
f

g

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

0

1

1

2

2

2

2

3

14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Developing the Algorithm
• Exploring all vertices in the order they are found

implies we will explore vertices in First-In/First-Out
order which implies use of a Queue
– Important: BFS implies use of a queue

– Put newly found vertices in the back and pull out a vertex from the front
to explore next

• We don’t want to put a vertex in the queue more than once…
– "mark" a vertex the first time we encounter it (only allowing unmarked

vertices to be put in the queue)

– We can "mark" a vertex by adding them to a set OR by simply setting
some data member that indicates we've seen this vertex before

• May also keep a "predecessor" structure or value per vertex that
indicates which prior vertex found this vertex
– Allows us to find a shortest-path back to the start vertex (i.e. retrace our

steps)

15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

a
v =

e c

a

b

d

c

h

e
f

g

nil,0

a,1

a,1

nil,inf
nil,inf

nil,inf

nil,inf

nil,inf

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search

Algorithm:

Q:

h
v =

a

b

d

c

h

e
f

g

nil,0
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1

b,3

c,2

c,2

c,2

e,2

a,1

a,1

17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search Trees

• BFS visits each node once and will induce a tree
subgraph (as will DFS) from the original graph

– BFS is tree of shortest paths from the source to all other
vertices (in connected component)

a

b

d

c

h

e
f

g

nil,0

a

c e

d g b f

h

Original graph, G BFS Induced Tree

b,3

c,2

c,2

c,2

e,2

a,1

a,1

18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DEPTH FIRST SEARCH MOTIVATING
EXAMPLE

Topological Search

19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DFS Application: Topological Sort
• Breadth-first search doesn't

solve all our problems.

• Given a graph of dependencies
(tasks, prerequisities, etc.)
topological sort creates a
consistent ordering of tasks
(vertices) where no
dependencies are violated

• Many possible valid topological
orderings exist

– EE 109, EE 209, EE 354,
EE 454, EE 457, CS104, PHYS
152, CS 201,…

– CS 104, EE 109, CS 170, EE
209,…

EE 109

EE 209

EE 354

CS 104

CS 201

EE 457 EE 454L

CS 350 CS 320

CS 170

CS 401 CS 360

20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Topological Sort

• Another example
– Getting dressed

• More Examples:
– Project management scheduling

– Build order in a Makefile or other
compile project

– Cooking using a recipe

– Instruction execution on an out-
of-order pipelined CPU

– Production of output values in a
simulation of a combinational
gate network

Underwear

Pants

Belt

Undershirt

Shoes

Tie

Shirt

Socks

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorith

ms/GraphAlgor/topoSort.htm

Jacket

21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Topological Sort

• Does breadth-first search
work?
– No. What if we started at CS 170…

– We'd go to CS 201L before CS 104

• All parent nodes need to be
completed before any child
node

• BFS only guarantees some
parent has completed before
child

• Turns out a Depth-First Search
will be part of our solution

EE 109

EE 209

EE 354

EE 457 EE 454L

CS 104

CS 201

CS 350 CS 320

CS 170

CS 401 CS 360

22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First Search

• Explores ALL children
before completing a
parent
– Note: BFS completes a parent

before ANY children

• For DFS let us assign:
– A start time when the node is first

found

– A finish time when a node is
completed

• If we look at our nodes in
reverse order of finish time (i.e.
last one to finish back to first
one to finish) we arrive at a…
– Topological ordering!!!

EE 109

EE 209

EE 354

CS 104

CS 201

EE 457 EE 454L

CS 350 CS 320

CS 170

CS 401 CS 360

101

2

3

4 65 7

8

9

11

12

13
15

16 18

14

17
19

20

21

22 2423

1

2

Start Time

Finish Time

CS 170, CS 104, CS 201, CS 320, CS 360, CS 477, CS 350,

EE 109, EE 209L, EE 354, EE 454L, EE 457

Reverse Finish Time Order

23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DFS Algorithm

• DFS visits and completes all children before
completing (and going on to a sibling)

• Process:

– Visit a node

– Mark as visited (started)

– For each visited neighbor, visit it and
perform DFS on all of their children

– Only then, mark as finished

• Let's trace recursive DFS!!

• If cycles in the graph, ensure we don’t get
caught visiting neighbors endlessly

– Use some status (textbooks use "colors" but
really just some integer)

– White = unvisited,

– Gray = visited but not finished

– Black = finished

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

Source: "Introduction to Algorithms",

Cormer, Leiserson, Rivest

24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u,l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

uv

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

u
v

DFS-Visit(G,d,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

uv

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

u

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

DFS-Visit(G,h,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

u

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

DFS-Visit(G,h,l):

Finish_list:

h

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

u

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

Finish_list:

h

vDFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u,l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

Finish_list:

h

u

DFS-Visit(G,g,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

Finish_list:

h,

g

u

DFS-Visit(G,g,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

DFS-Visit(G,d,l):

DFS-Visit(G,f,l):

Finish_list:

h,

g,

f

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

DFS-Visit(G,d,l):

Finish_list:

h,

g,

f,

d

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d

u

v

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d

uv

DFS-Visit(G,c,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d

u

DFS-Visit(G,c,l):

DFS-Visit(G,e,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d.

e

u

DFS-Visit(G,c,l):

DFS-Visit(G,e,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d.

e,

c

u

DFS-Visit(G,c,l):

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,a,l):

Finish_list:

h,

g,

f,

d.

e,

c,

a

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,b,l):

Finish_list:

h,

g,

f,

d.

e,

c,

a

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

May iterate through
many complete
vertices before

finding b to launch a
new search from

42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

DFS-Visit(G,b,l):

Finish_list:

h,

g,

f,

d.

e,

c,

a,

b

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

DFS-Visit (G, u, l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

a

b

c

d

e

f

g

h

Finish_list:

h,

g,

f,

d.

e,

c,

a,

b

u

DFS-All (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

7 return finish_list

44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ANOTHER EXAMPLE (IF TIME)

With Cycles in the graph

45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

a

b

d

c

h

e
f

g

46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

u
v

47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

v

u

48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

u v

49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

v

u

50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

u

v

51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

u

v

52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

u

v

53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

DFS-Visit(G,d):

u

v

54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

DFS-Visit(G,d):

DFSQ:

d

u

55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

DFSQ:

d

u
v

56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

DFSQ:

d

DFS-Visit(G,e):

u

v
v

57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFS-Visit(G,f):

DFSQ:

d

e
DFS-Visit(G,e):

u

58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,b):

DFS-Visit(G,h):

DFS-Visit(G,g):

DFSQ:

d

e

f

DFS-Visit(G,f):

u

59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

DFS-Visit(G,a):

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFSQ:

d

e

f

g

h

b

c

u

60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

a

b

d

c

h

e
f

g

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFSQ:

d

e

f

g

h

b

c

a

61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ITERATIVE VERSION

62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a

63

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e

64

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f

65

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g

66

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h

67

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b

68

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b c

69

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b c d

70

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b c d

71

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b c d

72

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b c

73

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a c e c f d g c h b

74

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search
DFS (G,s)

1 for each vertex u

2 u.color = WHITE

3 st = new Stack

4 st.push_back(s)

5 while st not empty

6 u = st.back()

7 if u.color == WHITE then

8 u.color = GRAY

9 foreach vertex v in Adj(u) do

10 if v.color == WHITE

11 st.push_back(v)

12 else if u.color != WHITE

13 u.color = BLACK

14 st.pop_back()

a

b

d

c

h

e
f

g

st: a

75

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BFS vs. DFS Algorithm

• BFS and DFS are more similar than you think

– Do we use a FIFO/Queue (BFS) or LIFO/Stack (DFS) to store
vertices as we find them

BFS-Visit (G, start_node)

1 for each vertex u

2 u.color = WHITE

3 u.pred = nil

4 bfsq = new Queue

5 bfsq.push_back(start_node)

6 while bfsq not empty

7 u = bfsq.pop_front()

8 if u.color == WHITE

9 u.color = GRAY

10 foreach vertex v in Adj(u) do

11 bfsq.push_back(v)

DFS-Visit (G, start_node)

1 for each vertex u

2 u.color = WHITE

3 u.pred = nil

4 st = new Stack

5 st.push_back(start_node)

6 while st not empty

7 u = st.top(); st.pop()

8 if u.color == WHITE

9 u.color = GRAY

10 foreach vertex v in Adj(u) do

11 st.push_back(v)

76

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

77

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 1: Count Nodes

• Write a recursive function to count how many nodes are in
the binary tree
– Only process 1 node at a time

– Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

– For in- or post-order traversals, determine how to use/combine results
from recursion on children

f(n)

f(left)

f(right)

// Node definition
struct Tnode {
int val;
TNode *left, *right;

};

int count(TNode* root)
{
if(root == NULL) return 0;
else {

return 1 + count(root->left) +
count(root->right);

}
}

78

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 2: Prefix Sums

• Write a recursive function to have each node store the sum of
the values on the path from the root to each node.
– Only process 1 node at a time

– Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

4

3 8

5 7

f(n)

f(left) f(right)

void prefixH(TNode* root, int psum)

void prefix(TNode* root)
{
prefixH(root, 0);

}

void prefixH(TNode* root, int psum)
{
if(root == NULL) return;
else {

root->val += psum;
prefixH(root->left, root->val);
prefixH(root->right, root->val);

}
}

4

7 12

12 14

