CSCI 104
Recursive Graph & Tree

Traversals Algorithms
Mark Redekopp
David Kempe

Traversal Algorithms

* Traversals should visit (and potentially
apply some operation or processing to)
each node once

RECURSIVE TREE TRAVERSALS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi ¥

School of Engineering

Guiding Recursive Principle —

* A useful principle when trying to
develop recursive solutions is that
the recursive code should handle
only 1 element, which might be:

1. Anelementinan array

2. Anode alinked list

3. Anodeinatree

4. One choice in a sequence of choices

* Then use recursion to handle the
remaining elements

* And finally combine the solution(s)
to the recursive call(s) with the one
element being handled

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

f(head }
ras] (head) f(head->next)

(|
0x148 : 0x1cO 0x380

1

3

Ox1c0 — O |ox380> 7

val

1
next l‘val next val next

f(left)

o = - —— ——

B ()5 C Vierbi >
Recursive Tree Traversals

e A traversal iterates over all nodes of the tree

— Usually using a depth-first, recursive approach [/ Node definition
. {
* Three general traversal orderings int val;

TNode *1left, *right;

— Pre-order [Process root then visit subtrees] Y

— In-order [Visit left subtree, process root, visit right subtree]
— Post-order [Visit left subtree, visit right subtree, process root]

Preorder(TNode* t) Inorder(TNode* t)

{ if t == NULL return { if t == NULL return
process(t) // print val. Inorder(t->left)
Preorder(t->left) process(t) // print val.
Preorder(t->right) Inorder(t->right)

} }

60 20 10 30 25 50 80 10 20 25 30 50 60 80

Postorder(TNode* t)

{ if t == NULL return
Postorder(t->left)
Postorder(t->right)
process(t) // print val.

10 25 50 30 20 80 60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCVlterb1®
Example 1: Count Nodes

* Write a recursive function to count how many nodes are in
the binary tree

— Only process 1 node at a time

— Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

— For in- or post-order traversals, determine how to use/combine results
from recursion on children

// Node definition
struct Tnode {

int val;

TNode *left, *right;
D };

int count(TNode* root)

{
if(root == NULL) 5
else {

f(left)

A

© 2022 by Mark Redekopp. This conterltis ﬂatected-’;\ad-«fay not be shared, uploaded, or distributed.

P}

i, TS(“Viterbi -

Example 2: Prefix Sums

* Write a recursive function to have each node store the sum of
the values on the path from the root to each node.
— Only process 1 node at a time

— Determine pre-, in-, or post-order based on whose answers you need

to compute the result for your node [oid prefixi(TNode* root, int psum)
void prefix(TNode* root)
{
prefixH(root, 0);
}
f(n) "‘\\\x void prefixH(TNode* root, int psum)
{
if(root == NULL) H
1se {
f(left) .- Zs f(right) \ ¢
(left) / \\.A i /
: I 81
PO AVAN
1 I
| |
1.5 7)
W= 71
}
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }

GENERAL GRAPH TRAVERSALS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi -

School of Engineering

BREADTH-FIRST SEARCH

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi ¢

School of Engine

Breadth-First Search

* Given a graph with vertices, V, and
edges, E, and a starting vertex that
we'll call u

 BFSstartsat u (@’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

* Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi @

School of Engine

Breadth-First Search

* Given a graph with vertices, V, and
edges, E, and a starting vertex, u

 BFSstartsat u (@’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

* Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other
vertex

Depth 0: a
Depth 1: c,e

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi @

School of Engine

Breadth-First Search

* Given a graph with vertices, V, and
edges, E, and a starting vertex, u

 BFSstartsat u (@’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

* Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)
from the start vertex to every other

Depth O: a
Depth 1: c,e
vertex Depth 2: b,d,f,g

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USCViterbi @

School of Engine

Breadth-First Search

* Given a graph with vertices, V, and
edges, E, and a starting vertex, u

 BFSstartsat u (@’ in the diagram to the
left) and fans-out along the edges to
nearest neighbors, then to their
neighbors and so on

* Goal: Find shortest paths (a.k.a.
minimum number of hops or depth)

from the start vertex to every other bepth O 2
Depth 1: c,e
vertex Depth 2: b,d,f,g

Depth 3: h

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Developing the Algorithm

* Exploring all vertices in the order they are found
implies we will explore vertices in First-In/First-Out
order which implies use of a Queue

— Important: BFS implies use of a queue
— Put newly found vertices in the back and pull out a vertex from the front
to explore next
* We don’t want to put a vertex in the queue more than once...

— "mark" a vertex the first time we encounter it (only allowing unmarked
vertices to be put in the queue)

— We can "mark" a vertex by adding them to a set OR by simply setting
some data member that indicates we've seen this vertex before
 May also keep a "predecessor" structure or value per vertex that
indicates which prior vertex found this vertex

— Allows us to find a shortest-path back to the start vertex (i.e. retrace our

© 2022 by Mark Redekﬁelp&))\tent is protected and may not be shared, uploaded, or distributed.

USC Viterbi 2

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =0Q.front(); Q.dequeue()
7 foreach neighbor, w, of v:
8 if pred[w] == nil // w not found
9

1

Q.enqueue(w)
0 predjw] =v, djw] =d[v] + 1 V=1 a

Lo !

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Breadth-First Search

Algorithm:

BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q =new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v =0Q.front(); Q.dequeue()
7 foreach neighbor, w, of v:
8 if pred[w] == nil // w not found
9

1

Q.enqueue(w)
0 prediw] = v, d[w] =d[v] + 1 V=1h

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Breadth-First Search Trees

 BFS visits each node once and will induce a tree
subgraph (as will DFS) from the original graph

— BFS is tree of shortest paths from the source to all other
vertices (in connected component)

Original graph, G BFS Induced Tree
© 2022 by Mark Redekopp. This contegt IS protgctecPand may not be shared, uploaded, or distributed.

Topological Search

DEPTH FIRST SEARCH MOTIVATING
EXAMPLE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

DFS Application: Topological Sort

e Breadth-first search doesn't
solve all our problems.

* Given a graph of dependencies EE 109 [CS 104} [CS 170 }

(tasks, prerequisities, etc.)
topological sort creates a :
consistent ordering of tasks E@
(vertices) where no
dependencies are violated v

* Many possible valid topological EE 354 [CS 350 [CS 320

orderings exist /\
— EE 109, EE 209, EE 354,
EE 454, EE 457, CS104, PHYS [EE 457 } [EE 454@ Cs 401 } [cS 360
152, CS 201,...

— CS 104, EE 109, CS 170, EE
209,...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

 Another example

* More Examples:

School of Engineering

Topological Sort

[Socks } [Underwear} [Undershirt}
v !

)

Shirt
v

)

Getting dressed

Project management scheduling

Build order in a Makefile or other

Tie
compile project -
Cooking using a recipe CE——

, _ Jacket
Instruction execution on an out-
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorith

of-order pipelined CPU ms/GraphAlgor/topoSort.htm

Production of output values in a
simulation of a combinational
gate network

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Topological Sort

e Does breadth-first search

work? EE 109

— No. What if we started at CS 170...

— We'd go to CS 201L before CS 104 ’ EE 209 ‘
* All parent nodes need to be
completed before any child |
node EE 354

* BFS only guarantees some
parent has completed before

child [EE 457] [EE 454@
* Turns out a Depth-First Search

will be part of our solution

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi 20

School of Engineering

[Cs 104][(:5 170]

CS 201

[CS 350 [CS 320

/\

CS 401 } [cS 360

USC Viterbi <2

School of Engineering

Depth First Search

* Explores ALL children © (10
before completing a

parent Q. 4+ ©O
— Note: BFS completes a parent EE 209
before ANY children
* For DFS let us assign: ©

— A start time when the node is first EE 354
found

— Afinish time when a node is @ ﬂ

completed

®
[EE457] [EE454q [CS401 [CS360}

®

* |f welook at our nodes in
reverse order of finish time (i.e. © Siart T
last one to finish back to first o Finish Time
one to finish) we arrive at a...

— Topological ordering!!!

Reverse Finish Time Order

CS 170, CS 104, CS 201, CS 320, CS 360, CS 477, CS 350,
EE 109, EE 209L, EE 354, EE 454L, EE 457

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi)

DES Algorithm

DFS-AIll (G)
e DFS visits and completes all children before |1 for each vertex u

completing (and going on to a sibling) 2 u.color =WHITE
3 finish_list = empty_list

* Process: 4 for each vertex u do
— Visit a node 5 if u.color == WHITE then
6 DFS-Visit (G, u, finish_list)
7 return finish_list

— Mark as visited (started)

— For each visited neighbor, visit it and
perform DFS on all of their children

DFS-Visit (G, u)
u.color = GRAY
for each vertex v in Adj(u) do

if v.color = WHITE then

— Only then, mark as finished 1
2
. , 3
* Ifcyclesin the graph, ensure we don’tget |, DFS-Visit (G, V)
S
6

e Let's trace recursive DFS!!

caught visiting neighbors endlessly u.color = BLACK
finish_list.append(u)

— Use some status (textbooks use "colors" but
really just some integer)

— White = unvisited,
— Gray = visited but not finished

Source: "Introduction to Algorithms",
Cormer, Leiserson, Rivest

© 2022 by Mark Reglltaﬁk]is_coﬁmiisphﬁdd and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— 5 iterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u,l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — 5 Viterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,h,|):

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

h

DFS-Visit(G,h,|):

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

h

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

e — 5 Viterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u,l)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5

6

Finish_list:

h

u.color = BLACK
l.append(u)

DFS-Visit(G,g,l):

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

e — 5 Viterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5

6

Finish_list:

h,
g

u.color = BLACK
l.append(u)

DFS-Visit(G,g,l):

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

— 5 iterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

Finish_list:

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gf’
4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,f,):

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gfj,’
4 DFS-Visit (G, v) d
5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,d,|):

DFS-Visit(G,a,l):

— 5 Viterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list v

DFS-Visit (G, u, I)

Finish_list:

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gfj,’
4 DFS-Visit (G, v) d
5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gfj,’
4 DFS-Visit (G, v) d
5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,c,l):

DFS-Visit(G,a,l):

— 5 Viterbi
Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list u

DFS-Visit (G, u, I)

Finish_list:

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gfj,’
4 DFS-Visit (G, v) d
5 u.color = BLACK

6 l.append(u)

DFS-Visit(G,e,l):

DFS-Visit(G,c,l):

DFS-Visit(G,a,l):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then gfj,’
4 DFS-Visit (G, v) d.
5 u.color = BLACK €
6 l.append(u)

DFS-Visit(G,e,l):

DFS-Visit(G,c,l):

DFS-Visit(G,a,l):

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,
3 ifv.color = WHITE then ij,’
4 DFS-Visit (G, v) d.
5 u.color = BLACK €,
6 l.append(u) ‘

DFS-Visit(G,c,l):

DFS-Visit(G,a,l):

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, |)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 l.append(u)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

» 00 are T

DFS-Visit(G,a,l):

i, TS(“Viterbi

Depth First-Search

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

School of Engineering

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do Mm:s::?n t:l':i:gh

5 if u.color == WHITE then vertices before

6 DFS-Visit (G, u, finish_list) finding b to launch a

7 return finish_list e e e
DFS-Visit (G, u, I) Cinish list
1 wu.color = GRAY i
2 for each vertex v in Adj(u) do h,

3 ifv.color = WHITE then ij,’

4 DFS-Visit (G, v) d.

5 u.color = BLACK i

6 lappend(u) a

DFS-Visit(G,b,|):

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,

3 ifv.color = WHITE then ij,’

4 DFS-Visit (G, v) d.

5 u.color = BLACK €,

6 l.append(u) ;
b

DFS-Visit(G,b,|):

i, TS(“Viterbi

Depth First-Search

DFS-AIl (G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)
7 return finish_list

DFS-Visit (G, u, I)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

Finish_list:

School of Engineering

1 u.color = GRAY

2 for each vertex v in Adj(u) do h,

3 ifv.color = WHITE then ij,’

4 DFS-Visit (G, v) d.

5 u.color = BLACK €,

6 l.append(u) ;
b

With Cycles in the graph

ANOTHER EXAMPLE (IF TIME)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

USC Viterbi

School of Engineering

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 if v.color = WHITE then

4 DFS-Visit (G, v)

5 u.color = BLACK

6 finish_list.append(u)

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5
6

u.color = BLACK —
finish_list.append(u) DFS-Visit(G,g):
DFS-Visit(G,h):

DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

USC Viterbi Y

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5
6

u.color = BLACK —
finish_list.append(u) DFS-Visit(G,g):
DFS-Visit(G,h):

DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5
6

DFS-Visit(G,f):

u.color = BLACK

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do

3 if v.color = WHITE then DFS-Visit(G.d):
4 DFS-Visit (G, v) — ,
5 u.color = BLACK DFS'V_'S.”(G"‘)'
6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY DFS@:

2 for each vertex v in Adj(u) do d

3 if v.color = WHITE then DFS-Visit(G.d):
4 DFS-Visit (G, v) — ,
5 u.color = BLACK DFS-V.IS.It(G,f)-
6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

USC Viterbi

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY

2 for each vertex v in Adj(u) do
3 ifv.color = WHITE then

4 DFS-Visit (G, v)
5
6

DFS-Visit(G,f):

u.color = BLACK

finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY DFSQ:

2 for each vertex v in Adj(u) do d

3 if v.color = WHITE then DFS-Visit(G,e):
4 DFS-Visit (G, v) — ,
5 u.color = BLACK DFS-V.IS.It(G,f)-
6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

USC Viterbi

USC Viterbi (&)

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY DFSQ:

2 for each vertex v in Adj(u) do (ej

3 if v.color = WHITE then DFS-Visit(G,e):
4 DFS-Visit (G, v —

5 u.color = BLA((:K) DFS-Visit(G,f):
6 finish_list.append(u) DFS-Visit(G,g):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

u.color = GRAY
for each vertex v in Adj(u) do (ej
if v.color = WHITE then f

DFS-Visit(G,f):

u.color = BLACK

1
2
3
4 DFS-Visit (G, v)
5
6 finish_list.append(u)

DFS-Visit(G,9):

DFS-Visit(G,h):
DFS-Visit(G,b):

DFS-Visit(G,c):

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY e
2 for each vertex v in Adj(u) do d
3 if v.color = WHITE then ?
4 DFS-Visit (G, v) g
5 u.color = BLACK E
6 finish_list.append(u) c

DFS-Visit(G,a):

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

USC Viterbi

School of Engineering

Depth First-Search

Toposort(G)

1 for each vertex u

2 u.color = WHITE

3 finish_list = empty_list

4 for each vertex u do

5 if u.color == WHITE then

6 DFS-Visit (G, u, finish_list)

DFS-Visit (G, u)

1 u.color = GRAY e
2 for each vertex v in Adj(u) do d
3 if v.color = WHITE then ?
4 DFS-Visit (G, v) g
5 u.color = BLACK E
6 finish_list.append(u) c
a

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed

USC Viterbi

i, TS(“Viterbi

School of Engineering

ITERATIVE VERSION

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color = WHITE st: |a
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color = WHITE st: |alc|e
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color = WHITE st |alc|e|c|f
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld]|g
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld|g|c]|n
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld|glc|h]|Db
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld|lglc|h|b]|c
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld|lg|lc|h|b]|c]d
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v)
12 else if u.color != WHITE st: alclelc|fld|lg|lc|h|b]|c]d
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE

11 st.push_back(v) Q

1
2
3
4
5 while st not empty
6
7
8
9

12 else if u.color != WHITE st: alclelc|f|d|glc|h|b]|c
13 u.color = BLACK
14 st.pop_back()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE

11 st.push_back(v) Q
C

1
2
3
4
5 while st not empty
6
7
8
9

12 else if u.color != WHITE st: alcle|c|f|ld|glc|h]|b
13 u.color = BLACK
14 st.pop_back()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE

11 st.push_back(v) Q
b

1
2
3
4
5 while st not empty
6
7
8
9

12 else if u.color |= WHITE st alcle|c|f|d|glc]|h
13 u.color = BLACK
14 st.pop_back()

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Depth First-Search

DFS (G,s)
for each vertex u
u.color = WHITE

st = new Stack
st.push_back(s)

u = st.back()
if u.color == WHITE then
u.color = GRAY
foreach vertex v in Adj(u) do
10 if v.color == WHITE
11 st.push_back(v) Q)
12 else if u.color = WHITE st: H
13 u.color = BLACK
14 st.pop_back()

1
2
3
4
5 while st not empty
6
7
8
9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCV1terb1@
BEFS vs. DFS Algorithm

* BFS and DFS are more similar than you think

— Do we use a FIFO/Queue (BFS) or LIFO/Stack (DFS) to store
vertices as we find them

BFS-Visit (G, start_node) DFS-Visit (G, start_node)
1 for each vertex u 1 for each vertex u

2 u.color =WHITE 2 u.color =WHITE

3 u.pred =nil 3 u.pred =nil

4 bfsqg = new Queue 4 st =new Stack

5 Dbfsq.push_back(start_node) 5 st.push_back(start_node)

6 while bfsg not empty 6 while st not empty

7 u = bfsq.pop_front() 7 u = st.top(); st.pop()

8 if u.color == WHITE 8 if u.color == WHITE

9 u.color = GRAY 9 u.color = GRAY

1 foreach vertex v in Adj(u) do 1 foreach vertex v in Adj(u) do
1 1

bfsg.push_back(v) st.push_back(v)

— O
— O

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS(“Viterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— 5 iterbi
Example 1: Count Nodes

* Write a recursive function to count how many nodes are in
the binary tree
— Only process 1 node at a time

— Determine pre-, in-, or post-order based on whose answers you need
to compute the result for your node

— For in- or post-order traversals, determine how to use/combine results
from recursion on children

// Node definition
struct Tnode {

int val;
— TNode *left, *right;
}s

int count(TNode* root)

A {
if(root == NULL) return 0;

| \ else {

: :{ return 1 + count(root->left) +
f(Ieft) | / \ : ---- count(root->right);

I | }

I

\ }

© 2022 by Mark Redekopp. This conterltis ﬂatected-’;\ad-«fay not be shared, uploaded, or distributed.

I (/S C Viterbi (U2

School of Engineering

Example 2: Prefix Sums

* Write a recursive function to have each node store the sum of
the values on the path from the root to each node.
— Only process 1 node at a time

— Determine pre-, in-, or post-order based on whose answers you need

to compute the result for your node [oid prefixi(TNode* root, int psum)
void prefix(TNode* root)
{
prefixH(root, 0);
}
f(n) \ void prefixH(TNode* root, int psum)
{
if(root == NULL) return;
f(right / else {
f(left) "'"7/"‘ >|\ i 9) root->val += psum;
: h 81 prefixH(root->left, root-»>val);
j / \ :'\ —_) / \ prefixH(root->right, root->val);
| | :
1.5 7 h }
\]
N e o o 4
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

